1
|
Hung LT, Poon SHL, Yan WH, Lace R, Zhou L, Wong JKW, Williams RL, Shih KC, Shum HC, Chan YK. Scaffold-Free Strategy Using a PEG-Dextran Aqueous Two-Phase-System for Corneal Tissue Repair. ACS Biomater Sci Eng 2022; 8:1987-1999. [PMID: 35362956 DOI: 10.1021/acsbiomaterials.1c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forming thin tissue constructs with minimal extracellular matrix surrounding them is important for tissue engineering applications. Here, we explore and optimize a strategy that enables rapid fabrication of scaffold-free corneal tissue constructs using the liquid-liquid interface of an aqueous two-phase system (ATPS) that is based on biocompatible polymers, dextran and polyethylene glycol. Intact tissue-like constructs, made of corneal epithelial or endothelial cells, can be formed on the interface between the two liquid phases of ATPS within hours and subsequently collected simply by removing the liquid phases. The formed corneal cell constructs express essential physiological markers and have preserved viability and proliferative ability in vitro. The corneal epithelial cell constructs are also able to re-epithelialize the corneal epithelial wound in vitro. The results suggest the promise of our reported strategy in corneal repair.
Collapse
Affiliation(s)
- Lap Tak Hung
- Department of Mechanical Engineering, Faculty of Engineering, University of Hong Kong, Rm 7-25, Haking Wong Building, Pokfulam Road, Hong Kong SAR 999077, China
| | - Stephanie Hiu Ling Poon
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR 999077, China
| | - Wing Huen Yan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR 999077, China
| | - Rebecca Lace
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, U.K
| | - Liangyu Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR 999077, China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR 999077, China
| | - Rachel L Williams
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, U.K
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR 999077, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, University of Hong Kong, Rm 7-25, Haking Wong Building, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 301B Cyberport 4, 100 Cyberport Road, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
3
|
Nair DSR, Seiler MJ, Patel KH, Thomas V, Camarillo JCM, Humayun MS, Thomas BB. Tissue Engineering Strategies for Retina Regeneration. APPLIED SCIENCES-BASEL 2021; 11. [PMID: 35251703 PMCID: PMC8896578 DOI: 10.3390/app11052154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The retina is a complex and fragile photosensitive part of the central nervous system which is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation therapies. The success of retinal transplantation based on cell suspension injection is hindered by limited cell survival and lack of cellular integration. Recent advances in material science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for transplantation into the eyes. Such implants are found to be more promising than the bolus injection approach. Tissue engineering techniques are specifically designed to construct biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts. The engineered cell construct along with the extracellular matrix formed, can hold the cells in place to enable easy survival, better integration, and improved visual function. This article reviews the advances in the use of scaffolds for transplantation studies in animal models and their application in current clinical trials.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Magdalene J. Seiler
- Departments of Physical Medicine & Rehabilitation, Ophthalmology, Anatomy & Neurobiology, Sue and Bill Gross Stem Cell Research Centre, University of California, Irvine, CA 92697-1705, USA
| | - Kahini H. Patel
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vinoy Thomas
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Juan Carlos Martinez Camarillo
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
4
|
Marcos LF, Wilson SL, Roach P. Tissue engineering of the retina: from organoids to microfluidic chips. J Tissue Eng 2021; 12:20417314211059876. [PMID: 34917332 PMCID: PMC8669127 DOI: 10.1177/20417314211059876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Despite advancements in tissue engineering, challenges remain for fabricating functional tissues that incorporate essential features including vasculature and complex cellular organisation. Monitoring of engineered tissues also raises difficulties, particularly when cell population maturity is inherent to function. Microfluidic, or lab-on-a-chip, platforms address the complexity issues of conventional 3D models regarding cell numbers and functional connectivity. Regulation of biochemical/biomechanical conditions can create dynamic structures, providing microenvironments that permit tissue formation while quantifying biological processes at a single cell level. Retinal organoids provide relevant cell numbers to mimic in vivo spatiotemporal development, where conventional culture approaches fail. Modern bio-fabrication techniques allow for retinal organoids to be combined with microfluidic devices to create anato-physiologically accurate structures or 'retina-on-a-chip' devices that could revolution ocular sciences. Here we present a focussed review of retinal tissue engineering, examining the challenges and how some of these have been overcome using organoids, microfluidics, and bioprinting technologies.
Collapse
Affiliation(s)
- Luis F Marcos
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| |
Collapse
|
5
|
Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today 2019; 24:1669-1678. [PMID: 31051266 DOI: 10.1016/j.drudis.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD), can lead to permanent sight loss. Although intravitreal anti-vascular endothelial growth factor (VEGF) and steroid injections are effective for the management of early stages of wet and/or neovascular AMD (nAMD), no proven treatments currently exist for dry AMD or for the advanced geographic atrophy of the retina that follows. Tissue engineering (TE) has recently emerged as a promising alternative to repair retinal damaged and restore its functions. Here, we review recent advances in TE, with a particular emphasis on retinal regeneration. We provide an overview of retinal diseases, followed by a comprehensive review of TE techniques, cells, and polymers used in the fabrication of scaffolds for retinal cell regenerations, in particular the retinal pigment epithelium (RPE).
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Husam M Younes
- Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Mokhtarinia K, Nourbakhsh MS, Masaeli E, Entezam M, Karamali F, Nasr-Esfahani MH. Switchable phase transition behavior of thermoresponsive substrates for cell sheet engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kiana Mokhtarinia
- Faculty of New Sciences and Technologies; Semnan University; Semnan Iran
- Department of Cellular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | | | - Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - Mehdi Entezam
- Department of Chemical and Polymer Engineering, Faculty of Engineering; Yazd University; Yazd Iran
| | - Fereshteh Karamali
- Department of Cellular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| |
Collapse
|
7
|
Park JH, Shin EY, Shin ME, Choi MJ, Carlomagno C, Song JE, Khang G. Enhanced retinal pigment epithelium (RPE) regeneration using curcumin/alginate hydrogels: In vitro evaluation. Int J Biol Macromol 2018; 117:546-552. [PMID: 29782973 DOI: 10.1016/j.ijbiomac.2018.05.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The retinal pigment epithelium (RPE) plays a significant role in retaining structural integrity of eye. Factors such as reduction in cell regeneration due to aging and physical injury pose a major hurdle in RPE regeneration. In this study, we exploited the use of alginate (AGT) incorporated with Curcumin (CCI) forming a hydrogel based system CCI/AGT. The fabricated hydrogel could anchor RPE cell in it. In vitro cell analysis revealed that the CCI/AGT hydrogel shows good biocompatibility, enhanced cell growth ability and higher ECM formation compared to the pure AGT hydrogel. In particular, the presence of CCI in the hydrogels enhances the cells proliferation of the 23% respect to the pure alginate. Also the expression of crucial genes for retina functions and matrix production were positively affected by CCI presence, with an increment of 45% for RPE65, 32% for CRALBP and 26% for Collagen type 1. In vitro tests demonstrated the potential application of CCI/AGT hydrogels for transplantation under the sub-retinal space acting as a cell delivery vehicle and also their capability to provide an appropriate environment for RPE regeneration. These results suggest that CCI/AGT hydrogel could be translated into a potential surgical graft for biological implantation of retinal tissue engineering.
Collapse
Affiliation(s)
- Jong Ho Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology, Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Eun Yeong Shin
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology, Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Myeong Eun Shin
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology, Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Min Joung Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology, Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Cristiano Carlomagno
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento, Italy; BIOTech Research Center, University of Trento, via delle Regole 101, Trento, Italy; European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology, Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology, Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
8
|
Tian Y, Zonca MR, Imbrogno J, Unser AM, Sfakis L, Temple S, Belfort G, Xie Y. Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomater Sci Eng 2017; 3:890-902. [PMID: 33429561 DOI: 10.1021/acsbiomaterials.6b00757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell attachment is essential for the growth and polarization of retinal pigment epithelial (RPE) cells. Currently, surface coatings derived from biological proteins are used as the gold standard for cell culture. However, downstream processing and purification of these biological products can be cumbersome and expensive. In this study, we constructed a library of chemically modified nanofibers to mimic the Bruch's membrane of the retinal pigment epithelium. Using atmospheric-pressure plasma-induced graft polymerization with a high-throughput screening platform to modify the nanofibers, we identified three polyethylene glycol (PEG)-grafted nanofiber surfaces (PEG methyl ether methacrylate, n = 4, 8, and 45) from a library of 62 different surfaces as favorable for RPE cell attachment, proliferation, and maturation in vitro with cobblestone morphology. Compared with the biologically derived culture matrices such as vitronectin-based peptide Synthemax, our newly discovered synthetic PEG surfaces exhibit similar growth and polarization of retinal pigment epithelial (RPE) cells. However, they are chemically defined, are easy to synthesize on a large scale, are cost-effective, are stable with long-term storage capability, and provide a more physiologically accurate environment for RPE cell culture. To our knowledge, no one has reported that PEG derivatives directly support attachment and growth of RPE cells with cobblestone morphology. This study offers a unique PEG-modified 3D cell culture system that supports RPE proliferation, differentiation, and maturation with cobblestone morphology, providing a new avenue for RPE cell culture, disease modeling, and cell replacement therapy.
Collapse
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Michael R Zonca
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Lauren Sfakis
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Sally Temple
- Neural Stem Cell Institute, One Discovery Drive, Rensselaer, New York 12144, United States
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
9
|
Lužnik Z, Parekh M, Bertolin M, Griffoni C, Ponzin D, Ferrari S. Biobanking of Human Retinas: The Next Big Leap for Eye Banks? Stem Cells Transl Med 2015; 4:868-72. [PMID: 26032747 DOI: 10.5966/sctm.2015-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022] Open
Abstract
Retinal degenerative diseases are one of the main clinical causes of incurable and severe visional impairment. Thus, extensive research effort is put into the development of new causal therapeutic options. Promisingly, a number of studies showed regenerative capacity in specific retinal regions (the ciliary epithelium, retinal pigmented epithelium, iris, and Müller glia cells). However, most recent research studies are based on animal models or in vitro cultured cells, probably because of the limited availability of human posterior eye tissues (vitreous, retina, and choroid). To address this, we showed in our previous reports that eye banks with large numbers of globes collected yearly could set up biorepositories/biobanks where these precious tissues are isolated, quality controlled, and finally stored for scientists and clinicians wanting to access human tissues and test their own hypotheses. These precious human posterior eye tissues could be used for further research purposes, epidemiological studies, and target validation of newly developed drugs. In addition, this could be a promising and challenging option to retrieve potential retinal stem and progenitor cells from different parts of the retina and could be a breakthrough in the future delivery of ex vivo prepared customized (histocompatible) retinal tissue on scaffolds for transplantation purposes. In this Perspective, we will consider how the biorepositories could influence the future strategies for retinal stem cell therapies.
Collapse
Affiliation(s)
- Zala Lužnik
- Fondazione Banca degli Occhi del Veneto, Venice, Italy; Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Mohit Parekh
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | |
Collapse
|
10
|
Regenerating Retinal Pigment Epithelial Cells to Cure Blindness: A Road Towards Personalized Artificial Tissue. CURRENT STEM CELL REPORTS 2015; 1:79-91. [PMID: 26146605 DOI: 10.1007/s40778-015-0014-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinal pigment epithelium (RPE) is a polarized monolayer tissue that functions to support the health and integrity of retinal photoreceptors (PRs). RPE atrophy has been linked to pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in elderly in the USA. RPE atrophy in AMD leads to the PR cell death and vision loss. It is thought that replacing diseased RPE with healthy RPE tissue can prevent PR cell death. Retinal surgical innovations have provided proof-of-principle data that autologous RPE tissue can replace diseased macular RPE and provide visual rescue in AMD patients. Current efforts are focused on developing an in vitro tissue using natural and synthetic scaffolds to generate a polarized functional RPE monolayer. In the future, these tissue-engineering approaches combined with pluripotent stem cell technology will lead to the development of personalized and "off-the-shelf" cell therapies for AMD patients. This review summarizes the historical development and ongoing efforts in surgical and in vitro tissue engineering techniques to develop a three-dimensional therapeutic native RPE tissue substitute.
Collapse
|
11
|
Higuchi A, Ling QD, Kumar SS, Chang Y, Kao TC, Munusamy MA, Alarfaj AA, Hsu ST, Umezawa A. External stimulus-responsive biomaterials designed for the culture and differentiation of ES, iPS, and adult stem cells. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|