1
|
Julin S, Best N, Anaya-Plaza E, Enlund E, Linko V, Kostiainen MA. Assembly and optically triggered disassembly of lipid-DNA origami fibers. Chem Commun (Camb) 2023; 59:14701-14704. [PMID: 37997149 DOI: 10.1039/d3cc04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The co-assembly of lipids and other compounds has recently gained increasing interest. Here, we report the formation of stimuli-responsive lipid-DNA origami fibers through the electrostatic co-assembly of cationic lipids and 6-helix bundle (6HB) DNA origami. The photosensitive lipid degrades when exposed to UV-A light, which allows a photoinduced, controlled release of the 6HBs from the fibers. The presented complexation strategy may find uses in developing responsive nanomaterials e.g. for therapeutics.
Collapse
Affiliation(s)
- Sofia Julin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Nadine Best
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Eeva Enlund
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
2
|
Özdemir Z, Šaman D, Bertula K, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Wimmer Z. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2693-2706. [PMID: 33595317 DOI: 10.1021/acs.langmuir.0c03335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show rapid self-recovery (up to 96% of the initial storage modulus) and sol ⇔ gel transition under several cycles. Interestingly, rheological flow curves reveal the thixotropic behavior of the gels. To the best of our knowledge, this kind of behavior was not shown in the literature before, neither for a triterpenoid nor for its derivatives. Conjugate 4, having a bolaamphiphile-like structure, was found to be a nongelator. Our results indicate that the position and number of spermine units alter the gelation properties, gel strength, and their self-assembly behavior. Preliminary cytotoxicity studies of the target compounds 2-4 in four human cancer cell lines suggest that the position and number of spermine units affect the biological activity. Our results also encourage exploring other triterpenoids and their derivatives as sustainable, renewable, and biologically active building blocks for multifunctional soft organic nanomaterials.
Collapse
Affiliation(s)
- Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Kia Bertula
- Department of Applied Physics, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
3
|
Wang S, Jin S, Li G, Sun R, Shu Q, Wu S. Decompression Process of Glycerol Shock Treatment Can Overcome Endo-Lysosomal Barriers for Intracellular Delivery. ACS OMEGA 2020; 5:33133-33139. [PMID: 33403275 PMCID: PMC7774252 DOI: 10.1021/acsomega.0c04771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The glycerol shock treatment has been used to improve the calcium phosphate transfection efficacy for several decades because of its high effectiveness and low toxicity. However, the mechanism of glycerol shock treatment is still obscure. In this study, the endo-lysosomal leakage assay demonstrated that the decompression process of glycerol shock treatment could enhance endo-lysosomal membrane permeabilization, which resulted in facilitating endo-lysosomal escape for effective intracellular delivery. The enhanced decompression treatment derived from glycerol shock treatment could increase the change of osmotic pressure further, which showed higher efficacy for intracellular delivery. Herein, we speculated that the endo-lysosomal swelling originated from the decompression process of glycerol shock treatment could cause endo-lysosomal damage.
Collapse
Affiliation(s)
- Shupeng Wang
- School
of Material Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Shaohua Jin
- School
of Material Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Guangzhi Li
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Rui Sun
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Qinghai Shu
- School
of Material Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Song Wu
- The
Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| |
Collapse
|
4
|
Tarvirdipour S, Schoenenberger CA, Benenson Y, Palivan CG. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. SOFT MATTER 2020; 16:1678-1691. [PMID: 31967171 DOI: 10.1039/c9sm01990a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To overcome the low efficiency and cytotoxicity associated with most non-viral DNA delivery systems we developed a purely peptidic self-assembling system that is able to entrap single- and double-stranded DNA of up to 100 nucleotides in length. (HR)3gT peptide design consists of a hydrophilic domain prone to undergo electrostatic interactions with DNA cargo, and a hydrophobic domain at a ratio that promotes the self-assembly into multi-compartment micellar nanoparticles (MCM-NPs). Self-assembled (HR)3gT MCM-NPs range between 100 to 180 nm which is conducive to a rapid and efficient uptake by cells. (HR)3gT MCM-NPs had no adverse effects on HeLa cell viability. In addition, they exhibit long-term structural stability at 4 °C but at 37 °C, the multi-micellar organization disassembles overtime which demonstrates their thermo-responsiveness. The comparison of (HR)3gT to a shorter, less charged H3gT peptide indicates that the additional arginine residues result in the incorporation of longer DNA segments, an improved DNA entrapment efficiency and an increase cellular uptake. Our unique non-viral system for DNA delivery sets the stage for developing amphiphilic peptide nanoparticles as candidates for future systemic gene delivery.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
5
|
Zheng N, Xie D, Zhang Z, Kuang J, Zheng Y, Wang Q, Li Y. Thioketal-crosslinked: ROS-degradable polycations for enhanced in vitro and in vivo gene delivery with self-diminished cytotoxicity. J Biomater Appl 2019; 34:326-338. [DOI: 10.1177/0885328219845081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dan Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jia Kuang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
Geng WC, Huang Q, Xu Z, Wang R, Guo DS. Gene delivery based on macrocyclic amphiphiles. Theranostics 2019; 9:3094-3106. [PMID: 31244943 PMCID: PMC6567961 DOI: 10.7150/thno.31914] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Gene therapy, with an important role in biomedicine, often requires vectors for gene condensation in order to avoid degradation, improve membrane permeation, and achieve targeted delivery. Macrocyclic molecules are a family of artificial receptors that can selectively bind a variety of guest species. Amphiphilic macrocycles, particularly those bearing cationic charges and their various assemblies represent a new class of promising non-viral vectors with intrinsic advantages in gene condensation and delivery. The most prominent examples include amphiphilic cyclodextrins, calixarenes and pillararenes. Herein, we systemically reviewed reported assemblies of amphiphilic macrocycles for gene delivery and therapy. The advantages and disadvantages of each type of macrocyclic amphiphiles for gene delivery, as well as the perspectives on the future development of this area are discussed.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Li M, Wang KR, Yang JX, Peng YT, Liu YX, Zhang HX, Li XL. Supramolecular azasugar clusters based on an amphiphilic fatty-acid-deoxynojirimycin derivative as multivalent glycosidase inhibitors. J Mater Chem B 2019; 7:1379-1383. [DOI: 10.1039/c8tb03249a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel supramolecular multivalent glycosidase inhibitor was constructed based on the amphiphilic deoxynojirimycin derivative FA-DNJ.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Jian-Xing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ya-Tong Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Yi-Xuan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Hong-Xin Zhang
- Medical Comprehensive Experimental Center of Hebei University
- Baoding
- China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|
8
|
Yang X, Shen S, Guo L, Tan J, Lei H, Wu J, Zhao L, Xiong T, Wu Y, Cheng Y, Zhang Y. An Enzyme-Responsive “Turn-on” Fluorescence Polymeric Superamphiphile as a Potential Visualizable Phosphate Prodrug Delivery Vehicle. Macromol Biosci 2018; 18:e1800045. [DOI: 10.1002/mabi.201800045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Xi Yang
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Shihong Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment; Centre for Plasma Biomedicine; Xi'an Jiaotong University; Xi'an 710049 China
| | - Jidong Tan
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Henxin Lei
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Jianghan Wu
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lei Zhao
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Tao Xiong
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Youshen Wu
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Yilong Cheng
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Yanfeng Zhang
- Department of Applied Chemistry; School of Science; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
9
|
Yin Q, Yin L, Wang H, Cheng J. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides. Acc Chem Res 2015; 48:1777-87. [PMID: 26065588 DOI: 10.1021/ar500455z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly(α-hydroxy acids) (PAHAs) are a class of biodegradable and biocompatible polymers that are widely used in numerous applications. One drawback of these conventional polymers, however, is their lack of side-chain functionalities, which makes it difficult to conjugate active moieties to PAHA or to fine-tune the physical and chemical properties of PAHA-derived materials through side-chain modifications. Thus, extensive efforts have been devoted to the development of methodology that allows facile preparation of PAHAs with controlled molecular weights and a variety of functionalities for widespread utilities. However, it is highly challenging to introduce functional groups into conventional PAHAs derived from ring-opening polymerization (ROP) of lactides and glycolides to yield functional PAHAs with favorable properties, such as tunable hydrophilicity/hydrophobicity, facile postpolymerization modification, and well-defined physicochemical properties. Amino acids are excellent resources for functional polymers because of their low cost, availability, and structural as well as stereochemical diversity. Nevertheless, the synthesis of functional PAHAs using amino acids as building blocks has been rarely reported because of the difficulty of preparing large-scale monomers and poor yields during the synthesis. The synthesis of functionalized PAHAs from O-carboxyanhydrides (OCAs), a class of five-membered cyclic anhydrides derived from amino acids, has proven to be one of the most promising strategies and has thus attracted tremendous interest recently. In this Account, we highlight the recent progress in our group on the synthesis of functional PAHAs via ROP of OCAs and their self-assembly and biomedical applications. New synthetic methodologies that allow the facile preparation of PAHAs with controlled molecular weights and various functionalities through ROP of OCAs are reviewed and evaluated. The in vivo stability, side-chain functionalities, and/or trigger responsiveness of several functional PAHAs are evaluated. Their biomedical applications in drug and gene delivery are also discussed. The ready availability of starting materials from renewable resources and the facile postmodification strategies such as azide-alkyne cycloaddition and the thiol-yne "click" reaction have enabled the production of a multitude of PAHAs with controlled molecular weights, narrow polydispersity, high terminal group fidelities, and structural diversities that are amenable for self-assembly and bioapplications. We anticipate that this new generation of PAHAs and their self-assembled nanosystems as biomaterials will open up exciting new opportunities and have widespread utilities for biological applications.
Collapse
Affiliation(s)
- Qian Yin
- Department
of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lichen Yin
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices and Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Hua Wang
- Department
of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department
of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Srivastava A, Cunningham C, Pandit A, Wall JG. Improved gene transfection efficacy and cytocompatibility of multifunctional polyamidoamine-cross-linked hyaluronan particles. Macromol Biosci 2015; 15:682-90. [PMID: 25641575 DOI: 10.1002/mabi.201400401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/19/2014] [Indexed: 01/31/2023]
Abstract
We describe a multi-functional, cationic hyaluronic acid (HA)-based gene carrier with improved transfection over non-cross-linked HA, and negligible cytotoxicity. Cationized particles are developed by cross-linking HA chain carboxyl groups with polyamidoamine amine termini to produce well segregated particles of 350-400 nm with a surface charge density of +2 mV, compared with -35 mV for non-cationized particles. A tethered antibody fragment retains ligand binding for cell targeting. Cationized and antibody-linked particles complex plasmid DNA efficiently and the cationized particles successfully deliver reporter genes to bovine intervertebral disk cells as an intervertebral disk regeneration model.
Collapse
Affiliation(s)
- Akshay Srivastava
- Network of Excellence for Functional Biomaterials, Biosciences, NUI Galway, Galway, Ireland
| | - Claire Cunningham
- Microbiology and Network of Excellence for Functional Biomaterials, NUI Galway, University Road, Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials, Biosciences, NUI Galway, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Network of Excellence for Functional Biomaterials, NUI Galway, University Road, Galway, Ireland.
| |
Collapse
|
11
|
Kanfar N, Bartolami E, Zelli R, Marra A, Winum JY, Ulrich S, Dumy P. Emerging trends in enzyme inhibition by multivalent nanoconstructs. Org Biomol Chem 2015; 13:9894-906. [DOI: 10.1039/c5ob01405k] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review highlights the recent implementation of multivalent nanoconstructs in enzyme inhibition and discusses the emerging trends in their design and identification.
Collapse
Affiliation(s)
- Nasreddine Kanfar
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
12
|
Liu X, Ma D, Tang H, Tan L, Xie Q, Zhang Y, Ma M, Yao S. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8173-8183. [PMID: 24836601 DOI: 10.1021/am500812h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Functionalized graphene has good potential in biomedical applications. To address a better and multiplex design of graphene-based gene vectors, the graphene-oleate-polyamidoamine (PAMAM) dendrimer hybrids were synthesized by the oleic acid adsorption and covalent linkage of PAMAM dendrimers. The micromorphology, electrical charge property, and amount of free amine groups of the graphene-oleate-PAMAM hybrids were characterized, and the peripheral functional groups were identified. The PAMAM dendrimers could be tethered onto graphene surface in high density. The graphene-oleate-PAMAM hybrids exhibit relatively good dispersity and stability in aqueous solutions. To evaluate the potential application of the hybrids in gene delivery vectors, cytotoxicity to HeLa and MG-63 cells and gene (plasmid DNA of enhanced green fluorescent protein) transfection capacity of the hybrids were investigated in detail. The graphene-oleate-PAMAM hybrids show mammalian cell type- and dose-dependent in vitro cytotoxicity. Under the optimal condition, the hybrids possess good biocompatibility and gene transfection capacity. The surface modification of graphene with oleic acid and PAMAM improves the gene transfection efficiency 13 times in contrast to the ultrasonicated graphene. Moreover, the hybrids show better transfection efficiency than the graphene oxide-PAMAM without the oleic acid modification.
Collapse
Affiliation(s)
- Xiahui Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yen J, Yin L, Cheng J. Enhanced Non-Viral Gene Delivery to Human Embryonic Stem Cells via Small Molecule-Mediated Transient Alteration of Cell Structure. J Mater Chem B 2014; 2:8098-8105. [PMID: 26005572 DOI: 10.1039/c4tb00750f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-viral gene delivery into human embryonic stem cells (hESCs)is an important tool for controlling cell fate. However, the delivery efficiency remains low due in part to the tight colony structure of the cells which prevents effective exposure towards delivery vectors. We herein report a novel approach to enhance non-viral gene delivery to hESCs by transiently altering the cell and colony structure. (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide (Y-27632), a small molecule that inhibits the rho-associated protein kinase pathway, is utilized to induce transient colony spreading which leads to increased transfection efficiency by 1.5 to 2 folds in a spectrum of non-viral transfection reagents including Lipofectamine 2000 and Fugene HD. After removal of Y-27632 post-transfection, cells can revert back to its normal state and do not show alteration of pluripotency. This approach provides a simple, effective tool to enhance non-viral gene delivery into adherent hESCs for genetic manipulation.
Collapse
Affiliation(s)
- Jonathan Yen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jianjun Cheng
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA ; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
14
|
Huang X, Dong X, Li X, Meng X, Zhang D, Liu C. Metal–polybenzimidazole complexes as a nonviral gene carrier: Effects of the DNA affinity on gene delivery. J Inorg Biochem 2013; 129:102-11. [DOI: 10.1016/j.jinorgbio.2013.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
15
|
Shen JW, Yang CX, Dong LX, Sun HR, Gao K, Yan XP. Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging. Anal Chem 2013; 85:12166-72. [PMID: 24237132 DOI: 10.1021/ac403486r] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rational design and fabrication of multimodal imaging nanoprobes are of great significance for in vivo imaging. Here we report the fabrication of a multishell structured NaYF4:Yb/Tm@NaLuF4@NaYF4@NaGdF4 nanoprobe via a seed-mediated epitaxial growth strategy for upconversion luminescence (UCL), X-ray computed tomography (CT), and magnetic resonance (MR) trimodal imaging. Hexagonal phase NaYF4:Yb/Tm is used as the core to provide UCL, while the shell of NaLuF4 is epitaxially grown on the core not only to provide an optically inert layer for enhancing the UCL but also to serve as a contrast agent for CT. The outermost NaGdF4 shell is fabricated as a thin layer to give the high longitudinal relaxivity (r1) desired for MR imaging. The transition shell layer of NaYF4 not only provides an interface to facilitate the formation of NaGdF4 shell but also inhibits the energy transfer from inner upconversion activator to surface paramagnetic Gd(3+) ions. The fabricated multishell structured nanoprobe shows intense near-infrared UCL, high r1 value of 3.76 mM(-1) s(-1), and in vitro CT contrast effect. The multishell structured nanoprobe offers great potential for in vivo UCL/CT/MR trimodal imaging. Further covalent bonding of folic acid makes the multishell structured nanoprobe promising for in vivo targeted UCL imaging of tumor-bearing mice.
Collapse
Affiliation(s)
- Ji-Wei Shen
- State Key Laboratory of Medicinal Chemical Biology (Nankai University), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University , 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
16
|
Zheng N, Yin L, Song Z, Ma L, Tang H, Gabrielson NP, Lu H, Cheng J. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials 2013; 35:1302-14. [PMID: 24211080 DOI: 10.1016/j.biomaterials.2013.09.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
The application of non-viral gene delivery vectors is often accompanied with the poor correlation between transfection efficiency and the safety profiles of vectors. Vectors with high transfection efficiencies often suffer from high toxicities, making it unlikely to improve their efficiencies by increasing the DNA dosage. In the current study, we developed a ternary complex system which consisted of a highly membrane-active cationic helical polypeptide (PVBLG-8), a low-toxic, membrane-inactive cationic helical polypeptide (PVBLG-7) capable of mediating mannose receptor targeting, and DNA. The PVBLG-7 moiety notably enhanced the cellular uptake and transfection efficiency of PVBLG-8 in a variety of mannose receptor-expressing cell types (HeLa, COS-7, and Raw 264.7), while it did not compromise the membrane permeability of PVBLG-8 or bring additional cytotoxicities. Because of the simplicity and adjustability of the self-assembly approach, optimal formulations of the ternary complexes with a proper balance between membrane activity and targeting capability were easily identified in each specific cell type. The optimal ternary complexes displayed desired cell tolerability and markedly outperformed the PVBLG-8/DNA binary complexes as well as commercial reagent Lipofectamine™ 2000 in terms of transfection efficiency. This study therefore provides an effective and facile strategy to overcome the efficiency-toxicity poor correlation of non-viral vectors, which contributes insights into the design strategy of effective and safe non-viral gene delivery vectors.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gajbhiye V, Gong S. Lectin functionalized nanocarriers for gene delivery. Biotechnol Adv 2013; 31:552-62. [DOI: 10.1016/j.biotechadv.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
|
18
|
Yin L, Song Z, Qu Q, Kim KH, Zheng N, Yao C, Chaudhury I, Tang H, Gabrielson NP, Uckun FM, Cheng J. Supramolecular self-assembled nanoparticles mediate oral delivery of therapeutic TNF-α siRNA against systemic inflammation. Angew Chem Int Ed Engl 2013; 52:5757-61. [PMID: 23610013 DOI: 10.1002/anie.201209991] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Lichen Yin
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yin L, Song Z, Qu Q, Kim KH, Zheng N, Yao C, Chaudhury I, Tang H, Gabrielson NP, Uckun FM, Cheng J. Supramolecular Self-Assembled Nanoparticles Mediate Oral Delivery of Therapeutic TNF-α siRNA against Systemic Inflammation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
21
|
Tu C, Li N, Zhu L, Zhou L, Su Y, Li P, Zhu X. Cationic long-chain hyperbranched poly(ethylene glycol)s with low charge density for gene delivery. Polym Chem 2013. [DOI: 10.1039/c2py20523h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Welsh DJ, Posocco P, Pricl S, Smith DK. Self-assembled multivalent RGD-peptide arrays – morphological control and integrin binding. Org Biomol Chem 2013; 11:3177-86. [DOI: 10.1039/c3ob00034f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Yue Y, Wu C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater Sci 2013; 1:152-170. [DOI: 10.1039/c2bm00030j] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Yin L, Song Z, Kim KH, Zheng N, Tang H, Lu H, Gabrielson N, Cheng J. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials 2012; 34:2340-9. [PMID: 23283350 DOI: 10.1016/j.biomaterials.2012.11.064] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) (PPABLG), a cationic helical polypeptide, has been recently developed by us as an effective non-viral gene delivery vector. In attempts to elucidate the effect of molecular architecture on the gene delivery efficiencies and thereby identify a potential addition to PPABLG with improved transfection efficiency and reduced cytotoxicity, we synthesized PEG-PPABLG copolymers with diblock, triblock, graft, and star-shaped architectures via a controlled ring-opening polymerization. The PPABLG segment in all copolymers adopted helical structure; all copolymers displayed structure-related cell penetration properties and gene transfection efficiencies. In HeLa and HepG-2 cells, diblock and triblock copolymers exhibited reduced membrane activities and cytotoxicities but uncompromised gene transfection efficiencies compared to the non-PEGylated homo-PPABLG. The graft copolymer revealed lower DNA binding affinity and membrane activity presumably due to the intramolecular entanglement between the grafted PEG segments and charged side chains that led to reduced transfection efficiency. The star copolymer, adopting a spherical architecture with high density of PPABLG, afforded the highest membrane activity and relatively low cytotoxicity, which contributed to its potent gene transfection efficiency that outperformed the non-PEGylated PPABLG and Lipofectamine™ 2000 by 3-5 and 3-134 folds, respectively. These findings provide insights into the molecular design of cationic polymers, especially helical polypeptides towards gene delivery.
Collapse
Affiliation(s)
- Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The effect of a nuclear localization sequence on transfection efficacy of genes delivered by cobalt(II)–polybenzimidazole complexes. Biomaterials 2012; 33:7884-94. [DOI: 10.1016/j.biomaterials.2012.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/08/2012] [Indexed: 01/08/2023]
|
26
|
Zhang Z, Yin L, Xu Y, Tong R, Lu Y, Ren J, Cheng J. Facile functionalization of polyesters through thiol-yne chemistry for the design of degradable, cell-penetrating and gene delivery dual-functional agents. Biomacromolecules 2012; 13:3456-62. [PMID: 23098261 DOI: 10.1021/bm301333w] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthesis of polyesters bearing pendant amine groups with controlled molecular weights and narrow molecular weight distributions was achieved through ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione, an O-carboxyanhydride derived from tyrosine, followed by thiol-yne "click" photochemistry with 2-aminoethanethiol hydrochloride. This class of biodegradable polymers displayed excellent cell penetration and gene delivery properties with low toxicities.
Collapse
Affiliation(s)
- Zhonghai Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. Folate-targeted supramolecular vesicular aggregates as a new frontier for effective anticancer treatment in in vivo model. Eur J Pharm Biopharm 2012; 82:94-102. [PMID: 22705641 DOI: 10.1016/j.ejpb.2012.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/25/2022]
Abstract
Supramolecular vesicular aggregates (SVAs), made up by self-assembling liposomes and polyasparthydrazide co-polymers conjugated to folic acid molecules were extensively investigated in this manuscript as potential active targeting formulation for anticancer drug delivery. Folate-targeted systems (FT-SVAs) were used to treat breast cancer and to further proof the potential in vivo administration of these systems for the therapeutic treatment for several aggressive solid tumors. The physicochemical and technological parameters of FT-SVAs are suitable for their potential in vivo administration. The chemotherapeutic activity of GEM-loaded FT-SVAs was increased during in vivo experiments. NOD-SCID mice bearing MCF-7 human xenograft is used as breast cancer model. The measurement of the volume and weight of tumor masses decreased when animal models are treated by using GEM-loaded FT-SVAs, compared to data obtained by using GEM-loaded mPEG-SUVs and the free form of GEM. An almost complete regression of the tumor (≈ 0.2 cm(3)) was observed in NOD-SCID mice bearing MCF-7 human xenografts treated by GEM-loaded FT-SVAs due to the noticeable improvement of GEM pharmacokinetic parameters provided by FT-SVAs with respect to native anticancer drug. The obtained data showed that supramolecular systems could represent an innovative drug delivery system by self-assembling liposomes and biocompatible polymers to be potentially used for anticancer treatment.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Health Sciences, University Magna Græcia of Catanzaro, Germaneto-Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Barnard A, Smith DK. Selbstorganisierte Multivalenz: dynamische Ligandenanordnungen für hochaffine Bindungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200076] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Barnard A, Smith DK. Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. Angew Chem Int Ed Engl 2012; 51:6572-81. [PMID: 22689381 DOI: 10.1002/anie.201200076] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/12/2022]
Abstract
Multivalency is a powerful strategy for achieving high-affinity molecular recognition in biological systems. Recently, attention has begun to focus on using self-assembly rather than covalent scaffold synthesis to organize multiple ligands. This approach has a number of advantages, including ease of synthesis/assembly, tunability of nanostructure morphology and ligands, potential to incorporate multiple active units, and the responsive nature of self-assembly. We suggest that self-assembled multivalency is a strategy of fundamental importance in the design of synthetic nanosystems to intervene in biological pathways and has potential applications in nanomedicine.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
30
|
Chen D, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong Y, Whitehead KA, Anderson DG. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 2012; 134:6948-51. [PMID: 22475086 DOI: 10.1021/ja301621z] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery of potent new materials for in vivo delivery of nucleic acids depends upon successful formulation of the active molecules into a dosage form suitable for the physiological environment. Because of the inefficiencies of current formulation methods, materials are usually first evaluated for in vitro delivery efficacy as simple ionic complexes with the nucleic acids (lipoplexes). The predictive value of such assays, however, has never been systematically studied. Here, for the first time, by developing a microfluidic method that allowed the rapid preparation of high-quality siRNA-containing lipid nanoparticles (LNPs) for a large number of materials, we have shown that gene silencing assays employing lipoplexes result in a high rate of false negatives (~90%) that can largely be avoided through formulation. Seven novel materials with in vivo gene silencing potencies of >90% at a dose of 1.0 mg/kg in mice were discovered. This method will facilitate the discovery of next-generation reagents for LNP-mediated nucleic acid delivery.
Collapse
Affiliation(s)
- Delai Chen
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gabrielson NP, Lu H, Yin L, Li D, Wang F, Cheng J. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery. Angew Chem Int Ed Engl 2012; 51:1143-7. [PMID: 22162307 PMCID: PMC3555134 DOI: 10.1002/anie.201104262] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Poly(γ-(4-vinylbenzyl)-l -glutamate) (PVBLG) served as a bioactive and reactive template for the generation of a library of cationic α-helical polypeptides for gene delivery. The top performing polymer outperformed 25-kDa polyethylenimine by 12-fold. Preliminary data indicates that helicity of these cationic polypeptides is essential for their improved performance, with enhanced membrane disruption a likely source of their transfection efficiency.
Collapse
Affiliation(s)
- Nathan P. Gabrielson
- Dr. N.P. Gabrielson, Dr. H. Lu, Dr. L. Yin, Prof. Dr. J. Cheng, Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA), Fax: (+1) 217-333-2736, , Homepage: http://cheng.matse.illinois.edu/
| | - Hua Lu
- Dr. N.P. Gabrielson, Dr. H. Lu, Dr. L. Yin, Prof. Dr. J. Cheng, Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA), Fax: (+1) 217-333-2736, , Homepage: http://cheng.matse.illinois.edu/
| | - Lichen Yin
- Dr. N.P. Gabrielson, Dr. H. Lu, Dr. L. Yin, Prof. Dr. J. Cheng, Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA), Fax: (+1) 217-333-2736, , Homepage: http://cheng.matse.illinois.edu/
| | - Dong Li
- Dr. D. Li, Prof. Dr. F. Wang, Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, 601 S. Goodwin Avenue, Urbana, IL 61801 (USA), Fax: (+1) 217-265-0927, , Homepage: http://www.mcb.illinois.edu/faculty/profile/1493
| | - Fei Wang
- Dr. D. Li, Prof. Dr. F. Wang, Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, 601 S. Goodwin Avenue, Urbana, IL 61801 (USA), Fax: (+1) 217-265-0927, , Homepage: http://www.mcb.illinois.edu/faculty/profile/1493
| | - Jianjun Cheng
- Dr. N.P. Gabrielson, Dr. H. Lu, Dr. L. Yin, Prof. Dr. J. Cheng, Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801 (USA), Fax: (+1) 217-333-2736, , Homepage: http://cheng.matse.illinois.edu/
| |
Collapse
|
32
|
Barnard A, Calderon M, Tschiche A, Haag R, Smith DK. Effects of a PEG additive on the biomolecular interactions of self-assembled dendron nanostructures. Org Biomol Chem 2012; 10:8403-9. [DOI: 10.1039/c2ob26584b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Gabrielson NP, Lu H, Yin L, Li D, Wang F, Cheng J. Reactive and Bioactive Cationic α-Helical Polypeptide Template for Nonviral Gene Delivery. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104262] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|