1
|
Motta SE, Zaytseva P, Fioretta ES, Lintas V, Breymann C, Hoerstrup SP, Emmert MY. Endothelial Progenitor Cell-Based in vitro Pre-Endothelialization of Human Cell-Derived Biomimetic Regenerative Matrices for Next-Generation Transcatheter Heart Valves Applications. Front Bioeng Biotechnol 2022; 10:867877. [PMID: 35433657 PMCID: PMC9008229 DOI: 10.3389/fbioe.2022.867877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Hemocompatibility of cardiovascular implants represents a major clinical challenge and, to date, optimal antithrombotic properties are lacking. Next-generation tissue-engineered heart valves (TEHVs) made from human-cell-derived tissue-engineered extracellular matrices (hTEMs) demonstrated their recellularization capacity in vivo and may represent promising candidates to avoid antithrombotic therapy. To further enhance their hemocompatibility, we tested hTEMs pre-endothelialization potential using human-blood-derived endothelial-colony-forming cells (ECFCs) and umbilical vein cells (control), cultured under static and dynamic orbital conditions, with either FBS or hPL. ECFCs performance was assessed via scratch assay, thereby recapitulating the surface damages occurring in transcatheter valves during crimping procedures. Our study demonstrated: feasibility to form a confluent and functional endothelium on hTEMs with expression of endothelium-specific markers; ECFCs migration and confluency restoration after crimping tests; hPL-induced formation of neo-microvessel-like structures; feasibility to pre-endothelialize hTEMs-based TEHVs and ECFCs retention on their surface after crimping. Our findings may stimulate new avenues towards next-generation pre-endothelialized implants with enhanced hemocompatibility, being beneficial for selected high-risk patients.
Collapse
Affiliation(s)
- Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valentina Lintas
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christian Breymann
- Department of Obstetrics and Gynaecology, University Hospital Zurich, Obstetric Research, Feto- Maternal Haematology Research Group, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert,
| |
Collapse
|
2
|
Müller A, Fessele C, Zuber F, Rottmar M, Maniura-Weber K, Ren Q, Guex AG. Gallium Complex-Functionalized P4HB Fibers: A Trojan Horse to Fight Bacterial Infection. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Adrienne Müller
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Claudia Fessele
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Flavia Zuber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
3
|
Generali M, Casanova EA, Kehl D, Wanner D, Hoerstrup SP, Cinelli P, Weber B. Autologous endothelialized small-caliber vascular grafts engineered from blood-derived induced pluripotent stem cells. Acta Biomater 2019; 97:333-343. [PMID: 31344511 DOI: 10.1016/j.actbio.2019.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
Abstract
An ideal cell source for human therapeutic and disease modeling applications should be easily accessible and possess unlimited differentiation and expansion potential. Human induced pluripotent stem cells (hiPSCs) derived from peripheral blood mononuclear cells (PBMCs) represent a promising source given their ease of harvest and their pluripotent nature. Previous studies have demonstrated the feasibility of using PBMC-derived hiPSCs for vascular tissue engineering. However, so far, no endothelialization of hiPSC-derived tissue engineered vascular grafts (TEVGs) based on fully biodegradable polymers without xenogenic matrix components has been shown. In this study, we have generated hiPSCs from PBMCs and differentiated them into αSMA- and calponin-positive smooth muscle cells (SMCs) as well as endothelial cells (ECs) positive for CD31, vWF and eNOS. Both cell types were co-seeded on PGA-P4HB starter matrices and cultured under static or dynamic conditions to induce tissue formation in vitro. The resulting small diameter vascular grafts showed abundant amounts of extracellular matrix, containing a thin luminal layer of vWF-positive cells and a subendothelial αSMA-positive layer approximating the architecture of native vessels. Our results demonstrate the successful generation of TEVGs based on SMCs and ECs differentiated from PBMC-derived hiPSC combined with a biodegradable polymer. These results pave the way for developing autologous PBMC-derived hiPSC-based vascular constructs for therapeutic applications or disease modeling. STATEMENT OF SIGNIFICANCE: We report for the first time the possibility to employ human peripheral blood mononuclear cell (PBMC)-derived iPSCs to generate biodegradable polymer-based tissue engineered vascular grafts (TEVG), which mimic the native layered architecture of blood vessels. hiPSCs from PBMCs were differentiated into smooth muscle cells as well as endothelial cells. These cells were co-seeded on a biodegradable PGA/P4HB scaffold and cultured in a bioreactor to induce tissue formation in vitro. The resulting small diameter TEVG showed abundant amounts of extracellular matrix, containing a αSMA-positive layer in the interstitium and a thin luminal layer of vWF-positive endothelial cells approximating the architecture of native vessels. Our findings improving the generation of autologous vascular replacements using blood as an easily accessible cell source.
Collapse
Affiliation(s)
- Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
| | - Elisa A Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Debora Kehl
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
| | - Debora Wanner
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland; Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Paolo Cinelli
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.
| | - Benedikt Weber
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Puncturing of lyophilized tissue engineered vascular matrices enhances the efficiency of their recellularization. Acta Biomater 2018; 71:474-485. [PMID: 29505888 DOI: 10.1016/j.actbio.2018.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Data on in vitro engineered "off the shelf" matrices support the concept of endogenous cellular repopulation driving the graft's remodeling via immune-mediated response. This seems important to further accelerate the cell reconstitution and may play a crucial role when mononuclear cells are used. Nevertheless, studies on decellularized xenogeneic grafts showed only limited host cell repopulation post-implantation. This study aims at a systematic comparison of reseeding methods (dripping, injection, bathing in a cell suspension and combined puncturing-dripping method) to define the most efficient technique enhancing recellularization of tissue engineered vascular matrices (patches, vessels, small diameter and standard size valves) prior implantation. The constructs were analyzed histologically, biochemically and biomechanically. Various preconditioning treatments (wet, lyophilized and air-dried) combined with reseeding methods demonstrated the highest cell loading efficiency, despite applied crimping and flow stress, of lyophilization followed by puncturing-dripping technique. This novel seeding method allows for an efficient, time-saving graft reseeding that can be used within a one-step cardiovascular clinical intervention. STATEMENT OF SIGNIFICANCE The concept of living tissue engineered, self-repairing, autologous cardiovascular replacements, was proposed alternatively to existing synthetic/xenogeneic prostheses. Recent studies in animal models demonstrate faster in vivo recellularization after grafts pre-seeding with cells prior implantation. Pre-seeded cells hold either, the ability to differentiate directionally or attract host cells, crucial for graft integration and remodeling. It is unclear, however, how efficient the pre-loading is and how well cells withstand the flow. The study presents a systematic overview of cell loading techniques of different cardiovascular constructs, tested under static and dynamic conditions. Comparison illustrates a significantly higher efficiency of cells loading in lyophilized tissues punctured before their standard seeding. This technique may beneficially accelerate remodeling of cardiovascular grafts in further in vivo studies.
Collapse
|
5
|
Salinas M, Rath S, Villegas A, Unnikrishnan V, Ramaswamy S. Relative Effects of Fluid Oscillations and Nutrient Transport in the In Vitro Growth of Valvular Tissues. Cardiovasc Eng Technol 2016; 7:170-81. [PMID: 26857014 DOI: 10.1007/s13239-016-0258-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
Engineered valvular tissues are cultured dynamically, and involve specimen movement. We previously demonstrated that oscillatory shear stresses (OSS) under combined steady flow and specimen cyclic flexure (flex-flow) promote tissue formation. However, localized efficiency of specimen mass transport is also important in the context of cell viability within the growing tissues. Here, we investigated the delivery of two essential species for cell survival, glucose and oxygen, to 3-dimensional (3D) engineered valvular tissues. We applied a convective-diffusive model to characterize glucose and oxygen mass transport with and without valve-like specimen flexural movement. We found the mass transport effects for glucose and oxygen to be negligible for scaffold porosities typically present during in vitro experiments and non-essential unless the porosity was unusually low (<40%). For more typical scaffold porosities (75%) however, we found negligible variation in the specimen mass fraction of glucose and oxygen in both non-moving and moving constructs (p > 0.05). Based on this result, we conducted an experiment using bone marrow stem cell (BMSC)-seeded scaffolds under Pulsatile flow-alone states to permit OSS without any specimen movement. BMSC-seeded specimen collagen from the pulsatile flow and flex-flow environments were subsequently found to be comparable (p > 0.05) and exhibited some gene expression similarities. We conclude that a critical magnitude of fluid-induced, OSS created by either pulsatile flow or flex-flow conditions, particularly when the oscillations are physiologically-relevant, is the direct, principal stimulus that promotes engineered valvular tissues and its phenotype, whereas mass transport benefits derived from specimen movement are minimal.
Collapse
Affiliation(s)
- Manuel Salinas
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA
| | - Sasmita Rath
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA
| | - Ana Villegas
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA
| | - Vinu Unnikrishnan
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL, USA
| | - Sharan Ramaswamy
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA.
| |
Collapse
|
6
|
Lang N, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Mayer-Wagner S, Schroeder C, Freudenthal F, Netz H, Kozlik-Feldmann R, Sigler M. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur J Cardiothorac Surg 2014; 47:1013-21. [PMID: 25064053 DOI: 10.1093/ejcts/ezu292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/19/2014] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Current materials for closure of cardiac defects such as ventricular septal defects (VSDs) are associated with compliance mismatch and a chronic inflammatory response. Bacterial nanocellulose (BNC) is a non-degradable biomaterial with promising properties such as high mechanical strength, favourable elasticity and a negligible inflammatory reaction. The aim of this study was the evaluation of a BNC patch for VSD closure and the investigation of its in vivo biocompatibility in a chronic pig model. METHODS Young's modulus and tensile strength of BNC patches were determined before and after blood exposure. Muscular VSDs were created and closed with a BNC patch on the beating heart in an in vivo pig model. Hearts were explanted after 7, 30 or 90 days. Macropathology, histology and immunohistochemistry were performed. RESULTS Young's modulus and tensile strength of the BNC patch decreased after blood contact from 6.3 ± 1.9 to 3.86 ± 2.2 MPa (P < 0.01) and 0.33 ± 0.06 to 0.26 ± 0.06 MPa (P < 0.01), respectively, indicating the development of higher elasticity. Muscular VSDs were closed with a BNC patch without residual shunting. After 90 days, a mild chronic inflammatory reaction was present. Moreover, there was reduced tissue overgrowth in comparison with polyester. Proceeding cellular organization characterized by fibromuscular cells, production of extracellular matrix, neoangiogenesis and complete neoendothelialization were found. There were no signs of thrombogenicity. CONCLUSIONS BNC patches can close VSDs with good mid-term results and its biocompatibility can be considered as satisfactory. Its elasticity increases in the presence of blood, which might be advantageous. Therefore, it has potential to be used as an alternative patch material in congenital heart disease.
Collapse
Affiliation(s)
- Nora Lang
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany Department of Congenital Heart Defects and Pediatric Cardiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Elena Merkel
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Franziska Fuchs
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | - Susanne Mayer-Wagner
- Department of Orthopedic Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Schroeder
- Department of Orthopedic Surgery, Ludwig-Maximilians-University, Munich, Germany
| | | | - Heinrich Netz
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Kozlik-Feldmann
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Sigler
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Weber B, Robert J, Ksiazek A, Wyss Y, Frese L, Slamecka J, Kehl D, Modregger P, Peter S, Stampanoni M, Proulx S, Falk V, Hoerstrup SP. Living-engineered valves for transcatheter venous valve repair. Tissue Eng Part C Methods 2014; 20:451-63. [PMID: 24156382 PMCID: PMC4026099 DOI: 10.1089/ten.tec.2013.0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/07/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic venous insufficiency (CVI) represents a major global health problem with increasing prevalence and morbidity. CVI is due to an incompetence of the venous valves, which causes venous reflux and distal venous hypertension. Several studies have focused on the replacement of diseased venous valves using xeno- and allogenic transplants, so far with moderate success due to immunologic and thromboembolic complications. Autologous cell-derived tissue-engineered venous valves (TEVVs) based on fully biodegradable scaffolds could overcome these limitations by providing non-immunogenic, non-thrombogenic constructs with remodeling and growth potential. METHODS Tri- and bicuspid venous valves (n=27) based on polyglycolic acid-poly-4-hydroxybutyrate composite scaffolds, integrated into self-expandable nitinol stents, were engineered from autologous ovine bone-marrow-derived mesenchymal stem cells (BM-MSCs) and endothelialized. After in vitro conditioning in a (flow) pulse duplicator system, the TEVVs were crimped (n=18) and experimentally delivered (n=7). The effects of crimping on the tissue-engineered constructs were investigated using histology, immunohistochemistry, scanning electron microscopy, grating interferometry (GI), and planar fluorescence reflectance imaging. RESULTS The generated TEVVs showed layered tissue formation with increasing collagen and glycosaminoglycan levels dependent on the duration of in vitro conditioning. After crimping no effects were found on the MSC level in scanning electron microscopy analysis, GI, histology, and extracellular matrix analysis. However, substantial endothelial cell loss was detected after the crimping procedure, which could be reduced by increasing the static conditioning phase. CONCLUSIONS Autologous living small-diameter TEVVs can be successfully fabricated from ovine BM-MSCs using a (flow) pulse duplicator conditioning approach. These constructs hold the potential to overcome the limitations of currently used non-autologous replacement materials and may open new therapeutic concepts for the treatment of CVI in the future.
Collapse
Affiliation(s)
- Benedikt Weber
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
- Zurich Center of Integrated Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jérôme Robert
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Institute for Clinical Chemistry, University Hospital of Zurich, Zurich, Switzerland
- Zurich Center of Integrated Human Physiology, University of Zurich, Zurich, Switzerland
| | - Agnieszka Ksiazek
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Yves Wyss
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Laura Frese
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Jaroslav Slamecka
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Debora Kehl
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Peter Modregger
- TOMACT Beamline, Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Silvia Peter
- TOMACT Beamline, Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Marco Stampanoni
- TOMACT Beamline, Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Steven Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Volkmar Falk
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Center for Regenerative Medicine, University Hospital of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
- Zurich Center of Integrated Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Williams SF, Rizk S, Martin DP. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. ACTA ACUST UNITED AC 2014; 58:439-52. [PMID: 23979121 DOI: 10.1515/bmt-2013-0009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/13/2013] [Indexed: 11/15/2022]
Abstract
Poly-4-hydroxybutyrate (P4HB) is a thermoplastic, linear polyester, produced by recombinant fermentation, that can be converted into a wide range of resorbable medical devices. P4HB fibers are exceptionally strong, and can be designed to provide prolonged strength retention in vivo. In 2007, the FDA cleared a monofilament suture made from P4HB for general soft tissue approximation and/or ligation. Subsequently, surgical mesh devices for hernia repair, tendon and ligament repair, and plastic and reconstructive surgery have been introduced for clinical use. This review describes the unique properties of P4HB, its clinical applications, and potential uses that are under development.
Collapse
|
9
|
Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L, Ksiazek A, Achermann J, Stranzinger G, Robert J, Sanders B, Sidler M, Brokopp CE, Proulx ST, Frauenfelder T, Schoenauer R, Emmert MY, Falk V, Hoerstrup SP. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells. J Tissue Eng Regen Med 2013; 10:52-70. [PMID: 23881794 DOI: 10.1002/term.1781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/19/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications.
Collapse
Affiliation(s)
- Benedikt Weber
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Debora Kehl
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department of Food Animals, Vetsuisse-Faculty University of Zurich, Zurich, Switzerland
| | - Luc Behr
- IMM Recherche, Institute Mutualiste Montsouris, Paris, France
| | | | - Laura Frese
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Agnieszka Ksiazek
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | | | - Gerald Stranzinger
- Breeding Biology Group, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Jérôme Robert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Bart Sanders
- Department of Biomedical Engineering, Soft Tissue Biomechanics and Tissue Engineering, Eindhoven University of Technology, the Netherlands
| | - Michele Sidler
- Musculo-sceletal Research Unit, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Chad E Brokopp
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
| | - Thomas Frauenfelder
- Department of Diagnostic Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Roman Schoenauer
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery and Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland.,Centre for Applied Biotechnology and Molecular Medicine (CABMM), Zurich, Switzerland
| |
Collapse
|
10
|
Abstract
The surgical repair of complex congenital heart defects frequently requires additional tissue in various forms, such as patches, conduits, and valves. These devices often require replacement over a patient's lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving long-term outcomes of devices used to repair or replace diseased structural malformations. These technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital cardiac surgical procedures. These new technologies for structural malformation surgery are still in their infancy but certainly present great promise for the future. But the translation of these emerging technologies to routine health care and public health policy will also largely depend on economic considerations, value judgments, and political factors.
Collapse
Affiliation(s)
- David Kalfa
- Pediatric Cardiac Surgery, Columbia University, Morgan Stanley Children's Hospital of New York-Presbyterian, New York, USA
| | | |
Collapse
|
11
|
|