1
|
Ou L, Zhang Q, Chang Y, Xia N. Co-Delivery of Methotrexate and Nanohydroxyapatite with Polyethylene Glycol Polymers for Chemotherapy of Osteosarcoma. MICROMACHINES 2023; 14:757. [PMCID: PMC10146394 DOI: 10.3390/mi14040757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/29/2023]
Abstract
Neoadjuvant chemotherapy is an alternative treatment modality for tumors. Methotrexate (MTX) has been often used as a neoadjuvant chemotherapy reagent for osteosarcoma surgery. However, the large dosage, high toxicity, strong drug resistance, and poor improvement of bone erosion restricted the utilization of methotrexate. Here, we developed a targeted drug delivery system using nanosized hydroxyapatite particles (nHA) as the cores. MTX was conjugated to polyethylene glycol (PEG) through the pH-sensitive ester linkage and acted as both the folate receptor-targeting ligand and the anti-cancer drug due to the similarity to the structure of folic acid. Meanwhile, nHA could increase the concentration of calcium ions after being uptake by cells, thus inducing mitochondrial apoptosis and improving the efficacy of medical treatment. In vitro drug release studies of MTX-PEG-nHA in phosphate buffered saline at different pH values (5, 6.4 and 7.4) indicated that the system showed a pH-dependent release feature because of the dissolution of ester bonds and nHA under acidic conditions. Furthermore, the treatment on osteosarcoma cells (143B, MG63, and HOS) by using MTX-PEG-nHA was demonstrated to exhibit higher therapeutic efficacy. Therefore, the developed platform possesses the great potential for osteosarcoma therapy.
Collapse
Affiliation(s)
- Lingbin Ou
- School of Medical Technology, Yongzhou Vocational Technical College, Yongzhou 425100, China
| | - Qiongyu Zhang
- School of Medical Technology, Yongzhou Vocational Technical College, Yongzhou 425100, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
2
|
Rosyida NF, Ana ID, Alhasyimi AA. The Use of Polymers to Enhance Post-Orthodontic Tooth Stability. Polymers (Basel) 2022; 15:polym15010103. [PMID: 36616453 PMCID: PMC9824751 DOI: 10.3390/polym15010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Relapse after orthodontic treatment occurs at a rate of about 70 to 90%, and this phenomenon is an orthodontic issue that has not yet been resolved. Retention devices are one attempt at prevention, but they require a considerable amount of time. Most orthodontists continue to find it challenging to manage orthodontic relapse; therefore, additional research is required. In line with existing knowledge regarding the biological basis of relapse, biomedical engineering approaches to relapse regulation show promise. With so many possible uses in biomedical engineering, polymeric materials have long been at the forefront of the materials world. Orthodontics is an emerging field, and scientists are paying a great deal of attention to polymers because of their potential applications in this area. In recent years, the controlled release of bisphosphonate risedronate using a topically applied gelatin hydrogel has been demonstrated to be effective in reducing relapse. Simvastatin encapsulation in exosomes generated from periodontal ligament stem cells can promote simvastatin solubility and increase the inhibitory action of orthodontic relapse. Moreover, the local injection of epigallocatechin gallate-modified gelatin suppresses osteoclastogenesis and could be developed as a novel treatment method to modify tooth movement and inhibit orthodontic relapse. Furthermore, the intrasulcular administration of hydrogel carbonated hydroxyapatite-incorporated advanced platelet-rich fibrin has been shown to minimize orthodontic relapse. The objective of this review was to provide an overview of the use of polymer materials to reduce post-orthodontic relapse. We assume that bone remodeling is a crucial factor even though the exact process by which orthodontic correction is lost after retention is not fully known. Delivery of a polymer containing elements that altered osteoclast activity inhibited osteoclastogenesis and blocking orthodontic relapse. The most promising polymeric materials and their potential orthodontic uses for the prevention of orthodontic relapse are also discussed.
Collapse
Affiliation(s)
- Niswati Fathmah Rosyida
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Correspondence: ; Tel.: +62-82136708250
| |
Collapse
|
3
|
Anggraeni R, Ana ID, Agustina D, Martien R. Induction of protein specific antibody by carbonated hydroxy apatite as a candidate for mucosal vaccine adjuvant. Dent Mater J 2022; 41:710-723. [PMID: 35858789 DOI: 10.4012/dmj.2021-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Buccal mucosae are considered as a site for vaccine delivery since they are relatively abundant with antigen-presenting dendritic cells, mainly Langerhans cells. In this study, we formulated carbonated hydroxy apatite (CHA) with ovalbumin (OVA) (denoted as CHA-OVA), incorporated it into bilayer buccal membrane to form hydrogel films containing CHA-OVA complex for vaccination via buccal mucosae. Ethylcellulose blend with polyethylene glycol 400 were used as impermeable backing layer. Physical properties of all tested buccal membranes were found suitable for mucosal application. In vitro and ex vivo release study showed there was no burst release of OVA found from all tested formula. From the in vivo examination, rabbit buccal mucosae vaccinated by mucoadhesive membranes containing CHA-OVA complex demonstrated mucosal specific antibody induction, represented the potential of CHA as a candidate of needle-free vaccine adjuvant. Future research is awaiting to investigate proper CHA crystallinity in complex with protein against targeted diseases.
Collapse
Affiliation(s)
- Rahmi Anggraeni
- Graduate Program of Dental Science, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada
| | - Dewi Agustina
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ronny Martien
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada
| |
Collapse
|
4
|
Zhong D, Wang Y, Xie F, Chen S, Yang X, Ma Z, Wang S, Iqbal MZ, Ge J, Zhang Q, Zhao R, Kong X. Biomineralized Prussian Blue Nanotherapeutic for Enhanced Cancer Photothermal Therapy. J Mater Chem B 2022; 10:4889-4896. [DOI: 10.1039/d2tb00775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy is a promising tumor ablation technique that converts light into heat energy to kill cancer cells. Prussian blue (PB), a biocompatible photothermal reagent, has been widely explored for...
Collapse
|
5
|
Matsuki Y, Yanagawa T, Sumiyoshi H, Yasuda J, Nakao S, Goto M, Shibata-Seki T, Akaike T, Inagaki Y. Modification of exosomes with carbonate apatite and a glycan polymer improves transduction efficiency and target cell selectivity. Biochem Biophys Res Commun 2021; 583:93-99. [PMID: 34735885 DOI: 10.1016/j.bbrc.2021.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Exosomes are secreted from a variety of cells and transmit parental cell-derived biomolecules, such as nucleic acids and proteins, to recipient cells in distant organs. In addition to their important roles in both physiological and pathological conditions, exosomes are expected to serve as natural drug carriers without any cytotoxicity, immunogenicity, or tumorigenicity. However, the use of exosomes as drug delivery tools is limited due to the low uptake efficiency of the target cells, insufficient release of the contents from the endosome to the cytosol, and possible adverse effects caused by the delivery to non-target cells. In the present study, we examined the effects of the modification of exosomes with carbonate apatite or a lactose-carrying polymer. Using newly generated monitoring exosomes that contain either firefly luciferase or fused mCherry/enhanced green fluorescent protein, we demonstrated that the modification of exosomes with carbonate apatite improved their release from the endosome into the cytosol in recipient cells. Meanwhile, the modification of exosomes with a lactose-carrying polymer enhanced the selective delivery to parenchymal hepatocytes. These modified exosomes may provide an efficient strategy for macromolecule therapy for incurable diseases that cannot be treated with conventional small-molecule compounds.
Collapse
Affiliation(s)
- Yuki Matsuki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Takayo Yanagawa
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Jumpei Yasuda
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Sachie Nakao
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Mitsuaki Goto
- Biomaterial Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Teiko Shibata-Seki
- Biomaterial Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan; Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Tsukuba, Japan
| | - Toshihiro Akaike
- Biomaterial Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
6
|
Alhasyimi AA, Suparwitri S, Christnawati C. Effect of Carbonate Apatite Hydrogel-Advanced Platelet-Rich Fibrin Injection on Osteoblastogenesis during Orthodontic Relapse in Rabbits. Eur J Dent 2020; 15:412-419. [PMID: 33368063 PMCID: PMC8382455 DOI: 10.1055/s-0040-1721234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective
This study aimed to determine the effect of carbonate apatite (CHA) hydrogel-aPRF on osteoblastogenesis during relapse in rabbits.
Materials and Methods
Forty-five rabbits were divided into three groups (
n
= 15): the control, CHA, and CHA-autologous platelet-rich fibrin (aPRF) groups. An open-coil spring was compressed between brackets to distalize the lower incisors of the rabbits by delivering a force of 50 cN for 1 week. The new position of the teeth was retained for 14 days, and CHA hydrogel-aPRF was injected every 7 days. The appliances were then debonded to allow relapse. On days 0, 3, 7, 14, and 21 after debonding, transforming growth factor (TGF)-β1 and bone morphogenetic protein (BMP)-2 expression was examined using immunohistochemistry staining and Runx-2 levels were analyzed by enzyme-linked immunosorbent assay. The data collected were analyzed using analysis of variance and a post hoc Tukey’s test (
p
< 0.05).
Results
Histomorphometric analysis revealed that TGF-β1 expression in the CHA-aPRF group is statistically higher than that in other groups on days 0, 3, and 7 after debonding (
p
< 0.05). BMP-2 expression in the CHA-aPRF group was also statistically higher than that in the other groups on days 3, 14, and 21 after debonding (
p
< 0.05). ELISA showed that Runx-2 levels are slightly higher in the CHA-aPRF group than in the other groups (
p
> 0.05).
Conclusion
Although injection of CHA-aPRF aids in osteoblastogenesis associated with enhancing TGF-β1 and BMP-2 expressions, it does not significantly upregulate Runx-2 levels.
Collapse
Affiliation(s)
- Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sri Suparwitri
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
7
|
Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. NANOMATERIALS 2020; 10:nano10050834. [PMID: 32349272 PMCID: PMC7712760 DOI: 10.3390/nano10050834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the abnormal, uncontrollable proliferation of cells in the breast. Conventional treatment modalities like chemotherapy induce deteriorating side effects on healthy cells. Non-viral inorganic nanoparticles (NPs) confer exclusive characteristics, such as, stability, controllable shape and size, facile surface modification, and unique magnetic and optical properties which make them attractive drug carriers. Among them, carbonate apatite (CA) particles are pH-responsive in nature, enabling rapid intracellular drug release, but are typically heterogeneous with the tendency to self-aggregate. Here, we modified the nano-carrier by partially substituting Ca2+ with Mg2+ and Fe3+ into a basic lattice structure of CA, forming Fe/Mg-carbonate apatite (Fe/Mg-CA) NPs with the ability to mitigate self-aggregation, form unique protein corona in the presence of serum and efficiently deliver doxorubicin (DOX), an anti-cancer drug into breast cancer cells. Two formulations of Fe/Mg-CA NPs were generated by adding different concentrations of Fe3+ and Mg2+ along with a fixed amount of Ca2+ in bicarbonate buffered DMEM (Dulbecco's Modified Eagle's Medium), followed by 30 min incubation at 37 °C. Particles were characterized by turbidity analysis, z-average diameter and zeta potential measurement, optical microscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), flame atomic absorption spectroscopy (FAAS), pH dissolution, drug binding, cellular uptake, thiazolyl blue tetrazolium bromide (MTT) assay, stability analysis, and protein corona study by LCMS (Liquid chromatography-mass spectrometry). Both formulations of Fe/Mg-CA displayed mostly uniform nano-sized particles with less tendency to aggregate. The EDX and FAAS elemental analysis confirmed the weight (%) of Ca, Fe and Mg, along with their Ca/P ratio in the particles. A constant drug binding efficiency was noticed with 5 μM to 10 μM of initial DOX concentration. A pH dissolution study of Fe/Mg-CA NPs revealed the quick release of DOX in acidic pH. Enhancement of cytotoxicity for the chemotherapy drug was greater for Fe/Mg-CA NPs as compared to CA NPs, which could be explained by an increase in cellular internalization as a result of the small z-average diameter of the former. The protein corona study by LCMS demonstrated that Fe/Mg-CA NPs exhibited the highest affinity towards transport proteins without binding with opsonins. Biodistribution study was performed to study the effect of DOX-loaded Fe/Mg-CA NPs on the tissue distribution of DOX in Balb/c 4T1 tumor-bearing mice. Both formulations of Fe/Mg-CA NPs have significantly increased the accumulation of DOX in tumors. Interestingly, high Fe/Mg-CA NPs exhibited less off-target distribution compared to low Fe/Mg-CA NPs. Furthermore, the blood plasma analysis revealed prolonged blood circulation half-life of DOX-loaded low and high Fe/Mg-CA NPs compared to free DOX solution. Modifying CA NPs with Fe3+ and Mg2+, thereby, led to the generation of nano-sized particles with less tendency to aggregate, enhancing the drug binding efficiency, cellular uptake, and cytotoxicity without hampering drug release in acidic pH, while improving the circulation half-life and tumor accumulation of DOX. Therefore, Fe/Mg-CA which predominantly forms a transport protein-related protein corona could be a proficient carrier for therapeutic delivery in breast cancer.
Collapse
|
8
|
Hossain SM, Zainal Abidin SA, Chowdhury EH. Krebs Cycle Intermediate-Modified Carbonate Apatite Nanoparticles Drastically Reduce Mouse Tumor Burden and Toxicity by Restricting Broad Tissue Distribution of Anticancer Drugs. Cancers (Basel) 2020; 12:E161. [PMID: 31936503 PMCID: PMC7017074 DOI: 10.3390/cancers12010161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
The morphology, size, and surface area of nanoparticles (NPs), with the existence of functional groups on their surface, contribute to the drug binding affinity, distribution of the payload in different organs, and targeting of a particular tumor for exerting effective antitumor activity in vivo. However, the inherent chemical structure of NPs causing unpredictable biodistribution with a toxic outcome still poses a serious challenge in clinical chemotherapy. In this study, carbonate apatite (CA), citrate-modified CA (CMCA) NPs, and α-ketoglutaric acid-modified CA (α-KAMCA) NPs were employed as carriers of anticancer drugs for antitumor, pharmacokinetic, and toxicological analysis in a murine breast cancer model. The results demonstrated almost five-fold enhanced tumor regression in the cyclophosphamide (CYP)-loaded α-KAMCA NP-treated group compared to the group treated with CYP only. Also, NPs promoted much higher drug accumulation in blood and tumor in comparison with the drug injected without a carrier. In addition, doxorubicin (DOX)-loaded NPs exhibited less accumulation in the heart, indicating less potential myocardial toxicity in mice compared to free DOX. Our findings, thus, conclude that CA, CMCA, and α-KAMCA NPs extended the circulation half-life and enhanced the anticancer effect with reduced toxicity of conventional chemotherapeutics in healthy organs, signifying that they are promising drug delivery devices in breast cancer treatment.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; (S.M.H.); (S.A.Z.A.)
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; (S.M.H.); (S.A.Z.A.)
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; (S.M.H.); (S.A.Z.A.)
- Health and Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH. Targeting Cell Adhesion Molecules via Carbonate Apatite-Mediated Delivery of Specific siRNAs to Breast Cancer Cells In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11070309. [PMID: 31269666 PMCID: PMC6680929 DOI: 10.3390/pharmaceutics11070309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
While several treatment strategies are applied to cure breast cancer, it still remains one of the leading causes of female deaths worldwide. Since chemotherapeutic drugs have severe side effects and are responsible for development of drug resistance in cancer cells, gene therapy is now considered as one of the promising options to address the current treatment limitations. Identification of the over-expressed genes accounting for constitutive activation of certain pathways, and their subsequent knockdown with specific small interfering RNAs (siRNAs), could be a powerful tool in inhibiting proliferation and survival of cancer cells. In this study, we delivered siRNAs against mRNA transcripts of over-regulated cell adhesion molecules such as catenin alpha 1 (CTNNA1), catenin beta 1 (CTNNB1), talin-1 (TLN1), vinculin (VCL), paxillin (PXN), and actinin-1 (ACTN1) in human (MCF-7 and MDA-MB-231) and murine (4T1) cell lines as well as in the murine female Balb/c mice model. In order to overcome the barriers of cell permeability and nuclease-mediated degradation, the pH-sensitive carbonate apatite (CA) nanocarrier was used as a delivery vehicle. While targeting CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 resulted in a reduction of cell viability in MCF-7 and MDA-MB-231 cells, delivery of all these siRNAs via carbonate apatite (CA) nanoparticles successfully reduced the cell viability in 4T1 cells. In 4T1 cells, delivery of CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 siRNAs with CA caused significant reduction in phosphorylated and total AKT levels. Furthermore, reduced band intensity was observed for phosphorylated and total MAPK upon transfection of 4T1 cells with CTNNA1, CTNNB1, and VCL siRNAs. Intravenous delivery of CTNNA1 siRNA with CA nanoparticles significantly reduced tumor volume in the initial phase of the study, while siRNAs targeting CTNNB1, TLN1, VCL, PXN, and ACTN1 genes significantly decreased the tumor burden at all time points. The tumor weights at the end of the treatments were also notably smaller compared to CA. This successfully demonstrates that targeting these dysregulated genes via RNAi and by using a suitable delivery vehicle such as CA could serve as a promising therapeutic treatment modality for breast cancers.
Collapse
Affiliation(s)
- Maeirah Afzal Ashaie
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Izyani Kamaruzman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nabilah Ibnat
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| |
Collapse
|
10
|
Karim ME, Shetty J, Islam RA, Kaiser A, Bakhtiar A, Chowdhury EH. Strontium Sulfite: A New pH-Responsive Inorganic Nanocarrier to Deliver Therapeutic siRNAs to Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11020089. [PMID: 30791612 PMCID: PMC6410046 DOI: 10.3390/pharmaceutics11020089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inorganic nanoparticles hold great potential in the area of precision medicine, particularly for treating cancer owing to their unique physicochemical properties, biocompatibility and improved pharmacokinetics properties compared to their organic counterparts. Here we introduce strontium sulfite nanoparticles as new pH-responsive inorganic nanocarriers for efficient transport of siRNAs into breast cancer cells. We employed the simplest nanoprecipitation method to generate the strontium sulfite nanoparticles (SSNs) and demonstrated the dramatic roles of NaCl and d-glucose in particle growth stabilization in order to produce even smaller nanosize particles (Na-Glc-SSN) with high affinity towards negatively charged siRNA, enabling it to efficiently enter the cancer cells. Moreover, the nanoparticles were found to be degraded with a small drop in pH, suggesting their potential capability to undergo rapid dissolution at endosomal pH so as to release the payload. While these particles were found to be nontoxic to the cells, they showed higher potency in facilitating cancer cell death through intracellular delivery and release of oncogene-specific siRNAs targeting ros1 and egfr1 mRNA transcripts, than the strontium sulfite particles prepared in absence of NaCl and d-glucose, as confirmed by growth inhibition assay. The mouse plasma binding analysis by Q-TOF LC-MS/MS demonstrated less protein binding to smaller particles of Na-Glc-SSNs. The biodistribution studies of the particles after 4 h of treatment showed Na-Glc-SSNs had less off-target distribution than SSNs, and after 24 h, all siRNAs were cleared from all major organs except the tumors. ROS1 siRNA with its potential therapeutic role in treating 4T1-induced breast tumor was selected for subsequent in vivo tumor regression study, revealing that ROS1 siRNA-loaded SSNs exerted more significant anti-tumor effects than Na-Glc-SSNs carrying the same siRNA following intravenous administration, without any systemic toxicity. Thus, strontium sulfite emerged as a powerful siRNA delivery tool with potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Jayalaxmi Shetty
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Ahsanul Kaiser
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Athirah Bakhtiar
- Faculty of Pharmacy, Mahsa University, 2, Jalan SP 4/4, Bandar Saujana Putra, 42610 Jenjarom, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| |
Collapse
|
11
|
Zainal Abidin SA, Rajadurai P, Chowdhury MEH, Ahmad Rusmili MR, Othman I, Naidu R. Cytotoxic, Antiproliferative and Apoptosis-inducing Activity of L-Amino Acid Oxidase from MalaysianCalloselasma rhodostomaon Human Colon Cancer Cells. Basic Clin Pharmacol Toxicol 2018; 123:577-588. [DOI: 10.1111/bcpt.13060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | - Pathmanathan Rajadurai
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | - Md. Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | | | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Darul Ehsan Malaysia
| |
Collapse
|
12
|
Takahashi H, Misato K, Aoshi T, Yamamoto Y, Kubota Y, Wu X, Kuroda E, Ishii KJ, Yamamoto H, Yoshioka Y. Carbonate Apatite Nanoparticles Act as Potent Vaccine Adjuvant Delivery Vehicles by Enhancing Cytokine Production Induced by Encapsulated Cytosine-Phosphate-Guanine Oligodeoxynucleotides. Front Immunol 2018; 9:783. [PMID: 29720976 PMCID: PMC5916113 DOI: 10.3389/fimmu.2018.00783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/28/2018] [Indexed: 01/23/2023] Open
Abstract
Vaccine adjuvants that can induce not only antigen-specific antibody responses but also Th1-type immune responses and CD8+ cytotoxic T lymphocyte responses are needed for the development of vaccines against infectious diseases and cancer. Of many available adjuvants, oligodeoxynucleotides (ODNs) with unmethylated cytosine-phosphate-guanine (CpG) motifs are the most promising for inducing the necessary immune responses, and these adjuvants are currently under clinical trials in humans. However, the development of novel delivery vehicles that enhance the adjuvant effects of CpG ODNs, subsequently increasing the production of cytokines such as type-I interferons (IFNs), is highly desirable. In this study, we demonstrate the potential of pH-responsive biodegradable carbonate apatite (CA) nanoparticles as CpG ODN delivery vehicles that can enhance the production of type-I IFNs (such as IFN-α) relative to that induced by CpG ODNs and can augment the adjuvant effects of CpG ODNs in vivo. In contrast to CpG ODNs, CA nanoparticles containing CpG ODNs (designated CA-CpG) induced significant IFN-α production by mouse dendritic cells and human peripheral blood mononuclear cells in vitro; and production of interleukin-12, and IFN-γ was higher in CA-CpG-treated groups than in CpG ODNs groups. In addition, treatment with CA-CpG resulted in higher cytokine production in draining lymph nodes than did treatment with CpG ODNs in vivo. Furthermore, vaccination with CA-CpG plus an antigen, such as ovalbumin or influenza virus hemagglutinin, resulted in higher antigen-specific antibody responses and CD8+ cytotoxic T lymphocyte responses in vivo, in an interleukin-12- and type-I IFN-dependent manner, than did vaccination with the antigen plus CpG ODNs; in addition, the efficacy of the vaccine against influenza virus was higher with CA-CpG as the adjuvant than with CpG ODNs as the adjuvant. These data show the potential of CA nanoparticles to serve as CpG ODN delivery vehicles that increase the production of cytokines, especially IFN-α, induced by CpG ODNs and thus augment the efficacy of CpG ODNs as adjuvants. We expect that the strategy reported herein will facilitate the design and development of novel adjuvant delivery vehicles for vaccines.
Collapse
Affiliation(s)
- Hideki Takahashi
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazuki Misato
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Taiki Aoshi
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Vaccine Dynamics Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yasuyuki Yamamoto
- Vaccine Creation Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yui Kubota
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Xin Wu
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hirofumi Yamamoto
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Vaccine Creation Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan.,Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
13
|
Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun 2017; 8:1777. [PMID: 29176623 PMCID: PMC5701150 DOI: 10.1038/s41467-017-01764-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
The delivery of therapeutic peptides for diabetes therapy is compromised by short half-lives of drugs with the consequent need for multiple daily injections that reduce patient compliance and increase treatment cost. In this study, we demonstrate a smart exendin-4 (Ex4) delivery device based on microneedle (MN)-array patches integrated with dual mineralized particles separately containing Ex4 and glucose oxidase (GOx). The dual mineralized particle-based system can specifically release Ex4 while immobilizing GOx as a result of the differential response to the microenvironment induced by biological stimuli. In this manner, the system enables glucose-responsive and closed-loop release to significantly improve Ex4 therapeutic performance. Moreover, integration of mineralized particles can enhance the mechanical strength of alginate-based MN by crosslinking to facilitate skin penetration, thus supporting painless and non-invasive transdermal administration. We believe this smart glucose-responsive Ex4 delivery holds great promise for type 2 diabetes therapy by providing safe, long-term, and on-demand Ex4 therapy. Diabetes treatments often rely on frequent and scheduled drug administration, which reduces patient compliance and increases treatment cost. Here, the authors develop a microneedle-array patch that separately loads drug-releasing module and glucose-sensing element for on-demand, long-term diabetes therapy.
Collapse
|
14
|
Zhu Z, Li F, Zhong F, Zhai K, Tao W, Sun G. A Method to Encapsulate Small Organic Molecules in Calcium Phosphate Nanoparticles Based on the Supramolecular Chemistry of Cyclodextrin. MICROMACHINES 2017; 8:E291. [PMID: 30400481 PMCID: PMC6190105 DOI: 10.3390/mi8100291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Abstract
Calcium phosphate nanoparticles (CPNPs) encapsulating small organic molecules, such as imaging agents and drugs, are considered to be ideal devices for cancer diagnosis or therapy. However, it is generally difficult to encapsulate small organic molecules in CPNPs because of the lack of solubility in water or binding affinity to calcium phosphate. To solve these issues, we utilized the carboxymethyl β-cyclodextrin (CM-β-CD) to increase the solubility and binding affinity to small organic molecules for the encapsulation into CPNPs in this work. The results indicated that the model molecules, hydrophilic rhodamine B (RB) and hydrophobic docetaxel (Dtxl), are successfully encapsulated into CPNPs with the assistance of CM-β-CD. We also demonstrated the CPNPs could be remarkably internalized into A549 cells, resulting in the efficient inhibition of tumor cells' growth.
Collapse
Affiliation(s)
- Zhongming Zhu
- Pulmonary Department, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Feng Li
- Department of respiration, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, China.
| | - Kang Zhai
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Wei Tao
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Gengyun Sun
- Pulmonary Department, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
15
|
Chen W, Wang G, Yung BC, Liu G, Qian Z, Chen X. Long-Acting Release Formulation of Exendin-4 Based on Biomimetic Mineralization for Type 2 Diabetes Therapy. ACS NANO 2017; 11:5062-5069. [PMID: 28437610 DOI: 10.1021/acsnano.7b01809] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exendin-4 has been clinically exploited for treating type 2 diabetes, but the short circulation half-life and multiple daily injections limit its widespread application with respect to poor patient compliance, low efficacy, and high treatment cost. In this study, a potent long-acting release system based on biomimetic mineralization was constructed for biocompatible and sustained exendin-4 delivery. Similar to natural biomineralization, exendin-4 can be mineralized to form nanosized mineral solids by means of the reaction between acidic amino acid residues and calcium ions in a supersaturated environment with negligible influence on peptide bioactivity. Mineralized exendin-4 particles may be spontaneously absorbed by a living body under physiologically supersaturated conditions, resulting in gradual dissociation and sustained drug release. In such a way, the glucose level of diabetic mice may be effectively controlled for a long period of time by mineralized exendin-4 without obvious side effects. We believe this biomimetic formulation can serve as a promising candidate for future clinical applications for type 2 diabetes therapies.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, People’s Republic of China
- Laboratory
of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Bryant C. Yung
- Laboratory
of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zhiyong Qian
- State Key Laboratory
of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, People’s Republic of China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
16
|
Ding Y, Zhai K, Pei P, Lin Y, Ma Y, Zhu H, Shao M, Yang X, Tao W. Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells. J Colloid Interface Sci 2017; 493:181-189. [PMID: 28092816 DOI: 10.1016/j.jcis.2017.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
HYPOTHESIS Exchange of the chloride ion (Cl-) ligands of cisplatin with carboxylates is widely used in fabricating cisplatin loaded nanoparticles for improved cancer therapy. However, the dynamic exchange may cause premature cisplatin release and even disintegration of the nanoparticles in Cl--containing medium such as in plasma. Molecules bearing carboxylates are capable of mediating the mineralization process of calcium phosphate; therefore, it is possible to overcome the disadvantage by sequestering cisplatin in a calcium phosphate nanoparticle (CPNP). EXPERIMENTS With the hypothesis, precipitation reaction of calcium nitrate and disodium hydrogen phosphate was performed in a solution of poly(ethylene glycol)-poly(acrylic acid) block copolymers with their carboxylates partly conjugated with cisplatin. Then, structure, physicochemical properties, and bioactivity of the product were carefully investigated with multiple characterization methods. FINDINGS It was revealed a pegylated, cisplatin encapsulated CPNP was prepared; and with appropriate mole ratio of cisplatin to carboxylates, the nanoparticle encapsulated cisplatin efficiently (>90%), was stable and almost entirely prevented the cisplatin release in Cl--containing medium at pH 7.4 but released them in an acidic condition, and showed moderately and greatly enhanced cytotoxicities to the lung cancer cell line A549 and its cisplatin resistance form A549R respectively in comparison with the free cisplatin.
Collapse
Affiliation(s)
- Yang Ding
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kang Zhai
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Pei Pei
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, PR China
| | - Yinchu Ma
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Huixia Zhu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Mingfeng Shao
- Department of Urology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China.
| | - Xianzhu Yang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Wei Tao
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
17
|
Sun Y, Chen Y, Ma X, Yuan Y, Liu C, Kohn J, Qian J. Mitochondria-Targeted Hydroxyapatite Nanoparticles for Selective Growth Inhibition of Lung Cancer in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25680-25690. [PMID: 27602785 DOI: 10.1021/acsami.6b06094] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Most patients have metastases at the time of diagnosis, thus demanding development of more effective and specific agents. In this study, the specific anticancer effect of hydroxyapatite nanoparticles (HAPNs) to human lung cancer cells (A549) and the underlying mechanisms were investigated, using normal bronchial epithelial cells (16HBE) as the control. Rod-shaped HAPNs (∼10 nm in width and 50 nm in length) were prepared by aqueous precipitation method. Without any further functionalization and drug loading, HAPNs selectively inhibited cancer-cell proliferation. Their efficient mitochondrial targeting correlated strongly with decreased mitochondrial membrane potential and induction of mitochondria-dependent apoptosis in A549 cells. Caveolae-mediated endocytosis via lysosome trafficking was observed to be a prominent internalization pathway for HAPNs in both A549 and 16HBE cells. However, more nanoparticles were taken up into A549 cells. HAPNs triggered a sustained elevation of intracellular calcium concentration ([Ca2+]i) in cancer cells but only a transitory increase in normal control cells. In a nude mouse lung cancer model with xenotransplanted A549 cells, HAPN treatment demonstrated nearly 40% tumor growth inhibition without apparent side effect. These results demonstrated that the enhanced cellular uptake and mitochondrial targeting of HAPNs, together with the prolonged elevation of [Ca2+]i in A549 cells, could result in the cancer-specific cytotoxicity of HAPNs. Thus, HAPNs might be a promising agent or mitochondria-targeted delivery system for effective lung cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Joachim Kohn
- New Jersey Center for Biomaterials, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , New Brunswick, New Jersey 08855, United States
| | | |
Collapse
|
18
|
Cui X, Liang T, Liu C, Yuan Y, Qian J. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:453-460. [DOI: 10.1016/j.msec.2016.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
|
19
|
Neelgund GM, Oki AR. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 2016; 484:135-145. [PMID: 27599382 DOI: 10.1016/j.jcis.2016.07.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
Abstract
Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Aderemi R Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
20
|
Qin J, Zhong Z, Ma J. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:377-83. [PMID: 26952436 DOI: 10.1016/j.msec.2016.01.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/15/2016] [Accepted: 01/29/2016] [Indexed: 11/15/2022]
Abstract
A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems.
Collapse
Affiliation(s)
- Jinli Qin
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhenyu Zhong
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
21
|
Xie Y, Perera TSH, Li F, Han Y, Yin M. Quantitative Detection Method of Hydroxyapatite Nanoparticles Based on Eu(3+) Fluorescent Labeling in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23819-23823. [PMID: 26495748 DOI: 10.1021/acsami.5b08767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
One major challenge for application of hydroxyapatite nanoparticles (nHAP) in nanomedicine is the quantitative detection method. Herein, we exploited one quantitative detection method for nHAP based on the Eu(3+) fluorescent labeling via a simple chemical coprecipitation method. The trace amount of nHAP in cells and tissues can be quantitatively detected on the basis of the fluorescent quantitative determination of Eu(3+) ions in nHAP crystal lattice. The lowest concentration of Eu(3+) ions that can be quantitatively detected is 0.5 nM using DELFIA enhancement solution. This methodology can be broadly applicable for studying the tissue distribution and metabolization of nHAP in vivo.
Collapse
Affiliation(s)
- Yunfei Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P.R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P.R. China
| | - Thalagalage Shalika Harshani Perera
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P.R. China
- Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka , 70140 Belihuloya, Sri Lanka
| | - Fang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P.R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P.R. China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P.R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P.R. China
| | - Meizhen Yin
- School of Medicine, Hubei Institute of Technology , Huangshi, Hubei 435003, China
| |
Collapse
|
22
|
Ko DY, Moon HJ, Jeong B. Temperature-sensitive polypeptide nanogels for intracellular delivery of a biomacromolecular drug. J Mater Chem B 2015; 3:3525-3530. [DOI: 10.1039/c5tb00366k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature sensitive polypeptide nanogels showing excellent cytocompatibility and internalization efficiency controlled by the zeta potential and size of the nanogels.
Collapse
Affiliation(s)
- Du Young Ko
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| |
Collapse
|
23
|
Zeng B, Shi H, Liu Y. A versatile pH-responsive platform for intracellular protein delivery using calcium phosphate nanoparticles. J Mater Chem B 2015; 3:9115-9121. [DOI: 10.1039/c5tb01760b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly biocompatible nanoplatform for the intracellular delivery of different proteins, exhibiting pH-responsive release and efficient endosomal escape.
Collapse
Affiliation(s)
- Bingru Zeng
- CAS Key Laboratory of Soft Matter Chemistry
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| |
Collapse
|
24
|
Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep 2014; 4:7134. [PMID: 25409543 PMCID: PMC4238015 DOI: 10.1038/srep07134] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 01/25/2023] Open
Abstract
Hydroxyapatite (HAP), similar to inorganic phase in bones, shows good biocompatibility and bioactivity as bone defect repairing material. Recently, nanoscaled HAP shows the special properties differing from bulk HAP in physics, chemistry and biology. This paper demonstrates that HAP nanoparticle (nHAP) possesses the ability for inhibiting cancer cell growth in vitro and in vivo. In vitro, after treatment with nHAP for 3 days, proliferation of human cancer cells are inhibited by more than 65% and by less than 30% for human normal cells. In vivo, injection of nHAP in transplanted tumor results in significant reduction (about 50%) of tumor size. The anticancer effect of nHAP is mainly attributed to high amount by endocytosis in cancer cells and inhibition on protein synthesis in cells. The abundant nHAP internalized in cancer cells around endoplasmic reticulum may inhibit the protein synthesis by decreasing the binding of mRNA to ribosome due to its high adsorption capacity for ribosome and arrest cell cycle in G0/G1 phase. nHAP shows no ROS-involved cytotoxicity and low cytotoxicity to normal cells. These results strongly suggest that nHAP can inhibit cancer cell proliferation and have a potential application in cancer treatment.
Collapse
|
25
|
He P, Takeshima SN, Tada S, Akaike T, Ito Y, Aida Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014; 32:6199-205. [PMID: 25261380 DOI: 10.1016/j.vaccine.2014.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
To demonstrate the potential of pH-sensitive carbonate apatite (CO₃Ap) nanoparticles as DNA vaccine carriers to enhance vaccination efficacy, we examined the humoral and cellular immune responses of C57BL/6 mice immunized with the plasmid expression vector pCI-neo encoding the full-length soluble ovalbumin (OVA) (pCI-neo-sOVA), pCI-neo-sOVA/CO₃Ap complexes, or pCI-neo/CO₃Ap complexes as a control. Mice immunized with a low dose of pCI-neo-sOVA-loaded CO₃Ap (10 μg) produced ex vivo splenocyte proliferation after stimulation with CD8 T-cell but not CD4 T-cell epitopes and a delayed-type-hypersensitivity reaction more efficiently than mice in the other groups. Furthermore, mice receiving this immunization generated the same levels of OVA-specific antibodies and interferon (IFN)-γ secretion after CD8 T-cell and CD4 T-cell epitope challenges as those in mice treated with 100 μg of free pCI-neo-sOVA, whereas mice injected with a high dose of pCI-neo-sOVA-loaded CO₃Ap (100 μg) or with control plasmids produced negligible levels of OVA-specific antibodies or IFN-γ. Therefore, our results showed that 10 μg of pCI-neo-sOVA delivered by CO₃Ap strongly elicited humoral and cellular immune responses. This study is the first to demonstrate the promising potential of CO₃Ap nanoparticles for DNA vaccine delivery.
Collapse
Affiliation(s)
- Pan He
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4252 Nagatsuka-cho, Midoriku, Yokohama 226-8501, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
26
|
Chen W, Liu X, Xiao Y, Chen Y, Wang G, Liu C, Xu X, Tang R. Nano regulation of cisplatin chemotherapeutic behaviors by biomineralization controls. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3644-3649. [PMID: 24799417 DOI: 10.1002/smll.201303849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Controllable biomineralization modification of cisplatin can alter the drug biodistribution with extended circulation time in blood. These changes increase passive tumor target and decrease non-specific accumulation significantly, which can improve chemotherapeutic effect with minimum side effects.
Collapse
Affiliation(s)
- Wei Chen
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Z, Xiao Y, Chen W, Wang Y, Wang B, Wang G, Xu X, Tang R. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J Mater Chem B 2014; 2:3480-3489. [DOI: 10.1039/c4tb00056k] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Sarker SR, Hokama R, Takeoka S. Intracellular delivery of universal proteins using a lysine headgroup containing cationic liposomes: deciphering the uptake mechanism. Mol Pharm 2013; 11:164-74. [PMID: 24224643 DOI: 10.1021/mp400363z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An amino acid-based cationic lipid having a TFA counterion (trifluoroacetic acid counterion) in the lysine headgroup was used to deliver functional proteins into human cervical cancer cells, HeLa, in the presence of serum. Proteins used in the study were fluorescein isothiocyanate (FITC) labeled bovine serum albumin, mouse anti-F actin antibody [NH3], and goat anti mouse IgG conjugated with FITC. The formation of liposome/protein complexes was confirmed using native polyacrylamide gel electrophoresis. Furthermore, the complexes were characterized in terms of their size and zeta potential at different pH values and found to be responsive to changes in pH. The highest delivery efficiency of the liposome/albumin complexes was 99% at 37 °C. The liposomes effectively delivered albumin and antibodies as confirmed by confocal laser scanning microscopy (CLSM). Inhibition studies showed that the cellular uptake mechanism of the complexes was via caveolae-mediated endocytosis, and the proteins were subsequently released from either the early endosomes or the caveosomes as suggested by CLSM. Thus, lysine-based cationic liposomes can be a useful tool for intracellular protein delivery.
Collapse
Affiliation(s)
- Satya Ranjan Sarker
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns) , Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | |
Collapse
|
29
|
Chen W, Xiao Y, Liu X, Chen Y, Zhang J, Xu X, Tang R. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chem Commun (Camb) 2013; 49:4932-4. [PMID: 23604226 DOI: 10.1039/c3cc41872c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-solidified intermedias (NSI) of cisplatin were prepared via biomineralization and applied to reverse the drug resistance of cancers in vitro and in vivo by an alternative internalization pathway.
Collapse
Affiliation(s)
- Wei Chen
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Hossain S, Yamamoto H, Chowdhury EH, Wu X, Hirose H, Haque A, Doki Y, Mori M, Akaike T. Fabrication and intracellular delivery of doxorubicin/carbonate apatite nanocomposites: effect on growth retardation of established colon tumor. PLoS One 2013; 8:e60428. [PMID: 23613726 PMCID: PMC3629059 DOI: 10.1371/journal.pone.0060428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 12/05/2022] Open
Abstract
In continuing search for effective treatments of cancer, the emerging model aims at efficient intracellular delivery of therapeutics into tumor cells in order to increase the drug concentration. However, the implementation of this strategy suffers from inefficient cellular uptake and drug resistance. Therefore, pH-sensitive nanosystems have recently been developed to target slightly acidic extracellular pH environment of solid tumors. The pH targeting approach is regarded as a more general strategy than conventional specific tumor cell surface targeting approaches, because the acidic tumor microclimate is most common in solid tumors. When nanosystems are combined with triggered release mechanisms in endosomal or lysosomal acidic pH along with endosomolytic capability, the nanocarriers demonstrated to overcome multidrug resistance of various tumors. Here, novel pH sensitive carbonate apatite has been fabricated to efficiently deliver anticancer drug Doxorubicin (DOX) to cancer cells, by virtue of its pH sensitivity being quite unstable under an acidic condition in endosomes and the desirable size of the resulting apatite-DOX for efficient cellular uptake as revealed by scanning electron microscopy. Florescence microscopy and flow cytometry analyses demonstrated significant uptake of drug (92%) when complexed with apatite nanoparticles. In vitro chemosensitivity assay revealed that apatite-DOX nanoparticles executed high cytotoxicity in several human cancer cell lines compared to free drugs and consequently apatite-DOX-facilitated enhanced tumor inhibitory effect was observed in colorectal tumor model within BALB/cA nude mice, thereby shedding light on their potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sharif Hossain
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita-City, Osaka, Japan
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Sunway Campus, Malaysia
| | - Xin Wu
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita-City, Osaka, Japan
| | - Hajime Hirose
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita-City, Osaka, Japan
| | - Amranul Haque
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita-City, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita-City, Osaka, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- * E-mail:
| |
Collapse
|
31
|
Wang J, Ornek-Ballanco C, Xu J, Yang W, Yu X. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle. Int J Nanomedicine 2013; 8:39-46. [PMID: 23293518 PMCID: PMC3534303 DOI: 10.2147/ijn.s31537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer–lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin–fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin–fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.
Collapse
Affiliation(s)
- Junping Wang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | | | | | | | | |
Collapse
|
32
|
Ren F, Leng Y, Ding Y, Wang K. Hydrothermal growth of biomimetic carbonated apatite nanoparticles with tunable size, morphology and ultrastructure. CrystEngComm 2013. [DOI: 10.1039/c3ce26884e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Maier K, Martin I, Wagner E. Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery. Mol Pharm 2012; 9:3560-8. [DOI: 10.1021/mp300404d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kevin Maier
- Pharmaceutical Biotechnology, Center for System-Based Drug
Research, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Irene Martin
- Pharmaceutical Biotechnology, Center for System-Based Drug
Research, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug
Research, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
34
|
Han Y, Wang X, Dai H, Li S. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4616-22. [PMID: 22860897 DOI: 10.1021/am300992x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this paper, the effects of size and surface charge of hydroxyapatite (HAP) particles on a red blood cell (RBC) suspension were studied. Results showed that the HAP particles exhibited nanosize and surface charge effects on the RBC suspension. Differing from HAP microparticles, HAP nanoparticles induced some aggregation of the RBCs in the unstructured agglutinates. HAP nanoparticles were adhered to the surface membrane of the RBCs due to their remarkably higher adsorption capacity than the HAP microparticles, resulting in the formation of a sunken appearance ("caves") on the surface membrane of the RBCs without rupturing the lipid bilayer. In the case of high negatively charged HAP nanoparticles after heparin modification, the aggregation of the RBCs induced by the HAP nanoparticles was inhibited. Such HAP nanoparticle-induced aggregation of the RBCs could be attributed to the bridging force via the electrostatic interaction between the positively charged binding sites on the HAP surface and the negatively charged groups on the surface of the RBCs. The surface charge of the HAP nanoparticles is thus a crucial factor influencing the interaction between the HAP nanoparticles and the RBCs.
Collapse
Affiliation(s)
- Yingchao Han
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan 430070, PR China.
| | | | | | | |
Collapse
|
35
|
|
36
|
Hebishima T, Tada S, Takeshima SN, Akaike T, Ito Y, Aida Y. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochem Biophys Res Commun 2011; 415:597-601. [DOI: 10.1016/j.bbrc.2011.10.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/25/2011] [Indexed: 11/29/2022]
|
37
|
Kaflak A, Ślósarczyk A, Kolodziejski W. A comparative study of carbonate bands from nanocrystalline carbonated hydroxyapatites using FT-IR spectroscopy in the transmission and photoacoustic modes. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Tee LK, Ling CS, Chua MJ, Abdullah S, Rosli R, Chowdhury EH. Purification of transcriptionally active multimeric plasmid DNA using zwitterionic detergent and carbonate apatite nano-particles. Plasmid 2011; 66:38-46. [PMID: 21419794 DOI: 10.1016/j.plasmid.2011.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/11/2011] [Indexed: 11/19/2022]
Abstract
Plasmid DNA is one of the indispensable components in molecular biology research and a potential biomaterial for gene therapy and DNA vaccination. Both quality and quantity of extracted plasmid DNA are of the great interests in cloning and subsequent expression of genes in vitro and in vivo for basic research and therapeutic interventions. Bacteria with extremely short generation times are the valuable source of plasmid DNA that can be isolated through a number of existing techniques. However, the current methods have some limitations in isolating high quality plasmid DNA since the multimeric plasmid which is believed to be more efficiently transcribed by RNA polymerase than the monomeric form, is almost lost during the extraction process. Recently, we developed a rapid isolation technique for multimeric plasmid based on generation of a 'protein aggregate' using a zwitterionic detergent and alkali. Here we have investigated the roles of different parameters in the whole extraction process to optimise the production of high quality multimeric plasmid DNA. Moreover, we have showed the advantageous effects of nanoparticles to effectively sediment the 'protein aggregate' for smooth elution of multimeric plasmid DNA from it. Finally, quality assessment study has revealed that the isolated multimeric DNA is at least 10 times more transcriptionally active than the monomeric form isolated by the commercially available Qiaget kit.
Collapse
Affiliation(s)
- Lau Khye Tee
- Faculty of Medicine and Health Sciences, International Medical University (IMU), No. 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
39
|
Marschall ALJ, Frenzel A, Schirrmann T, Schüngel M, Dübel S. Targeting antibodies to the cytoplasm. MAbs 2011; 3:3-16. [PMID: 21099369 DOI: 10.4161/mabs.3.1.14110] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Technische Universität Braunschweig; Institute of Biochemistry and Biotechnology; Braunschweig, Germany
| | | | | | | | | |
Collapse
|
40
|
Hossain S, Stanislaus A, Chua MJ, Tada S, Tagawa YI, Chowdhury EH, Akaike T. Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. J Control Release 2010; 147:101-8. [PMID: 20620182 DOI: 10.1016/j.jconrel.2010.06.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 12/19/2022]
Abstract
Gene therapy through intracellular delivery of a functional gene or a gene-silencing element is a promising approach to treat critical diseases. Elucidation of the genetic basis of human diseases with complete sequencing of human genome revealed many vital genes as possible targets in gene therapy programs. RNA interference (RNAi), a powerful tool in functional genomics to selectively silence messenger RNA (mRNA) expression, can be harnessed to rapidly develop novel drugs against any disease target. The ability of synthetic small interfering RNA (siRNA) to effectively silence genes in vitro and in vivo, has made them particularly well suited as a drug therapeutic. However, since naked siRNA is unable to passively diffuse through cellular membranes, delivery of siRNA remains the major hurdle to fully exploit the potential of siRNA technology. Here pH-sensitive carbonate apatite has been developed to efficiently deliver siRNA into the mammalian cells by virtue of its high affinity interactions with the siRNA and the desirable size of the resulting siRNA/apatite complex for effective cellular endocytosis. Moreover, following internalization by cells, siRNA was found to be escaped from the endosomes in a time-dependent manner and finally, more efficiently silenced reporter genes at a low dose than commercially available lipofectamine. Knockdown of cyclin B1 gene with only 10nM of siRNA delivered by carbonate apatite resulted in the significant death of cancer cells, suggesting that the new method of siRNA delivery is highly promising for pre-clinical and clinical cancer therapy.
Collapse
Affiliation(s)
- Sharif Hossain
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Intelligent Polymeric Nanocarriers Responding to Physical or Biological Signals: A New Paradigm of Cytosolic Drug Delivery for Tumor Treatment. Polymers (Basel) 2010. [DOI: 10.3390/polym2020086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|