1
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
2
|
Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev 2023; 203:115139. [PMID: 37951358 DOI: 10.1016/j.addr.2023.115139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Transdermal drug delivery presents a less invasive pathway, circumventing the need to pass through the gastrointestinal tract and liver, thereby reducing drug breakdown, initial metabolism, and gastrointestinal discomfort. Nevertheless, the unique composition and dense structure of the stratum corneum present a significant barrier to transdermal delivery. This article presents an overview of the current developments in peptides and nanotechnology to address this challenge. Initially, we sum up peptide-containing nanoformulations for transdermal drug delivery, examining them through the lenses of both inorganic and organic materials. Particular emphasis is placed on the diverse roles that peptides play within these nanoformulations, including conferring functionality upon nanocarriers and enhancing the biological efficacy of drugs. Subsequently, we summarize innovative strategies for enhancing skin penetration, categorizing them into passive and active approaches. Lastly, we discuss the therapeutic potential of peptide-containing nanoformulations in addressing a range of diseases, drawing insights from the biological activities and functions of peptides. Furthermore, the challenges hindering clinical translation are also discussed, providing valuable insights for future advancements in transdermal drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
4
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
5
|
Topical Delivery of Cell-Penetrating Peptide-Modified Human Growth Hormone for Enhanced Wound Healing. Pharmaceuticals (Basel) 2023; 16:ph16030394. [PMID: 36986493 PMCID: PMC10053240 DOI: 10.3390/ph16030394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Protein drugs have been emerging as a class of promising therapeutics. However, their topical application has been limited by their high molecular weight and poor permeability to the cell membrane. In this study, we aimed to enhance human growth hormone (hGH) permeability for topical application by conjugation of TAT peptide, a cell-penetrating peptide, to hGH via crosslinker. After TAT was conjugated to hGH, TAT-hGH was purified by affinity chromatography. TAT-hGH significantly increased cell proliferation compared with the control. Interestingly, the effect of TAT-hGH was higher than hGH at the same concentration. Furthermore, the conjugation of TAT to hGH enhanced the permeability of TAT-hGH across the cell membrane without affecting its biological activity in vitro. In vivo, the topical application of TAT-hGH into scar tissue markedly accelerated wound healing. Histological results showed that TAT-hGH dramatically promoted the re-epithelialization of wounds in the initial stage. These results demonstrate TAT-hGH as a new therapeutic potential drug for wound healing treatment. This study also provides a new method for topical protein application via enhancement of their permeability.
Collapse
|
6
|
Reigado GR, Adriani PP, Dos Santos JF, Freitas BL, Fernandes MTP, Chambergo Alcalde FS, Leo P, Nunes VA. Delivery of superoxide dismutase by TAT and abalone peptides for the protection of skin cells against oxidative stress. Biotechnol Appl Biochem 2022; 69:2673-2685. [PMID: 35092091 DOI: 10.1002/bab.2314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022]
Abstract
Trichoderma reesei superoxide dismutase (TrSOD) is a well-characterized enzyme being stable between 30 and 90°C for 1 h with activity at pH between 2.6 and 9.0. This work aimed to clone, express, purify, and evaluate the protective effect antioxidant of this enzyme on skin cells when fused to transactivator of transcription (TAT) protein transduction domain of HIV-1 and abalone (Ab) peptides to allow cell penetration. TrSOD, TAT-TrSOD-Yfp (fused to yellow fluorescent protein), and Ab-TrSOD were expressed in E. coli and purified as soluble proteins. The cytotoxicity of the enzymes, at the concentrations of 1, 3, and 6 μmol/L, was evaluated for a period of 24 and 48 h of incubation, with no cytotoxic effect on 3T3 fibroblasts. The 3T3 cells were exposed to the oxidant agent tert-butyl hydroperoxide and evaluated for reactive oxygen species (ROS) generation, in the presence or not of the recombinant enzymes. TAT-TrSOD-Yfp was able to decrease the generation of ROS by 15% when used in the concentrations of 3 and 6 μmol/L in comparison to the control, but there was no difference in relation to the effect of TrSOD. Ab-TrSOD, when compared to TrSOD, promoted a decrease in the formation of ROS of 19% and 14% at the concentrations of 1 and 6 μmol/L, respectively, indicating that this recombinant form was more effective in reducing oxidative stress compared to SOD without the cell-penetrating peptide (CPP). Together, these results indicate that the fusion of SOD with these CPP increased the antioxidant capacity of fibroblasts, identified by the reduction in the generation of ROS. In addition, such molecules, in the concentrations initially used, were not toxic to the cells, opening perspectives for the development of products for antioxidant protection of the skin that may have therapeutic and cosmetic application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patricia Leo
- Institute of Technological Research, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Viviane Abreu Nunes
- Department of Biotechnology, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
7
|
Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv 2021; 28:478-486. [PMID: 33641554 PMCID: PMC7952054 DOI: 10.1080/10717544.2021.1889717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Many strategies have been developed to overcome the stratum corneum (SC) barrier, including functionalized nanostructures. Chemical penetration enhancers (CPEs) and cell-penetrating peptides (CPP) were applied to decorate nanostructured lipid carriers (NLC) for topical anesthetic and pain relief. A novel pyrenebutyrate (PB-PEG-DSPE) compound was synthesized by the amide action of the carboxylic acid group of PB with the amido groups of DSPE-PEG. PB-PEG-DSPE has a hydrophobic group, hydrophilic group, and lipid group. The lipid group can be inserted into NLC to form PB functional NLC. In order to improve the penetrability, TAT and PB multi-decorated NLC were designed for the delivery of lidocaine hydrochloride (LID) (TAT/PB LID NLC). The therapeutic effects of NLC in terms of in vitro skin penetration and in vivo in animal models were further studied. The size of TAT/PB LID NLC tested by DLS was 153.6 ± 4.3 nm. However, the size of undecorated LID NLC was 115.3 ± 3.6 nm. The PDI values of NLC vary from 0.13 ± 0.01 to 0.16 ± 0.03. Zeta potentials of NLC were negative, between -20.7 and -29.3 mV. TAT/PB LID NLC (851.2 ± 25.3 µg/cm2) showed remarkably better percutaneous penetration ability than PB LID NLC (610.7 ± 22.1 µg/cm2), TAT LID NLC (551.9 ± 21.8 µg/cm2) (p < .05) and non-modified LID NLC (428.2 ± 21.4 µg/cm2). TAT/PB LID NLC exhibited the most prominent anesthetic effect than single ligand decorated or undecorated LID NLC in vivo. The resulting TAT/PB LID NLC exhibited good skin penetration and anesthetic efficiency, which could be applied as a promising anesthesia system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuangshuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yangyang Shen
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuwen Li
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruirui Pan
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Noor NM, Abdul-Aziz A, Sheikh K, Somavarapu S, Taylor KMG. In Vitro Performance of Dutasteride-Nanostructured Lipid Carriers Coated with Lauric Acid-Chitosan Oligomer for Dermal Delivery. Pharmaceutics 2020; 12:E994. [PMID: 33092119 PMCID: PMC7589135 DOI: 10.3390/pharmaceutics12100994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
Dutasteride, licensed as an oral medicine for the treatment of benign prostatic hypoplasia, has been investigated as a treatment for androgenic alopecia. In this study, the potential for dustasteride to be delivered topically in order to reduce systemic exposure, irritation of the skin, and also cytotoxicity was explored. Chitosan oligomer (CSO) was successfully synthesised with lauric acid as a coating for a dutasteride-loaded nanostructured lipid carriers (DST-NLCs) system. DST-NLCs were prepared using a combination of melt-dispersion and ultrasonication. These negatively charged NLCs (-18.0 mV) had a mean particle size of ~184 nm, which was not significantly increased (p > 0.05) when coated with lauric acid-chitosan oligomer (CSO-LA), whilst the surface charge changed to positive (+24.8 mV). The entrapment efficiency of DST-NLCs was 97%, and coated and uncoated preparations were physically stable for up to 180 days at 4-8 °C. The drug release was slower from DST-NLCs coated with CSO-LA than from uncoated NLCs, with no detectable drug permeation through full-thickness pig ear skin from either preparation. Considering the cytotoxicity, the IC50 values for the DST-NLCs, coated and uncoated with CSO-LA were greater than for dutasteride alone (p < 0.05). DST-NLCs and empty NLCs coated with CSO-LA at 25 µM increased the cell proliferation compared to the control, and no skin irritation was observed when the DST-NLC formulations were tested using EpiDerm™. The cell and skin uptake studies of coated and uncoated NLCs incorporating the fluorescent marker Coumarin-6 showed the time-dependent uptake of Coumarin-6. Overall, the findings suggest that DST-NLCs coated with CSO-LA represent a promising formulation strategy for dutasteride delivery for the treatment of androgenic alopecia, with a reduced cytotoxicity compared to that of the drug alone and lower irritancy than an ethanolic solution of dutasteride.
Collapse
Affiliation(s)
- Norhayati Mohamed Noor
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (K.S.); (S.S.)
- Cosmeceutical & Fragrance Laboratory, Institute of Bioproduct Development (N22), Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Johor, Malaysia;
| | - Azila Abdul-Aziz
- Cosmeceutical & Fragrance Laboratory, Institute of Bioproduct Development (N22), Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Johor, Malaysia;
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Johor, Malaysia
| | - Khalid Sheikh
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (K.S.); (S.S.)
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (K.S.); (S.S.)
| | - Kevin M. G. Taylor
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (K.S.); (S.S.)
| |
Collapse
|
9
|
Wani TU, Mohi-Ud-Din R, Majeed A, Kawoosa S, Pottoo FH. Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery. Curr Pharm Des 2020; 26:4601-4614. [PMID: 32611291 DOI: 10.2174/1381612826666200701204010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.
Collapse
Affiliation(s)
- Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Pharmacogosy and Phytochemistry Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Asmat Majeed
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Shabnam Kawoosa
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, P.O. BOX 1982, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Topical drug delivery has inherent advantages over other administration routes. However, the existence of stratum corneum limits the diffusion to small and lipophilic drugs. Fortunately, the advancement of nanotechnology brings along opportunities to address this challenge. Taking the unique features in size and surface chemistry, nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, and framework nucleic acids have been used to bring drugs across the skin barrier to epidermis and dermis layers. This article reviews the development of these formulations and focuses on their applications in the treatment of skin disorders such as acne, skin inflammation, skin infection, and wound healing. Existing hurdles and further developments are also discussed.
Collapse
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457.,National Dental Centre of Singapore, 5 Second Hospital Avenue, Singapore 168938.,Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Min S, Kim K, Ku S, Park J, Seo J, Roh S. Newly synthesized peptide, Ara‐27, exhibits significant improvement in cell‐penetrating ability compared to conventional peptides. Biotechnol Prog 2020; 36:e3014. [DOI: 10.1002/btpr.3014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/17/2020] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
| | - Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences Middle Tennessee State University Murfreesboro Tennessee USA
| | - Jeong‐Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
- Biomedical Research Institute NeoRegen Biotech Co., Ltd. Gyeonggi‐do Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|
12
|
Wang MZ, Niu J, Ma HJ, Dad HA, Shao HT, Yuan TJ, Peng LH. Transdermal siRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression. J Control Release 2020; 322:95-107. [DOI: 10.1016/j.jconrel.2020.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 01/29/2023]
|
13
|
Chen Y, Feng X, Zhao Y, Zhao X, Zhang X. Mussel-Inspired Polydopamine Coating Enhances the Intracutaneous Drug Delivery from Nanostructured Lipid Carriers Dependently on a Follicular Pathway. Mol Pharm 2020; 17:1215-1225. [PMID: 32167771 DOI: 10.1021/acs.molpharmaceut.9b01240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inspired by the structure and function of the mussel adhesive protein, a facile strategy involving oxidative polymerization of dopamine was proposed for surface modification of nanostructured lipid carriers (NLCs) to promote drug delivery in the skin. The formation of a polydopamine (PDA) layer rounding the surface of NLCs was confirmed by the X-ray photoelectron spectroscopy and the Fourier transform infrared spectroscopy studies. Using terbinafine (TBF) as a model drug, the in vitro permeation study revealed that the PDA coating significantly enhanced the delivery of TBF from NLCs to the deep skin layers, where the follicular pathway played an essential role as suggested by the hair follicle blocking and differential tape stripping experiments, as well as the laser scanning confocal microscopy study by using Nile red as the fluorescent probe. The cellular investigation indicated that the PDA coating led to a higher cellular uptake of nanoparticles in human immortalized keratinocytes (HaCaT) without causing additional cytotoxicity. Using endocytic inhibitors, it was found that the lipid raft/caveolae-mediated endocytosis was strongly involved in the internalization of both the PDA modified and unmodified NLCs. Our results suggested that surface modification of NLCs with PDA coating improved the intracutaneous drug delivery mainly via the follicular pathway, which provided an avenue for the development of potential drug delivery carriers for dermal use.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146 Yellow River North Street, Shenyang 110034, China
| | - Yan Zhao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xu Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaoyu Zhang
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Quiñones OG, Pierre MBR. Cutaneous Application of Celecoxib for Inflammatory and Cancer Diseases. Curr Cancer Drug Targets 2020; 19:5-16. [PMID: 29714143 DOI: 10.2174/1568009618666180430125201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) and particularly selective cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Cxb) are considered promising cancer chemopreventive for colon, breast, prostate, lung, and skin cancers. However, the clinical application to the prevention is limited by concerns about safety, potential to serious toxicity (mainly for healthy individuals), efficacy and optimal treatment regimen. Cxb exhibits advantages as potent antiinflammatory and gastrointestinal tolerance compared with conventional NSAID's. Recent researches suggest that dermatological formulations of Cxb are more suitable than oral administration in the treatment of cutaneous disease, including skin cancer. To date, optimism has been growing regarding the exploration of the topical application of Cxb (in the prevention of skin cancers and treatment of cutaneous inflammation) or transdermal route reducing risks of systemic side effects. OBJECTIVE This paper briefly summarizes our current knowledge of the development of the cutaneous formulations or delivery systems for Cxb as anti-inflammatory drug (for topical or transdermal application) as well its chemopreventive properties focused on skin cancer. CONCLUSION New perspectives emerge from the growing knowledge, bringing innovative techniques combining the action of Cxb with other substances or agents which act in a different way, but complementary, increasing the efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Oliesia Gonzalez Quiñones
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| | - Maria Bernadete Riemma Pierre
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108. [PMID: 32497707 DOI: 10.1016/j.addr.2020.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles offer new opportunities for the treatment of skin diseases. The barrier function of the skin poses a significant challenge for nanoparticles to permeate into the tissue, although the barrier is partially compromised in case of injury or inflammation, as in the case of skin cancer. This may facilitate the penetration of nanoparticles. Extensive research has gone into developing nanoparticles for topical delivery; however, relatively little progress has been made in translating them to the clinic for treating skin cancers. We summarize the types of skin cancers and practices in current clinical management. The review provides a comprehensive outlook of the various nanoparticle technologies tested for topical therapy of skin cancers and summarizes the obstacles that impede its progress from the bench-to-bedside. The review also aims to provide an understanding of the pathways that govern nanoparticle penetration into the skin and a critical analysis of the approaches used to study nanoparticle interactions within the tissue.
Collapse
Affiliation(s)
- Vinu Krishnan
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States of America.
| |
Collapse
|
16
|
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019; 16:444-460. [PMID: 30714524 PMCID: PMC6637104 DOI: 10.2174/1567201816666190201143457] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
Abstract
This overview on skin delivery considers the evolution of the principles of percutaneous ab-sorption and skin products from ancient times to today. Over the ages, it has been recognised that products may be applied to the skin for either local or systemic effects. As our understanding of the anatomy and physiology of the skin has improved, this has facilitated the development of technologies to effectively and quantitatively deliver solutes across this barrier to specific target sites in the skin and beyond. We focus on these technologies and their role in skin delivery today and in the future.
Collapse
Affiliation(s)
- Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia
| | - Jeffrey E Grice
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Yousuf Mohammed
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Sarika Namjoshi
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Michael S Roberts
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
17
|
Nasr S, Rady M, Gomaa I, Syrovets T, Simmet T, Fayad W, Abdel-Kader M. Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy. Int J Pharm 2019; 568:118528. [DOI: 10.1016/j.ijpharm.2019.118528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/01/2019] [Accepted: 07/14/2019] [Indexed: 11/28/2022]
|
18
|
Gao S, Tian B, Han J, Zhang J, Shi Y, Lv Q, Li K. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema. Int J Nanomedicine 2019; 14:6135-6150. [PMID: 31447556 PMCID: PMC6683961 DOI: 10.2147/ijn.s205295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Nanostructured lipid carriers (NLCs) are emerging as attractive drug carriers in transdermal drug delivery. The surface modification of NLCs with cell-penetrating peptides (CPPs) can enhance the skin permeation of drugs. Purpose: The objective of the current study was to evaluate the ability of the cell-penetrating peptide (CPP) polyarginine to translocate NLCs loaded with lornoxicam (LN) into the skin layers and to evaluate its anti-inflammatory effect. Methods: The NLCs were prepared using an emulsion evaporation and low temperature solidification technique using glyceryl monostearates, triglycerides, DOGS-NTA-Ni lipids and surfactants, and then six histidine-tagged polyarginine containing 11 arginine (R11) peptides was modified on the surface of NLCs. Results: The developed NLCs formulated with LN and R11 (LN-NLC-R11) were incorporated into 2% HPMC gels. NLCs were prepared with a particle size of (121.81±3.61)–(145.72±4.78) nm, and the zeta potential decreased from (−30.30±2.07) to (−14.66±0.74) mV after the modification of R11 peptides. The encapsulation efficiency and drug loading were (74.61±1.13) % and (7.92±0.33) %, respectively, regardless of the surface modification. Cellular uptake assays using HaCaT cells suggested that the NLC modified with R11 (0.02%, w/w) significantly enhanced the cell internalization of nanoparticles relative to unmodified NLCs (P<0.05 or P<0.01). An in vitro skin permeation study showed better permeation-enhancing ability of R11 (0.02%, w/w) than that of other content (0.01% or 0.04%). In carrageenan-induced rat paw edema models, LN-NLC-R11 gels inhibited rat paw edema and the production of inflammatory cytokines compared with LN-NLC gels and LN gels (P<0.01). Conclusion: In our investigation, it was strongly demonstrated that the surface modification of NLC with R11 enhanced the translocation of LN across the skin, thereby alleviating inflammation.
Collapse
Affiliation(s)
- Shanshan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Keke Li
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| |
Collapse
|
19
|
Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review. Biomolecules 2019; 9:biom9010022. [PMID: 30634689 PMCID: PMC6359287 DOI: 10.3390/biom9010022] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein translocation domains, membrane translocating sequences or Trojan peptides, are small molecules of 6 to 30 amino acid residues capable of penetrating biological barriers and cellular membranes. Furthermore, CPP have become an alternative strategy to overcome some of the current drug limitations and combat resistant strains since CPPs are capable of delivering different therapeutic molecules against a wide range of diseases. In this review, we address the recent conjugation of CPPs with nanoparticles, which constitutes a new class of delivery vectors with high pharmaceutical potential in a variety of diseases.
Collapse
|
20
|
Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? NANO CONVERGENCE 2018; 5:38. [PMID: 30539365 PMCID: PMC6289934 DOI: 10.1186/s40580-018-0170-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 05/08/2023]
Abstract
Peptide-nanoparticle conjugates (PNCs) have recently emerged as a versatile tool for biomedical applications. Synergism between the two promising classes of materials allows enhanced control over their biological behaviors, overcoming intrinsic limitations of the individual materials. Over the past decades, a myriad of PNCs has been developed for various applications, such as drug delivery, inhibition of pathogenic biomolecular interactions, molecular imaging, and liquid biopsy. This paper provides a comprehensive overview of existing technologies that have been recently developed in the broad field of PNCs, offering a guideline especially for investigators who are new to this field.
Collapse
Affiliation(s)
- Woo-jin Jeong
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - Stephanie S. Chen
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
| | - YoungSoo Kim
- Integrated Science and Engineering Division, Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705 USA
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, 03722 Republic of Korea
| |
Collapse
|
21
|
Rady M, Gomaa I, Afifi N, Abdel-Kader M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int J Pharm 2018; 548:480-490. [DOI: 10.1016/j.ijpharm.2018.06.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022]
|
22
|
Park D, Lee JY, Cho HK, Hong WJ, Kim J, Seo H, Choi I, Lee Y, Kim J, Min SJ, Yoon SH, Hwang JS, Cho KJ, Kim JW. Cell-Penetrating Peptide-Patchy Deformable Polymeric Nanovehicles with Enhanced Cellular Uptake and Transdermal Delivery. Biomacromolecules 2018; 19:2682-2690. [DOI: 10.1021/acs.biomac.8b00292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daehwan Park
- Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin Yong Lee
- Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Heui Kyoung Cho
- Cosmetic Research Center, Coway Co. Ltd., Seoul 08502, Republic of Korea
| | - Woo Jin Hong
- Cosmetic Research Center, Coway Co. Ltd., Seoul 08502, Republic of Korea
| | - Jisun Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Ikjang Choi
- Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Youngbok Lee
- Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Juhyeon Kim
- Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sun-Joon Min
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - So-Hyun Yoon
- Department of Genetic Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kwang Jin Cho
- Damy Chemical
Co., Material Science Research Institute, Seoul 08501, Republic of Korea
| | - Jin Woong Kim
- Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
23
|
Wei D, Xue Y, Huang H, Liu M, Zeng G, Wan Q, Liu L, Yu J, Zhang X, Wei Y. Fabrication, self-assembly and biomedical applications of luminescent sodium hyaluronate with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:120-126. [DOI: 10.1016/j.msec.2017.07.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
|
24
|
Cell-penetrating peptide-based non-invasive topical delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0373-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 2017; 8:967-985. [DOI: 10.4155/tde-2017-0075] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanocarriers used for alternative drug-delivery strategies have gained interest due to improved penetration and delivery of drugs into specific regions of the skin in recent years. Dermal drug delivery via polymeric-based nanocarriers (polymeric nanoparticles, micelles, dendrimers) and lipid-based nanocarriers (solid–lipid nanoparticles and nanostructured lipid carriers, vesicular nanocarriers including liposomes, niosomes, transfersomes and ethosomes) has been widely investigated. Although penetration of nanocarriers through the intact skin could be restricted, these carriers are particularly considered as feasible for the treatment of dermatological diseases in which the skin barrier is disrupted and also for follicular delivery of drugs for management of skin disorders such as acne. This review mainly highlights the recent approaches on potential penetration enhancement and targeting mechanisms of these nanocarriers.
Collapse
|
26
|
Mandal B, Rameshbabu AP, Soni SR, Ghosh A, Dhara S, Pal S. In Situ Silver Nanowire Deposited Cross-Linked Carboxymethyl Cellulose: A Potential Transdermal Anticancer Drug Carrier. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36583-36595. [PMID: 28948779 DOI: 10.1021/acsami.7b10716] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, a novel biopolymeric nanocomposite hydrogel comprised of in situ formed silver nanowires (AgNWs) deposited chemically cross-linked carboxymethyl cellulose (CMC) has been developed, which demonstrates superior efficacy as anticancer drug-curcumin carrier. The cross-linked polymer has been prepared by grafting poly [2-(methacryloyloxy) ethyl trimethylammonium chloride] on CMC using diethylene glycol dimethacrylate cross-linker. The nanocomposite hydrogel has the capability to encapsulate both hydrophobic/hydrophilic transdermal drugs. With variation in reaction conditions/parameters, several composite materials have been synthesized and depending on lower swelling/higher cross-linking and greater gel strength, an optimized grade of nanocomposite hydrogel has been selected. The developed nanocomposite hydrogel is characterized with FTIR/NMR spectra, FESEM/XRD/TGA/AFM/XPS analyses, and UV-visible spectroscopy. Rheological study has been performed to enlighten the gel strength of the composite material. The synthesized nanocomposite hydrogel is biodegradable and nontoxic to mesenchymal stem cells (hMSCs). In vitro release of curcumin suggests that in situ incorporation of AgNWs on cross-linked CMC enhanced the penetration power of nanocomposite hydrogel and released the drug in sustained way (∼62% for curcumin released in 4 days). Ex vivo rat skin permeation study confirms that the drug from both the cross-linked and nanocomposite hydrogel was permeable through the rat skin in controlled fashion. Additionally the curcumin loaded composite hydrogel can efficiently kill the MG 63 cancer cells, which has been confirmed by apoptosis study and therefore, probably be a suitable carrier for curcumin delivery toward cancer cells.
Collapse
Affiliation(s)
- Barun Mandal
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (ISM) , Dhanbad 826004, India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Saundray Raj Soni
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology , Mesra, Ranchi 835215, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology , Mesra, Ranchi 835215, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Sagar Pal
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (ISM) , Dhanbad 826004, India
| |
Collapse
|
27
|
Gul R, Ahmed N, Shah KU, Khan GM, Asim Ur Rehman. Functionalised nanostructures for transdermal delivery of drug cargos. J Drug Target 2017; 26:110-122. [PMID: 28854819 DOI: 10.1080/1061186x.2017.1374388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanotechnology has burgeoned over last decade exploring varieties of novel applications in all areas of science and technology. Utilisation of bio-friendly polymers for engineering nanostructures (NS) improves safety and efficacy in drug delivery. Biopolymers not merely employed for fabricating drug carriers but also leveraged for surface functionalisation of other NS to impart bio-mimicking properties. Biopolymer functionalised NS garnered researcher's attention because of their potential to enhance skin permeability of drug cargo. Biopolymers, i.e. cell-penetrating peptides (CPP), chitosan and hyaluronic acid not only enhance skin permeability but also add multiple functions due to their intrinsic biomimetic properties. This multifunctional drug delivery system is a promising tool to achieve skin delivery of large number of therapeutic agents. In this review, functionalisation of NS with biopolymers particularly polysaccharides and polypeptides is discussed in detail. In particular, applications of these functionalised NS for TDDS is elaborated. Moreover, this review provides framework for elaborating importance of functionalisation of NS to enhance skin permeability and depicts advantages of biopolymers to construct more biocompatible carriers for drug cargos.
Collapse
Affiliation(s)
- Rabia Gul
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Naveed Ahmed
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Kifayat Ullah Shah
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Asim Ur Rehman
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| |
Collapse
|
28
|
Cai H, Liang Z, Huang W, Wen L, Chen G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm 2017; 532:55-65. [PMID: 28870763 DOI: 10.1016/j.ijpharm.2017.08.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/15/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
The properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and penetration enhancers play a deciding role in the inner ear drug delivery of NPs across the round window membrane (RWM). Thus, PLGA nano-based systems with a variety of particle sizes and surface chemistries and those combined with cell-penetrating peptides (CPPs) as penetration enhancers were devised to explore their impact on the cochlear drug delivery in vivo. First, we demonstrated that the properties of NPs dictated the extent of NP cochlear entry by near-infrared fluorescence imaging. NPs with the sizes of 150 and 300nm had faster entry than that of 80nm NPs. At 0.5h, among the NPs unmodified and modified with chitosan (CS), poloxamer 407 (P407) and methoxy polyethylene glycol, CS-PLGA-NPs (positive surface charge) carried payload to the cochlea fastest, whereas P407-PLGA-NPs (surface hydrophilicity) showed the greatest distribution in the cochlea at 24h. Compared to other CPPs (TAT, penetratin and poly(arginine)8), low molecular weight protamine (LMWP) performed an outstanding enhanced NP cellular uptake in HEI-OC1 cells and cochlear entry. More importantly, NPs with optimized properties and CPPs may be combined to improve RWM penetration. For the first time, we confirmed that the combination of P407-PLGA-NPs (mean diameter: 100-200nm) and LMWP provided a synergistic enhancement in NP entry to the organ of Corti and stria vascularis without inducing pathological alteration of cochlear tissues and RWM. Taken together, we propose an effective PLGA nano-based strategy for enhanced drug delivery to the inner ear tissues that combines hydrophilic molecule-modified NPs and CPPs, ultimately opening an avenue for superior inner ear therapy.
Collapse
Affiliation(s)
- Hui Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhongping Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenli Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
30
|
Boakye CH, Patel K, Doddapaneni R, Bagde A, Marepally S, Singh M. Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment. J Control Release 2017; 246:120-132. [DOI: 10.1016/j.jconrel.2016.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/02/2016] [Accepted: 05/06/2016] [Indexed: 11/26/2022]
|
31
|
Roberts MS, Mohammed Y, Pastore MN, Namjoshi S, Yousef S, Alinaghi A, Haridass IN, Abd E, Leite-Silva VR, Benson H, Grice JE. Topical and cutaneous delivery using nanosystems. J Control Release 2016; 247:86-105. [PMID: 28024914 DOI: 10.1016/j.jconrel.2016.12.022] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The goal of topical and cutaneous delivery is to deliver therapeutic and other substances to a desired target site in the skin at appropriate doses to achieve a safe and efficacious outcome. Normally, however, when the stratum corneum is intact and the skin barrier is uncompromised, this is limited to molecules that are relatively lipophilic, small and uncharged, thereby excluding many potentially useful therapeutic peptides, proteins, vaccines, gene fragments or drug-carrying particles. In this review we will describe how nanosystems are being increasingly exploited for topical and cutaneous delivery, particularly for these previously difficult substances. This is also being driven by the development of novel technologies, which include minimally invasive delivery systems and more precise fabrication techniques. While there is a vast array of nanosystems under development and many undergoing advanced clinical trials, relatively few have achieved full translation to clinical practice. This slow uptake may be due, in part, to the need for a rigorous demonstration of safety in these new nanotechnologies. Some of the safety aspects associated with nanosystems will be considered in this review.
Collapse
Affiliation(s)
- M S Roberts
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| | - Y Mohammed
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - M N Pastore
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - S Namjoshi
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - S Yousef
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - A Alinaghi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - I N Haridass
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia; School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, Australia
| | - E Abd
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - V R Leite-Silva
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Hae Benson
- School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, Australia
| | - J E Grice
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| |
Collapse
|
32
|
Hu Y, Patel S. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids. SOFT MATTER 2016; 12:6716-6727. [PMID: 27435187 DOI: 10.1039/c5sm01696g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient delivery of pharmaceutically active molecules across cellular membranes using cell penetrating peptides (CPPs), such as the cationic human immunodeficiency virus-1 trans-acting activator of transcription peptide (HIV-1 TAT), continues to attract scientific attention in drug design and disease treatment. Experimental results show that the TAT peptide is not only capable of directly penetrating the biological membrane in a passive manner, but also forming physical, membrane-spanning pores that may facilitate transport. Experiments further show that anionic lipids accelerate peptide permeation within a range of mole percentage composition. In this work, we explored the structures and translocation thermodynamics of the cationic TAT peptide across a series of DPPC/DPPS model membranes with the presence of 0-30 mol% cholesterol. We computed the potentials of the mean force by using umbrella sampling molecular dynamics simulations coupled to the Martini coarse-grained force field. We systematically investigated the roles of cholesterol and anionic lipids (membrane surface charge) in TAT peptide translocation. In qualitative agreement with experimental findings, the barrier heights were significantly reduced in the presence of anionic lipids. A toroidal hydrophilic pore was strongly suggested by membrane structure analysis. Cholesterol stabilizes the liquid-ordered (Lo) phase of membranes and increases the elastic stiffness of bilayers. Consequently, it hinders transmembrane pore formation and thus modulates solute permeability, since the liquid-ordered phase suppresses reorientation of the lipid molecules on simulation time scales. Though cholesterol contributes marginally to the total free energy associated with peptide permeation, the coordination of cholesterol to the peptide weakens more favorable peptide-lipid interactions. The addition of the anionic lipid DPPS to the neutral DPPC bilayer leads to the emergence and further enhancement of an interfacially stable state of the peptide due to the favorable peptide-anionic lipid interactions. Translocation free energy barriers decrease in lockstep with increasing DPPS composition in the model bilayers simulated. Finally, we investigated the size of hydrophilic pores emerging in our simulations, as well as the qualitative mobility of the peptide on the membrane surface.
Collapse
Affiliation(s)
- Yuan Hu
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
33
|
Pepe D, Carvalho VF, McCall M, de Lemos DP, Lopes LB. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int J Nanomedicine 2016; 11:2009-19. [PMID: 27274232 PMCID: PMC4869655 DOI: 10.2147/ijn.s97331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this study, the ability of nanocarriers containing protein transduction domains (PTDs) of various classes to improve cutaneous paclitaxel delivery and efficacy in skin tumor models was evaluated. Microemulsions (MEs) were prepared by mixing a surfactant blend (polyoxyethylene 10 oleoyl ether, ethanol and propylene glycol), monocaprylin, and water. The PTD transportan (ME-T), penetratin (ME-P), or TAT (ME-TAT) was added at a concentration of 1 mM to the plain ME. All MEs displayed nanometric size (32.3–40.7 nm) and slight positive zeta potential (+4.1 mV to +6.8 mV). Skin penetration of paclitaxel from the MEs was assessed for 1–12 hours using porcine skin and Franz diffusion cells. Among the PTD-containing formulations, paclitaxel skin (stratum corneum + epidermis and dermis) penetration at 12 hours was maximized with ME-T, whereas ME-TAT provided the lowest penetration (1.6-fold less). This is consistent with the stronger ability of ME-T to increase transepidermal water loss (2.4-fold compared to water) and tissue permeability. The influence of PTD addition on the ME irritation potential was assessed by measuring interleukin-1α expression and viability of bioengineered skin equivalents. A 1.5- to 1.8-fold increase in interleukin-1α expression was induced by ME-T compared to the other formulations, but this effect was less pronounced (5.8-fold) than that mediated by the moderate irritant Triton. Because ME-T maximized paclitaxel cutaneous localization while being safer than Triton, its efficacy was assessed against basal cell carcinoma cells and a bioengineered three-dimensional melanoma model. Paclitaxel-containing ME-T reduced cells and tissue viability by twofold compared to drug solutions, suggesting the potential clinical usefulness of the formulation for the treatment of cutaneous tumors.
Collapse
Affiliation(s)
- Dominique Pepe
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Vanessa Fm Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa McCall
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Débora P de Lemos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:277-287. [PMID: 25757886 DOI: 10.1038/jes.2015.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/23/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.
Collapse
Affiliation(s)
- Lien Taevernier
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Lieselotte Veryser
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Catherine Delesalle
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
35
|
Boakye CHA, Patel K, Doddapaneni R, Bagde A, Behl G, Chowdhury N, Safe S, Singh M. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention. Colloids Surf B Biointerfaces 2016; 143:156-167. [PMID: 27003466 DOI: 10.1016/j.colsurfb.2016.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/11/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. METHODS UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. RESULTS DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). CONCLUSION UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30).
Collapse
Affiliation(s)
- Cedar H A Boakye
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, TX 77843, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
36
|
Vij M, Natarajan P, Pattnaik BR, Alam S, Gupta N, Santhiya D, Sharma R, Singh A, Ansari KM, Gokhale RS, Natarajan VT, Ganguli M. Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. J Control Release 2016; 222:159-68. [DOI: 10.1016/j.jconrel.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 01/18/2023]
|
37
|
Shah PP, Desai PR, Boakye CHA, Patlolla R, Kikwai LC, Babu RJ, Singh M. Percutaneous delivery of α-melanocyte-stimulating hormone for the treatment of imiquimod-induced psoriasis. J Drug Target 2015; 24:537-47. [DOI: 10.3109/1061186x.2015.1103743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Punit P. Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA,
| | - Pinaki R. Desai
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA,
| | - Cedar H. A. Boakye
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA,
| | - Ram Patlolla
- Dr. Reddy’s Laboratories, Integrated Product Development, Bachupallyi, Hyderabad, India, and
| | - Loice C. Kikwai
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA,
| | - R. Jayachandra Babu
- Department of Pharmaceutical Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA,
| |
Collapse
|
38
|
Lee JY, Suh JS, Kim JM, Kim JH, Park HJ, Park YJ, Chung CP. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity. Int J Nanomedicine 2015; 10:5423-34. [PMID: 26347021 PMCID: PMC4554392 DOI: 10.2147/ijn.s90014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human beta-defensins (hBDs) are crucial factors of intrinsic immunity that function in the immunologic response to a variety of invading enveloped viruses, bacteria, and fungi. hBDs can cause membrane depolarization and cell lysis due to their highly cationic nature. These molecules participate in antimicrobial defenses and the control of adaptive and innate immunity in every mammalian species and are produced by various cell types. The C-terminal 15-mer peptide within hBD3, designated as hBD3-3, was selected for study due to its cell- and skin-penetrating activity, which can induce anti-inflammatory activity in lipopolysaccharide-treated RAW 264.7 macrophages. hBD3-3 penetrated both the outer membrane of the cells and mouse skin within a short treatment period. Two other peptide fragments showed poorer penetration activity compared to hBD3-3. hBD3-3 inhibited the lipopolysaccharide-induced production of inducible nitric oxide synthase, nitric oxide, and secretory cytokines, such as interleukin-6 and tumor necrosis factor in a concentration-dependent manner. Moreover, hBD3-3 reduced the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. Further investigation also revealed that hBD3-3 downregulated nuclear factor kappa B-dependent inflammation by directly suppressing the degradation of phosphorylated-IκBα and by downregulating active nuclear factor kappa B p65. Our findings indicate that hBD3-3 may be conjugated with drugs of interest to ensure their proper translocation to sites, such as the cytoplasm or nucleus, as hBD3-3 has the ability to be used as a carrier, and suggest a potential approach to effectively treat inflammatory diseases.
Collapse
Affiliation(s)
- Jue Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Jin Sook Suh
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung Min Kim
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Jeong Hwa Kim
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Hyun Jung Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea ; Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chong Pyoung Chung
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
39
|
Chen AZ, Chen LQ, Wang SB, Wang YQ, Zha JZ. Study of magnetic silk fibroin nanoparticles for massage-like transdermal drug delivery. Int J Nanomedicine 2015; 10:4639-51. [PMID: 26229467 PMCID: PMC4516257 DOI: 10.2147/ijn.s85999] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A synergistic approach by the combination of magnetic nanoparticles with an alternating magnetic field for transdermal drug delivery was investigated. Methotrexate-loaded silk fibroin magnetic nanoparticles were prepared using suspension-enhanced dispersion by supercritical CO2. The physiochemical properties of the magnetic nanoparticles were characterized. In vitro studies on drug permeation across skin were performed under different magnetic fields in comparison with passive diffusion. The permeation flux enhancement factor was found to increase under a stationary magnetic field, while an alternating magnetic field enhanced drug permeation more effectively; the combination of stationary and alternating magnetic fields, which has a massage-like effect on the skin, achieved the best result. The mechanistic studies using attenuated total reflection Fourier-transform infrared spectroscopy demonstrate that an alternating magnetic field can change the ordered structure of the stratum corneum lipid bilayers from the gel to the lipid-crystalline state, which can increase the fluidity of the stratum corneum lipids, thus enhancing skin penetration. Compared with the other groups, the fluorescence signal with a bigger area detected in deeper regions of the skin also reveals that the simulated massage could enhance the drug permeation across the skin by increasing the follicular transport. The combination of magnetic nanoparticles with stationary/alternating magnetic fields has potential for effective massage-like transdermal drug delivery.
Collapse
Affiliation(s)
- Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Lin-Qing Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Ya-Qiong Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Jun-Zhe Zha
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China
| |
Collapse
|
40
|
Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 2015; 97:152-63. [PMID: 26144664 DOI: 10.1016/j.ejpb.2015.06.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023]
Abstract
Lipid nanoparticles (LN) such as solid lipid nanoparticles (SLN) and nanolipid carriers (NLC) feature several claimed benefits for topical drug therapy including biocompatible ingredients, drug release modification, adhesion to the skin, and film formation with subsequent hydration of the superficial skin layers. However, penetration and permeation into and across deeper skin layers are restricted due to the barrier function of the stratum corneum (SC). As different kinds of nanoparticles provide the potential for penetration into hair follicles (HF) LN are applicable drug delivery systems (DDS) for this route in order to enhance the dermal and transdermal bioavailability of active pharmaceutical ingredients (API). Therefore, this review addresses the HF as application site, published formulations of LN which showed follicular penetration (FP), and characterization methods in order to identify and quantify the accumulation of API delivered by the LN in the HF. Since LN are based on lipids that appear in human sebum which is the predominant medium in HF an increased localization of the colloidal carriers as well as a promoted drug release may be assumed. Therefore, sebum-like lipid material and a size of less or equal 640 nm are appropriate specifications for FP of particulate formulations.
Collapse
|
41
|
Boakye CHA, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm 2015; 489:106-16. [PMID: 25910414 DOI: 10.1016/j.ijpharm.2015.04.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/22/2022]
Abstract
The objectives of this study were to develop an innovative investigative model using doxorubicin as a fluorophore to evaluate the skin permeation of nanocarriers and the impact of size and surface characteristics on their permeability. Different doxorubicin-loaded liposomes with mean particle size <130 nm and different surface chemistry were prepared by ammonium acetate gradient method using DPPC, DOPE, Cholesterol, DSPE-PEG 2000 and 1,1-Di-((Z)-octadec-9-en-1-yl) pyrrolidin-1-ium chloride (CY5)/DOTAP/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) as the charge modifier. There was minimal release of doxorubicin from the liposomes up to 8h; indicating that fluorescence observed within the skin layers was due to the intact liposomes. Liposomes with particle sizes >600 nm were restricted within the stratum corneum. DOTAP (p<0.01) and CY5 (p<0.05) liposomes demonstrated significant permeation into the skin than DOPA and PEG liposomes. Tape stripping significantly (p<0.01) enhanced the skin permeation of doxorubicin liposomes but TAT-decorated doxorubicin liposomes permeated better (p<0.005). Blockage of the hair follicles resulted in significant reduction in the extent and intensity of fluorescence observed within the skin layers. Overall, doxorubicin liposomes proved to be an ideal fluorophore-based model. The hair follicles were the major route utilized by the liposomes to permeate skin. Surface charge and particle size played vital roles in the extent of permeation.
Collapse
Affiliation(s)
- Cedar H A Boakye
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
42
|
Clède S, Delsuc N, Laugel C, Lambert F, Sandt C, Baillet-Guffroy A, Policar C. An easy-to-detect nona-arginine peptide for epidermal targeting. Chem Commun (Camb) 2015; 51:2687-9. [DOI: 10.1039/c4cc08737b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nona-arginine peptide conjugated with a Re-tricarbonyl IR and fluorescent probe (SCoMPI) accumulates at the epidermis without reaching the dermis.
Collapse
Affiliation(s)
- Sylvain Clède
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - Nicolas Delsuc
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - Cécile Laugel
- Laboratory of Analytical Chemistry
- Analytical Chemistry Group of Paris-Sud (GCAPS-EA 4041)
- Faculty of Pharmacy
- University Paris-Sud
- 92296 Chatenay-Malabry
| | - François Lambert
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - Christophe Sandt
- Smis beamline
- Synchrotron SOLEIL Saint-Aubin
- Gif-sur-Yvette Cedex
- France
| | - Arlette Baillet-Guffroy
- Laboratory of Analytical Chemistry
- Analytical Chemistry Group of Paris-Sud (GCAPS-EA 4041)
- Faculty of Pharmacy
- University Paris-Sud
- 92296 Chatenay-Malabry
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| |
Collapse
|
43
|
Abstract
It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization.
Collapse
|
44
|
EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm Res 2014; 31:2796-809. [PMID: 24867421 DOI: 10.1007/s11095-014-1377-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Evaluation of tumor targeting pegylated EphA2 peptide coated nanoparticles (ENDDs) of a novel anticancer agent DIM-C-pPhC6H5 (DIM-P) and Docetaxel (DOC) and investigate its antitumor activity and potential for treatment of lung cancer. METHODS Nanoparticles were prepared with DIM-P and DOC (NDDs) using Nano-DeBEE. ENDDs were prepared by conjugating NDDs with 6His-PEG2K-EphA2 peptide and characterized for physicochemical properties, binding assay, cytotoxicity, cellular uptake studies, drug release and pharmacokinetic parameters. Anti-tumor activity of ENDDs was evaluated using a metastatic H1650 and orthotopic A549 tumor models in nude mice and tumor tissue were analyzed by RT-PCR and immunohistochemistry. RESULTS Particle size and entrapment efficiency of ENDDs were 197 ± 21 nm and 95 ± 2%. ENDDs showed 32.5 ± 3.5% more cellular uptake than NDDs in tumor cells. ENDDs showed 23 ± 3% and 26 ± 4% more tumor reduction compared to NDDs in metastatic and orthotopic tumor models, respectively. In-vivo imaging studies using the Care stream MX FX Pro system showed (p < 0.001) 40-60 fold higher flux for ENDDs compared to NDDs at tumor site. CONCLUSIONS The results emanating from these studies demonstrate anti-cancer potential of DIM-P and the role of ENDDs as effective tumor targeting drug delivery systems for lung cancer treatment.
Collapse
|
45
|
Zhang XQ, Zhang XY, Yang B, Wei Y. Facile fabrication of aggregation-induced emission based red fluorescent organic nanoparticles for cell imaging. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1461-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Zhang X, Zhang X, Yang B, Hui J, Liu M, Wei Y. Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids Surf B Biointerfaces 2014; 116:739-44. [DOI: 10.1016/j.colsurfb.2013.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 01/07/2023]
|
47
|
Moreno E, Schwartz J, Fernández C, Sanmartín C, Nguewa P, Irache JM, Espuelas S. Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 2014; 11:579-97. [PMID: 24620861 DOI: 10.1517/17425247.2014.885500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cutaneous and mucocutaneous leishmaniasis are major tropical skin diseases. Topical treatment is currently limited to the least severe forms of cutaneous leishmaniasis (CL) without risk of dissemination. It is also recommended in combination with systemic therapy for more severe forms. Progresses in this modality of treatment are hindered by the heterogeneity of the disease and shortcomings in the clinical trials. AREAS COVERED This review overlooks three major modalities of topical therapies in use or under investigation against CL: chemotherapy, photodynamic therapy and immunotherapy; either with older compounds such as paramomycin or more recent nitric oxide donors, antimicrobial peptides or silver derivatives. The advantages and limitations of their administration with newer formulation strategies such as nanoparticles (NPs) are discussed. EXPERT OPINION The efficacy of a topical treatment against CL depends not only on the intrinsic antileishmanial activity of the drug but also on the amount of drug available in the dermis. NPs as sustained release systems and permeation enhancers could favour the creation of a drug reservoir in the dermis. Additionally, certain NPs have immunomodulatory properties or wound healing capabilities of benefit in CL treatment. Pending task is the selective delivery of active compounds to intracellular amastigotes, because even small NPs are unable to penetrate deeply into the skin to encounter infected macrophages (except in ulcerative lesions).
Collapse
Affiliation(s)
- Esther Moreno
- University of Navarra, Tropical Health Institute , Irunlarrea, 1 E-31008 Pamplona , Spain +34948425600 ; +34948425619 ;
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang S, Zeng D, Niu J, Wang H, Wang L, Li Q, Li C, Song H, Chang J, Zhang L. Development of an efficient transdermal drug delivery system with TAT-conjugated cationic polymeric lipid vesicles. J Mater Chem B 2013; 2:877-884. [PMID: 32261319 DOI: 10.1039/c3tb21353f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conventional liposomes (CLs) have been used as a transdermal drug delivery system for enhancing the delivery of hydrophilic drugs into/through the skin. However, their applications have been constrained by their limited penetration ability and poor stability. In this article, a new kind of transactivating transcriptional activator peptide (TAT)-conjugated polymeric lipid vesicles (TPLVs) formed from amphiphilic lysine-linoleic acid modified dextran (LLD) and cholesterol (Chol) has been prepared successfully. The newly developed TPLVs had a bilayer structure similar to CLs. The TPLVs also have smaller particle size, narrower distribution, higher positive charge and much better stability than the CLs; they remained stable in aqueous solutions for up to 60 days without aggregation. The in vitro and in vivo skin permeation studies revealed that TPLVs delivered a higher amount of drug through the skin than CLs, indicating enhanced drug transdermal activities. The synergetic effects of abovementioned features and the cell-penetrating peptide TAT might have contributed to the improved skin penetration ability of the TPLVs. Similar to CLs, TPLVs began to show limited cytotoxicity against human umbilical vein endothelial cells at a concentration of 200 μg mL-1. The in vitro release profiles showed that the TPLVs achieved a sustained release of lidocaine. These results suggest that the TPLVs may be utilized as an efficient carrier to replace CLs for transdermal drug delivery.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin, 300072, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vučen SR, Vuleta G, Crean AM, Moore AC, Ignjatović N, Uskoković D. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J Pharm Pharmacol 2013; 65:1451-62. [DOI: 10.1111/jphp.12118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/20/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
The aim of our study was to evaluate the effect of designing ketoprofen-loaded nanosized spheres and combining them with solid silicon microneedles for enhanced and sustained percutaneous drug delivery.
Methods
Ketoprofen-loaded nanoparticles (KET-NP) were designed by modified solvent displacement method, using poly (D, L-lactic acid) (PDLLA). All prepared nanoparticles were characterised with regard to their particle size distribution, morphology, surface properties, thermal behaviour, drug content, drug release and stability. In-vitro skin permeation studies were conducted on Franz-type diffusion cells using porcine skin treated with ImmuPatch silicon microneedles (Tyndall Nation Institute, Cork, Ireland).
Key findings
The study showed that uniform nanospheres were prepared with high encapsulation efficiency and retained stable for 2 months. After an initial burst release, the PDLLA nanoparticles were capable of sustaining and controlling ketoprofen release that followed Korsmeyer–Peppas kinetics. An enhanced flux of ketoprofen was observed in the skin treated with silicon microneedles over a prolonged period of time.
Conclusions
Following application of silicon microneedle arrays, KET-NP were able to enhance ketoprofen flux and supply the porcine skin with drug over a prolonged (24 h) period of time. Our findings indicate that the delivery strategy described here could be used for the further development of effective and painless administration systems for sustained percutaneous delivery of ketoprofen.
Collapse
Affiliation(s)
- Sonja R Vučen
- School of Pharmacy, University College Cork, Cork, UK
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Gordana Vuleta
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Abina M Crean
- School of Pharmacy, University College Cork, Cork, UK
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, UK
- Department of Pharmacology and Therapeutics, University College Cork, Cork, UK
| | - Nenad Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragan Uskoković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
50
|
1,1-Bis (3'-indolyl)-1-(p-substitutedphenyl)methane compounds inhibit lung cancer cell and tumor growth in a metastasis model. Eur J Pharm Sci 2013; 50:227-41. [PMID: 23892137 DOI: 10.1016/j.ejps.2013.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/23/2013] [Accepted: 07/15/2013] [Indexed: 01/29/2023]
Abstract
1,1-Bis(3-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds exhibit remarkable antitumor activity with low toxicity in various cancer cells including lung tumors. Two C-DIM analogs, DIM-C-pPhOCH3 (C-DIM-5) and DIM-C-pPhOH (C-DIM-8) while acting differentially on the orphan nuclear receptor, TR3/Nur77 inhibited cell cycle progression from G0/G1 to S-phase and induced apoptosis in A549 cells. Combinations of docetaxel (doc) with C-DIM-5 or C-DIM-8 showed synergistic anticancer activity in vitro and these results were consistent with their enhanced antitumor activities invivo. Respirable aqueous formulations of C-DIM-5 (mass median aerodynamic diameter of 1.92±0.22μm and geometric standard deviation of 2.31±0.12) and C-DIM-8 (mass median aerodynamic diameter of 1.84±0.31μm and geometric standard deviation of 2.11±0.15) were successfully delivered by inhalation to athymic nude mice bearing A549 cells as metastatic tumors. This resulted in significant (p<0.05) lung tumor regression and an overall reduction in tumor burden. Analysis of lung tumors from mice treated with inhalational formulations of C-DIM-5 and C-DIM-8 showed decreased mRNA and protein expression of mediators of tumor initiation, metastasis, and angiogenesis including MMP2, MMP9, c-Myc, β-catenin, c-Met, c-Myc, and EGFR. Microvessel density assessment of lung tissue sections showed significant reduction (p<0.05) in angiogenesis and metastasis as evidenced by decreased distribution of immunohistochemical staining of VEGF, and CD31. Our studies demonstrate both C-DIM-5 and C-DIM-8 have similar anticancer profiles in treating metastatic lung cancer and possibly work as TR3 inactivators.
Collapse
|