1
|
Choi SH, Lee K, Han H, Mo H, Jung H, Ryu Y, Nam Y, Rim YA, Ju JH. Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater 2023:S1742-7061(23)00317-3. [PMID: 37295627 DOI: 10.1016/j.actbio.2023.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which exchange important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, including stem cells, provide a promising strategy for cartilage regeneration and treatment; however, there are various hurdles to overcome, such as immune rejection and teratoma formation. In this study, we assessed the applicability of the stem cell-derived chondrocyte ECM for cartilage regeneration. Human induced pluripotent stem cell (hiPSC)-derived chondrocytes (iChondrocytes) were differentiated, and decellularized ECM (dECM) was successfully isolated from cultured chondrocytes. Isolated dECM enhanced in vitro chondrogenesis of iPSCs when recellularized. Implanted dECM also restored osteochondral defects in a rat osteoarthritis model. A possible association with the glycogen synthase kinase-3 beta (GSK3β) pathway demonstrated the fate-determining importance of dECM in regulating cell differentiation. Collectively, we suggested the prochondrogenic effect of hiPSC-derived cartilage-like dECM and offered a promising approach as a non-cellular therapeutic for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Human articular cartilage has low ability for regeneration and cell culture-based therapeutics could aid cartilage regeneration. Yet, the applicability of human induced pluripotent stem cell-derived chondrocyte (iChondrocyte) extracellular matrix (ECM) has not been elucidated. Therefore, we first differentiated iChondrocytes and isolated the secreted ECM by decellularization. Recellularization was performed to confirm the pro-chondrogenic effect of the decellularized ECM (dECM). In addition, we confirmed the possibility of cartilage repair by transplanting the dECM into the cartilage defect in osteochondral defect rat knee joint. We believe that our proof-of-concept study will serve as a basis for investigating the potential of dECM obtained from iPSC-derived differentiated cells as a non-cellular resource for tissue regeneration and other future applications.
Collapse
Affiliation(s)
- Si Hwa Choi
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Heeju Han
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | - Hyunkyung Mo
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - YoungWoo Ryu
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Yeri Alice Rim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea; YiPSCELL, Inc., Seoul, South Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Xu W, Gao L, Li W, Wang J, Yue Y, Li X. The adaptation of bovine embryonic stem cells to the changes of feeder layers. In Vitro Cell Dev Biol Anim 2023; 59:85-99. [PMID: 36847888 DOI: 10.1007/s11626-022-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 03/01/2023]
Abstract
Although the feeder-free culture system has been established, the microenvironment provided by the feeder cells still possesses a unique advantage in maintaining the long-term stability and the rapid proliferation of pluripotent stem cells (PSCs). The aim of this study is to discover the adaptive ability of PSCs upon changes of feeder layers. In this study, the morphology, pluripotent marker expression, differentiation ability of bovine embryonic stem cells (bESCs) cultured on low-density, or methanol fixed mouse embryonic fibroblasts were examined by immunofluorescent staining, Western blotting, real-time reverse transcription polymerase chain reaction, and RNA-seq. The results showed that the changes of feeder layers did not induce the rapid differentiation of bESCs, while resulting in the differentiation initiation and alteration of pluripotent state of bESCs. More importantly, the expression of endogenous growth factors and extracellular matrix were increased, and the expression of cell adhesion molecules was altered, which indicated that bESCs may compensate some functions of the feeder layers upon its changes. This study shows the PSCs have the self-adaptive ability responded to the feeder layer alteration.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Lingna Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
3
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
4
|
Shamsollahi HR, Kharrazi S, Jahanbin B, Rafieian S, Dehghani MH, Yunesian M. Development of a new method for isolation of urban air particulates deposited in the human lung tissue. CHEMOSPHERE 2021; 280:130585. [PMID: 33975238 DOI: 10.1016/j.chemosphere.2021.130585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Particulate matters (PMs) are important pollutants in urban air pollution because of their variable composition. The pulmonary clearance of PMs is critical to prevent long-term immunological responses. This study established a new method for the isolation of probably deposited urban air particulates from the human lung tissue, to investigate the features of uncleared particulates. The lung samples were acellularized with SDS solution of various concentrations ranging from 1 to 10%to lyse cells and release the PMs. In addition, the extracellular matrix (ECM) that remained was digested by proteinase K enzyme. The results of this study demonstrated that an SDS solution of 4% is the optimum concentration for the isolation of settled PMs from the lung tissue. Moreover, the used enzymatic method could separate settled PMs from the lung ECM appropriately. The results exhibited that epithelial cells form 46% of the samples' weight on average, whereas just 20% of isolated PMs were found in this part of the tissue. Both groups of separated PMs tend to agglomerate, but it is significantly higher in cellular isolated PMs. The particles separated from ECM have an agglomeration tendency, which is observable only by FE-SEM imaging. Moreover, we found a major part of urban air PMs deposited in ECM. The established method in this study can be used in future investigations to isolate other types of PMs settled in the lung, such as occupationally inhaled carbonaceous particulates.
Collapse
Affiliation(s)
- Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, 14177-55469, Tehran, Iran.
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahab Rafieian
- General Thoracic Surgery Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chiang C, Fang Y, Ho C, Assunção M, Lin S, Wang Y, Blocki A, Huang C. Bioactive Decellularized Extracellular Matrix Derived from 3D Stem Cell Spheroids under Macromolecular Crowding Serves as a Scaffold for Tissue Engineering. Adv Healthc Mater 2021; 10:e2100024. [PMID: 33890420 DOI: 10.1002/adhm.202100024] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Scaffolds for tissue engineering aim to mimic the native extracellular matrix (ECM) that provides physical support and biochemical signals to modulate multiple cell behaviors. However, the majority of currently used biomaterials are oversimplified and therefore fail to provide a niche required for the stimulation of tissue regeneration. In the present study, 3D decellularized ECM (dECM) scaffolds derived from mesenchymal stem cell (MSC) spheroids and with intricate matrix composition are developed. Specifically, application of macromolecular crowding (MMC) to MSC spheroid cultures facilitate ECM assembly in a 3D configuration, resulting in the accumulation of ECM and associated bioactive components. Decellularized 3D dECM constructs produced under MMC are able to adequately preserve the microarchitecture of structural ECM components and are characterized by higher retention of growth factors. This results in a stronger proangiogenic bioactivity as compared to constructs produced under uncrowded conditions. These dECM scaffolds can be homogenously populated by endothelial cells, which direct the macroassembly of the structures into larger cell-carrying constructs. Application of empty scaffolds enhances intrinsic revascularization in vivo, indicating that the 3D dECM scaffolds represent optimal proangiogenic bioactive blocks for the construction of larger engineered tissue constructs.
Collapse
Affiliation(s)
- Cheng‐En Chiang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yi‐Qiao Fang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chao‐Ting Ho
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Marisa Assunção
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Sheng‐Ju Lin
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yu‐Chieh Wang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
- Interdisciplinary Program of Life Science National Tsing Hua University Hsinchu 30013 Taiwan
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin Hong Kong
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Chieh‐Cheng Huang
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
6
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Phan NV, Wright T, Rahman MM, Xu J, Coburn JM. In Vitro Biocompatibility of Decellularized Cultured Plant Cell-Derived Matrices. ACS Biomater Sci Eng 2020; 6:822-832. [PMID: 33464854 DOI: 10.1021/acsbiomaterials.9b00870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a recent increase in exploring the use of decellularized plant tissue as a novel "green" material for biomedical applications. As part of this effort, we have developed a technique to decellularize cultured plant cells (tobacco BY-2 cells and rice cells) and tissue (tobacco hairy roots) that uses deoxyribonuclease I (DNase I)). As a proof of concept, all cultured plant cells and tissue were transformed to express recombinant enhanced green fluorescent protein (EGFP) to show that the proteins of interest could be retained within the matrices. Decellularization of lyophilized tobacco BY-2 cells with DNase for 30 min depleted the DNA content from 1503 ± 459 to 31 ± 5 ng/sample. The decellularization procedure resulted in approximately 36% total protein retention (154 ± 60 vs 424 ± 70 μg/sample) and 33% EGFP retention. Similar results for DNA removal and protein retention were observed with the rice cells and tobacco hairy root matrices. When exposed to decellularized BY-2 cell-derived matrices, monolayer cultures of human foreskin fibroblasts (hFFs) maintained or increased metabolic activity, which is an indicator of cell viability. Furthermore, hFFs were able to attach, spread, and proliferate when cultured with the decellularized BY-2 cell-derived matrices in an aggregate model. Overall, these studies demonstrate that cultured plant cells and tissue can be effectively decellularized with DNase I with substantial protein retention. The resulting material has a positive impact on hFF metabolic activity and could be employed to create a three-dimensional environment for cell growth. These results thus show the promise of using naturally derived cellulose matrices from cultured plant cells and tissues for biomedical applications.
Collapse
Affiliation(s)
- Nhi V Phan
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Tristen Wright
- Department of Biological Science, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - M Masrur Rahman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas 72401, United States.,College of Agriculture, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| |
Collapse
|
9
|
Xing H, Yin H, Sun C, Ren X, Tian Y, Yu M, Jiang T. Preparation of an acellular spinal cord scaffold to improve its biological properties. Mol Med Rep 2019; 20:1075-1084. [PMID: 31173271 PMCID: PMC6625434 DOI: 10.3892/mmr.2019.10364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/30/2019] [Indexed: 11/14/2022] Open
Abstract
In recent years, acellular spinal cord scaffolds have been extensively studied in tissue engineering. Notably, acellular spinal cord scaffolds may be used to treat spinal cord injury; however, the method of preparation can result in low efficiency and may affect the biological properties of cells. This study aimed to use EDC crosslinking, combined with chemical extraction for tissue decellularization, in order to improve the efficiency of acellular scaffolds. To make the improved stent available for the clinical treatment of spinal cord injury, it is necessary to study its immunogenicity. Therefore, this study also focused on the adherence of rat bone marrow mesenchymal stem cells to scaffolds, and their differentiation into neuron-like cells in the presence of suitable trophic factors. The results revealed that EDC crosslinking combined with chemical extraction methods may significantly improve the efficiency of acellular scaffolds, and may also confer better biological characteristics, including improved immunogenicity. Notably, it was able to promote adhesion of rat bone marrow mesenchymal stem cells and their differentiation into neuron-like cells. These results suggested that the improved preparation method may be promising for the construction of multifunctional acellular scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yongyang Tian
- Emergency Department of University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
10
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
11
|
Son B, Kim JA, Cho S, Jeong GJ, Kim BS, Hwang NS, Park TH. Lineage Specific Differentiation of Magnetic Nanoparticle-Based Size Controlled Human Embryoid Body. ACS Biomater Sci Eng 2017; 3:1719-1729. [DOI: 10.1021/acsbiomaterials.7b00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boram Son
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jeong Ah Kim
- Biomedical
Omics Group, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea
| | - Sungwoo Cho
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Gun-Jae Jeong
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Byung Soo Kim
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Nathaniel S. Hwang
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Tai Hyun Park
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
12
|
Lin H, Li Q, Lei Y. Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks. Biofabrication 2017; 9:025007. [PMID: 28287080 DOI: 10.1088/1758-5090/aa663b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably be differentiated into all the cell types of the human body in vitro, thus are an ideal cell source for biofabrication. We previously developed a hydrogel-based cell culture system that can economically produce large numbers of hPSC spheroids. With hPSCs and this culture system, there are two potential methods to biofabricate a desired tissue. In Method 1, hPSC spheroids are first utilized to biofabricate an hPSC tissue that is subsequently differentiated into the desired tissue. In Method 2, hPSC spheroids are first converted into tissue spheroids in the hydrogel-based culture system and the tissue spheroids are then utilized to biofabricate the desired tissue. In this paper, we systematically measured the fusion rates of hPSC spheroids without and with differentiation toward cortical and midbrain dopaminergic neurons and found spheroids' fusion rates dropped sharply as differentiation progressed. We found Method 1 was appropriate for biofabricating neural tissues.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
| | | | | |
Collapse
|
13
|
Sart S, Yan Y, Li Y, Lochner E, Zeng C, Ma T, Li Y. Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta Biomater 2016; 30:222-232. [PMID: 26577988 DOI: 10.1016/j.actbio.2015.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/12/2015] [Accepted: 11/10/2015] [Indexed: 01/20/2023]
Abstract
At various developmental stages, pluripotent stem cells (PSCs) and their progeny secrete a large amount of extracellular matrices (ECMs) which could interact with regulatory growth factors to modulate stem cell lineage commitment. ECMs derived from PSC can be used as unique scaffolds that provide broad signaling capacities to mediate cellular differentiation. However, the rapid degradation of ECMs can impact their applications as the scaffolds for in vitro cell expansion and in vivo transplantation. To address this issue, this study investigated the effects of crosslinking on the ECMs derived from embryonic stem cells (ESCs) and the regulatory capacity of the crosslinked ECMs on the proliferation and differentiation of reseeded ESC-derived neural progenitor cells (NPCs). To create different biological cues, undifferentiated aggregates, spontaneous embryoid bodies, and ESC-derived NPC aggregates were decellularized. The derived ECMs were crosslinked using genipin or glutaraldehyde to enhance the scaffold stability. ESC-derived NPC aggregates were reseeded on different ECM scaffolds and differential cellular compositions of neural progenitors, neurons, and glial cells were observed. The results indicate that ESC-derived ECM scaffolds affect neural differentiation through intrinsic biological cues and biophysical properties. These scaffolds have potential for in vitro cell culture and in vivo tissue regeneration study. STATEMENT OF SIGNIFICANCE Dynamic interactions of acellular extracellular matrices and stem cells are critical for lineage-specific commitment and tissue regeneration. Understanding the synergistic effects of biochemical, biological, and biophysical properties of acellular matrices would facilitate scaffold design and the functional regulation of stem cells. The present study assessed the influence of crosslinked embryonic stem cell-derived extracellular matrix on neural differentiation and revealed the synergistic interactions of various matrix properties. While embryonic stem cell-derived matrices have been assessed as tissue engineering scaffolds, the impact of crosslinking on the embryonic stem cell-derived matrices to modulate neural differentiation has not been studied. The results from this study provide novel knowledge on the interface of embryonic stem cell-derived extracellular matrix and neural aggregates. The findings reported in this manuscript are significant for stem cell differentiation toward the applications in stem cell-based drug screening, disease modeling, and cell therapies.
Collapse
|
14
|
Yan Y, Martin LM, Bosco DB, Bundy JL, Nowakowski RS, Sang QXA, Li Y. Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials 2015; 73:231-42. [DOI: 10.1016/j.biomaterials.2015.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022]
|
15
|
Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods 2015; 94:85-100. [PMID: 26439175 DOI: 10.1016/j.ymeth.2015.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.
Collapse
|
16
|
Osteogenic embryoid body-derived material induces bone formation in vivo. Sci Rep 2015; 5:9960. [PMID: 25961152 PMCID: PMC4426716 DOI: 10.1038/srep09960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/23/2015] [Indexed: 12/24/2022] Open
Abstract
The progressive loss of endogenous regenerative capacity that accompanies mammalian aging has been attributed at least in part to alterations in the extracellular matrix (ECM) composition of adult tissues. Thus, creation of a more regenerative microenvironment, analogous to embryonic morphogenesis, may be achieved via pluripotent embryonic stem cell (ESC) differentiation and derivation of devitalized materials as an alternative to decellularized adult tissues, such as demineralized bone matrix (DBM). Transplantation of devitalized ESC materials represents a novel approach to promote functional tissue regeneration and reduce the inherent batch-to-batch variability of allograft-derived materials. In this study, the osteoinductivity of embryoid body-derived material (EBM) was compared to DBM in a standard in vivo ectopic osteoinduction assay in nude mice. EBM derived from EBs differentiated for 10 days with osteogenic media (+β-glycerophosphate) exhibited similar osteoinductivity to active DBM (osteoinduction score = 2.50 ± 0.27 vs. 2.75 ± 0.16) based on histological scoring, and exceeded inactive DBM (1.13 ± 0.13, p < 0.005). Moreover, EBM stimulated formation of new bone, ossicles, and marrow spaces, similar to active DBM. The potent osteoinductivity of EBM demonstrates that morphogenic factors expressed by ESCs undergoing osteogenic differentiation yield a novel devitalized material capable of stimulating de novo bone formation in vivo.
Collapse
|
17
|
Fitzpatrick LE, McDevitt TC. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 2015; 3:12-24. [PMID: 25530850 PMCID: PMC4270054 DOI: 10.1039/c4bm00246f] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDMs) represent bioactive, biocompatible materials consisting of a complex assembly of fibrillar proteins, matrix macromolecules and associated growth factors that often recapitulate, at least to some extent, the composition and organization of native ECM microenvironments. The unique ability to engineer CDMs de novo based on cell source and culture methods makes them an attractive alternative to conventional allogeneic and xenogeneic tissue-derived matrices that are currently harvested from cadaveric sources, suffer from inherent heterogeneity, and have limited ability for customization. Although CDMs have been investigated for a number of biomedical applications, including adhesive cell culture substrates, synthetic scaffold coatings, and tissue engineered products, such as heart valves and vascular grafts, the state of the field is still at a relatively nascent stage of development. In this review, we provide an overview of the various applications of CDM and discuss successes to date, current limitations and future directions.
Collapse
Affiliation(s)
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Huang G, Ji S, Luo P, Liu H, Zhu S, Wang G, Zhou P, Xiao S, Xia Z. Accelerated Expansion of Epidermal Keratinocyte and Improved Dermal Reconstruction Achieved by Engineered Amniotic Membrane. Cell Transplant 2013; 22:1831-44. [PMID: 23067579 DOI: 10.3727/096368912x657945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, we used human amniotic membrane (AM) to prepare a dermal scaffold with intact basement membrane (BM) and good biostability for quick expansion and transplantation of epidermal keratinocytes (EKs). Fresh AM was treated by repeated freeze–thaw cycles and DNase digestion. This new method was able to cleanse the cell components effectively and retain the BM structure with continuous distributions of laminin, collagen IV, VI, and VII. Subsequently, the acellular amniotic membrane (AAM) was cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) for 5 min, 30 min, and 6 h. With the time of cross-linking prolonging, the mechanical strength and biostability of AAM increased gradually, while its cytotoxicity to EKs also increased. The 5-min cross-linked AAM (5min-AAM) had no significant cytotoxicity with good histocompatibility. The relative cell viability of EKs seeded on the 5min-AAM surface was 367 ± 33% and 631 ± 43% at 7 and 14 days of culture, respectively, both higher than 294 ± 30% and 503 ± 41% of the conventional cell culture dish (CCD) group, and the proportion of P63-positive cells was significantly higher than that of the CCD group on day 7 (54.32 ± 4.27% vs. 33.32 ± 3.18%, p < 0.05). When the 5min-AAM loaded with EKs (EK-AAM) was grafted onto full-thickness skin defects in nude mice, the cells survived well and formed an epidermis similar to normal skin. The new epidermis was thicker, and reconstruction of the dermal structure was good with an intact BM. Four weeks after transplantation, the wound contraction rate in the EK-AAM group was 43.09 ± 7.05%, significantly lower than that in the EK sheet group (57.49 ± 5.93%) and control group (69.94 ± 9.47%) ( p < 0.05). In conclusion, repeated freeze–thaw treatment with appropriate EDC cross-linking offers AAM an intact BM structure with good operability and biostability. It may prove to be an ideal dermal scaffold to promote expansion of EKs in vitro and be transplanted for reconstruction of the dermal structure.
Collapse
Affiliation(s)
- Guofeng Huang
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Shizhao Ji
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Pengfei Luo
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Houqi Liu
- Department of Histology and Embryology, College of Basic Medical Science, the Second Military Medical University, Shanghai, China
| | - Shihui Zhu
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Guangyi Wang
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Panyu Zhou
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Shichu Xiao
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Zhaofan Xia
- Burns Institute of People's Liberation Army, Affiliated Changhai Hospital of the Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Sart S, Ma T, Li Y. Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Eng Part A 2013; 20:54-66. [PMID: 23848515 DOI: 10.1089/ten.tea.2012.0690] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) emerge as a promising tool for tissue engineering and regenerative medicines due to their extensive self-renewal ability and the capacity to give rise to cells from all three-germ layers. ESCs also secrete a large amount of endogenous extracellular matrices (ECMs), which play an important role in regulating ESC self-renewal, lineage commitment, and tissue morphogenesis. ECMs derived from ESCs have a broader signaling capacity compared to somatic ECMs and are predicted to have a lower risk of tumor formation associated with ESCs. In this study, ECMs from undifferentiated ESC monolayers, undifferentiated aggregates, or differentiated embryoid bodies at different developmental stages and lineage specifications were decellularized and their capacities to direct ESC proliferation and differentiation were characterized. The results demonstrate that the ESC-derived ECMs were able to influence ESC proliferation and differentiation by direct interactions with the cells and by influencing the signaling functions of the regulatory macromolecules such as retinoic acid. Such matrices have the potential to present regulatory signals to direct lineage- and development-specific cellular responses for in vitro applications or cell delivery.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | | | | |
Collapse
|
20
|
Goh SK, Olsen P, Banerjee I. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS One 2013; 8:e61856. [PMID: 23637919 PMCID: PMC3630218 DOI: 10.1371/journal.pone.0061856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/15/2013] [Indexed: 01/15/2023] Open
Abstract
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Phillip Olsen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Guo J, Chen H, Wang Y, Cao CB, Guan GQ. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int J Oral Sci 2013; 5:37-43. [PMID: 23492902 PMCID: PMC3632768 DOI: 10.1038/ijos.2013.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three-dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate the biocompatibility of a novel porcine acellular dermal matrix as periodontal tissue scaffolds both in vitro and in vivo. The scaffolds in this study were purified porcine acellular dermal matrix (PADM) and hydroxyapatite-treated PADM (HA-PADM). The biodegradation patterns of the scaffolds were evaluated in vitro. The biocompatibility of the scaffolds in vivo was assessed by implanting them into the sacrospinal muscle of 20 New Zealand white rabbits. The hPDL cells were cultured with PADM or HA-PADM scaffolds for 3, 7, 14, 21 and 28 days. Cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry and confocal microscopy were used to evaluate the biocompatibility of the scaffolds. In vitro, both PADM and HA-PADM scaffolds displayed appropriate biodegradation pattern, and also, demonstrated favorable tissue compatibility without tissue necrosis, fibrosis and other abnormal response. The absorbance readings of the WST-1 assay were increased with the time course, suggesting the cell proliferation in the scaffolds. The hPDL cells attaching, spreading and morphology on the surface of the scaffold were visualized by SEM, H&E staining, immnuohistochemistry and confocal microscopy, demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and the amount of cells were growing up in the course of time. This study proved that HA-PADM scaffold had good biocompatibility in animals in vivo and appropriate biodegrading characteristics in vitro. The hPDL cells were able to proliferate and migrate into the scaffold. These observations may suggest that HA-PADM scaffold is a potential cell carrier for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jing Guo
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | | | | | | | | |
Collapse
|
22
|
Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends Biotechnol 2012; 31:78-84. [PMID: 23219200 DOI: 10.1016/j.tibtech.2012.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 01/20/2023]
Abstract
Stem cell differentiation is regulated by the complex interplay of multiple parameters, including adhesive intercellular interactions, cytoskeletal and extracellular matrix remodeling, and gradients of agonists and antagonists that individually and collectively vary as a function of spatial locale and temporal stages of development. Current approaches to direct stem cell differentiation focus on systematically understanding the relative influences of microenvironmental perturbations and simultaneously engineering platforms aimed at recapitulating physicochemical aspects of tissue morphogenesis. This review focuses on novel approaches to control the spatiotemporal dynamics of stem cell signaling and morphogenic remodeling to direct the differentiation of stem cells and develop functional tissues for in vitro screening and regenerative medicine technologies.
Collapse
|
23
|
Ning LJ, Zhang Y, Chen XH, Luo JC, Li XQ, Yang ZM, Qin TW. Preparation and characterization of decellularized tendon slices for tendon tissue engineering. J Biomed Mater Res A 2012; 100:1448-56. [DOI: 10.1002/jbm.a.34083] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
|
24
|
An epidermal stem cells niche microenvironment created by engineered human amniotic membrane. Biomaterials 2011; 32:7801-11. [DOI: 10.1016/j.biomaterials.2011.06.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/29/2011] [Indexed: 01/10/2023]
|
25
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
26
|
Deutsch ER, Guldberg RE. Stem cell-synthesized extracellular matrix for bone repair. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01070g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Horton RE, Millman JR, Colton CK, Auguste DT. Engineering microenvironments for embryonic stem cell differentiation to cardiomyocytes. Regen Med 2009; 4:721-32. [DOI: 10.2217/rme.09.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the potential to be a renewable source of cardiomyocytes for use in myocardial cell replacement strategies. Although progress has been made towards differentiating stem cells to specific cell lineages, the efficiency is often poor and the number of cells generated is not suitable for therapeutic usage. Recent studies demonstrated that controlling the stem cell microenvironment can influence differentiation. Components of the extracellular matrix are important physiological regulators and can provide mechanical cues, direct differentiation and improve cell engraftment into damaged tissue. Bioreactors are used to control the microenvironment and produce large numbers of desired cells. This article describes recent methods to achieve cardiomyocyte differentiation by engineering the stem cell microenvironment. Successful translation of stem cell research to therapeutic applications will need to address large-scale cardiomyocyte differentiation and purification, assessment of cardiac function and synchronization, and safety concerns.
Collapse
Affiliation(s)
- Renita E Horton
- Harvard University School of Engineering & Applied Sciences, 29 Oxford Street, Pierce Hall Room 317, Cambridge, MA 02138, USA
| | - Jeffrey R Millman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Clark K Colton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debra T Auguste
- Harvard University School of Engineering & Applied Sciences, 29 Oxford Street, Pierce Hall Room 317, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Schenke-Layland K, Rofail F, Heydarkhan S, Gluck JM, Ingle NP, Angelis E, Choi CH, MacLellan WR, Beygui RE, Shemin RJ, Heydarkhan-Hagvall S. The use of three-dimensional nanostructures to instruct cells to produce extracellular matrix for regenerative medicine strategies. Biomaterials 2009; 30:4665-75. [PMID: 19524289 DOI: 10.1016/j.biomaterials.2009.05.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/17/2009] [Indexed: 11/27/2022]
Abstract
Synthetic polymers or naturally-derived extracellular matrix (ECM) proteins have been used to create tissue engineering scaffolds; however, the need for surface modification in order to achieve polymer biocompatibility and the lack of biomechanical strength of constructs built using proteins alone remain major limitations. To overcome these obstacles, we developed novel hybrid constructs composed of both strong biosynthetic materials and natural human ECM proteins. Taking advantage of the ability of cells to produce their own ECM, human foreskin fibroblasts were grown on silicon-based nanostructures exhibiting various surface topographies that significantly enhanced ECM protein production. After 4 weeks, cell-derived sheets were harvested and histology, immunochemistry, biochemistry and multiphoton imaging revealed the presence of collagens, tropoelastin, fibronectin and glycosaminoglycans. Following decellularization, purified sheet-derived ECM proteins were mixed with poly(epsilon-caprolactone) to create fibrous scaffolds using electrospinning. These hybrid scaffolds exhibited excellent biomechanical properties with fiber and pore sizes that allowed attachment and migration of adipose tissue-derived stem cells. Our study represents an innovative approach to generate strong, non-cytotoxic scaffolds that could have broad applications in tissue regeneration strategies.
Collapse
Affiliation(s)
- Katja Schenke-Layland
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, 675 Charles E Young Dr. South, MRL-3579, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|