1
|
Modification of Polyhydroxyalkanoates Polymer Films Surface of Various Compositions by Laser Processing. Polymers (Basel) 2023; 15:polym15030531. [PMID: 36771832 PMCID: PMC9920739 DOI: 10.3390/polym15030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.
Collapse
|
2
|
Volova TG, Golubev AI, Nemtsev IV, Lukyanenko AV, Dudaev AE, Shishatskaya EI. Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition. Polymers (Basel) 2021; 13:1553. [PMID: 34066143 PMCID: PMC8151816 DOI: 10.3390/polym13101553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92° and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56° and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80°) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76°), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexey I. Golubev
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Special Design and Technological Bureau ‘Nauka’ Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/45 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences” 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Alexey E. Dudaev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Ho MH, Liao MH, Lin YL, Lai CH, Lin PI, Chen RM. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation. Int J Nanomedicine 2014; 9:4293-304. [PMID: 25246786 PMCID: PMC4166309 DOI: 10.2147/ijn.s68012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell-cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan ; Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei, Taiwan
| | - Chien-Hao Lai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei, Taiwan ; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan ; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Abstract
One of the main goals of bone tissue engineering is to identify and develop new biomaterials and scaffolds for structural support and controlled cell growth, which allow for formation or replacement of bone tissue. Recently, carbon nanotubes (CNT) have emerged as a potential candidate for bone tissue engineering. CNT present remarkable mechanical, thermal, and electrical properties with easy functionalization capability and biocompatibility. In oral regenerative medicine, bone reconstruction is an essential requirement for functional rehabilitation of the stomatognathic system. Autologous bone still represents the gold standard graft material for bone reconstruction. However, the small amounts of bone available in donor regions, together with the high costs of surgeries, are critical aspects that hinder the selection of this procedure. Thus, CNT alone or combined with biopolymers have promise to be used as novel potential biomaterials for the restoration of bone defects. Indeed, recent evidence demonstrates CNT to be a feasible material that can increase the formation of bone in tooth sockets of rats. The purpose of this review is to summarize the recent developments in bone repair/regeneration with CNT or CNT-based composites. We further provide an overview of bone tissue engineering and current applications of biomaterials, especially of CNT, to enhance bone regeneration.
Collapse
Affiliation(s)
- P.A. Martins-Júnior
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos, 6627- 31.270-901, Belo Horizonte, MG, Brazil
| | - C.E. Alcântara
- Dental School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - R.R. Resende
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A.J. Ferreira
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos, 6627- 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Peng SW, Guo XY, Shang GG, Li J, Xu XY, You ML, Li P, Chen GQ. An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials 2011; 32:2546-55. [DOI: 10.1016/j.biomaterials.2010.12.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 12/29/2010] [Indexed: 01/23/2023]
|
6
|
Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, Merlin D. Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol 2011; 300:G371-83. [PMID: 21148398 PMCID: PMC3064120 DOI: 10.1152/ajpgi.00466.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent advances in nanotechnology offer new hope for disease detection, prevention, and treatment. Nanomedicine is a rapidly evolving field wherein targeted therapeutic approaches using nanotechnology based on the pathophysiology of gastrointestinal diseases are being developed. Nanoparticle vectors capable of delivering drugs specifically and exclusively to regions of the gastrointestinal tract affected by disease for a prolonged period of time are likely to significantly reduce the side effects of existing otherwise effective treatments. This review aims at integrating various applications of the most recently developed nanomaterials that have tremendous potential for the detection and treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hamed Laroui
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - David S. Wilson
- 2School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta;
| | - Guillaume Dalmasso
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - Khalid Salaita
- 3Department of Chemistry, Emory University, Atlanta; and
| | - Niren Murthy
- 2School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta;
| | - Shanthi V. Sitaraman
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta;
| | - Didier Merlin
- 1Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta; ,4Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
7
|
Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem 2011; 399:2379-88. [PMID: 21240671 DOI: 10.1007/s00216-011-4653-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/21/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
Abstract
Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.
Collapse
|
8
|
Jadraque M, Monforte A, Nuñez MT, López-Gómez L, Martín M, Serrano F. Minimally invasive automated de-epithelization by precise ArF excimer laser ablation. Photomed Laser Surg 2010; 29:75-81. [PMID: 20969437 DOI: 10.1089/pho.2010.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Development of a robotic ArF excimer laser device with a three-dimensional (3D) pattern scanning sensor for the controlled de-epithelization of live mouse and xenografted epidermis. SIGNIFICANCE The animal model could be adapted to humans for automated, minimally invasive de-epithelization of cutaneous areas and therefore is of interest for cutaneous gene therapy research. MATERIALS AND METHODS Ablation thresholds of mouse, porcine, and human skin were measured by acoustic detection methods. These ablation thresholds were used as initial parameters for dosimetry measurements. De-epithelization of live mouse and xenografted epidermis was performed by laser ablation (ArF excimer laser, λ = 193 nm, t(p) = 20 nsec). The rectangular shape of the laser spot and a robotic arm displacement incorporating a three-dimensional patter scanning sensor allowed a polygonal tile floor irradiation of a 2-cm-diameter area. Ablated epidermis was subjected to histology. RESULTS SCID and nude mouse skin did not entirely reflect the de-epithelization of human skin because abundant pockets of dermal keratinocytes persist in the outer root sheath of hair and cysts providing competitive foci of re-epithelization. Automated de-epithelization of human and porcine skin xenografts resulted in precise removal of keratinocytes with subcellular precision, providing a smooth live surface where epidermal transplants might engraft with little endogenous competition from residual outer root sheath from rare hairs. CONCLUSIONS The displacement of the ArF excimer laser devices allows reproducible, smooth, and damage-free ablation of epidermal areas in the animal model.
Collapse
Affiliation(s)
- María Jadraque
- Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Garrido L, Jiménez I, Ellis G, Cano P, García-Martínez JM, López L, de la Peña E. Characterization of surface-modified polyalkanoate films for biomedical applications. J Appl Polym Sci 2010. [DOI: 10.1002/app.32920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Martin MC, Schade U, Lerch P, Dumas P. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 2010; 46:281-3. [DOI: 10.1016/j.ijbiomac.2010.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 01/09/2023]
|
12
|
Miller LM, Smith RJ, Carr GL. Technical Report: The Diversity of Infrared Programs at the NSLS. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/08940880701631369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|