1
|
Two Decades of Triazine Dendrimers. Molecules 2021; 26:molecules26164774. [PMID: 34443361 PMCID: PMC8401192 DOI: 10.3390/molecules26164774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
For two decades, methods for the synthesis and characterization of dendrimers based on [1,3,5]-triazine have been advanced by the group. Motivated by the desire to generate structural complexity on the periphery, initial efforts focused on convergent syntheses, which yielded pure materials to generation three. To obtain larger generations of dendrimers, divergent strategies were pursued using iterative reactions of monomers, sequential additions of triazine and diamines, and ultimately, macromonomers. Strategies for the incorporation of bioactive molecules using non-covalent and covalent strategies have been explored. These bioactive materials included small molecule drugs, peptides, and genetic material. In some cases, these constructs were examined in both in vitro and in vivo models with a focus on targeting prostate tumor subtypes with paclitaxel conjugates. In the materials realm, the use of triazine dendrimers anchored on solid surfaces including smectite clay, silica, mesoporous alumina, polystyrene, and others was explored for the separation of volatile organics from gas streams or the sequestration of atrazine from solution. The combination of these organics with metal nanoparticles has been probed. The goal of this review is to summarize these efforts.
Collapse
|
2
|
Wang T, Cai Z, Chen Y, Lee WK, Kwan CS, Li M, Chan ASC, Chen ZF, Cheung AKL, Leung KCF. MALDI-MS Imaging Analysis of Noninflammatory Type III Rotaxane Dendrimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2488-2494. [PMID: 32813518 DOI: 10.1021/jasms.0c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rotaxane dendrimers with hyperbranched macromolecular interlocked structures and size modulation capacity demonstrate drug binding and release ability upon external stimuli. Mass spectrometry imaging (MSI) can offer the high-throughput screening of endogenous/exogenous compounds. Herein, we reported a novel method to display the in situ spatial distribution of label-free monodispersed type III rotaxane dendrimers (RDs) G1 (first generation, size ∼1.5 nm) and G2 (second generation, size ∼5 nm) that were explored as potential drug vehicles in spleen tissue by using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-MSI). Experimental results indicated that the trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix exhibited the best performance for monodispersed type III RDs G1 and G2. The optimized method was successfully applied to map the in vivo spatial distribution of type III RDs G1 and G2 in the spleen from intraperitoneally injected mice. The MALDI-MSI images revealed that RDs G1 and G2 were relatively stable in the spleen within 24 h after administration. It was found that the identified type III RDs G1 and G2 penetrated through the tunica serosa and were predominantly localized in red pulp regions of spleens. They were also mapped in a marginal zone of spleens simultaneously. There was almost no toxicity of type III RDs G1 and G2 to mice spleens from the H&E results. Furthermore, the type III RDs did not induce the expression of inflammatory cytokines from peripheral blood mononuclear cells (PBMCs) or THP-1 monocytes. The MSI analysis not only demonstrated its ability to image select rotaxane dendrimers in a rapid and efficient manner but also provided tremendous assistance on the applications of the further treatment of cancerous tissue as safe drug carriers. Furthermore, the new strategy demonstrated in this study could be applied on other label-free mechanically interlocked molecules, molecular machines, and macromolecules, which opened a new path to evaluate the toxicological and pharmacokinetic characteristics of these novel materials at the suborgan level.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yanyan Chen
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Wang Ka Lee
- Department of Biology, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Chak-Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Min Li
- School of Chinese Medicine, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangzhou Lee & Man Technology Company Ltd., 8 Huanshi Avenue, Nansha, Guangzhou, China
| | - Zhi-Feng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Allen Ka Loon Cheung
- Department of Biology, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ken Cham-Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
4
|
Murta V, Schilrreff P, Rosciszewski G, Morilla MJ, Ramos AJ. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia. J Neurochem 2018; 144:748-760. [DOI: 10.1111/jnc.14286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/18/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Veronica Murta
- Departamento de Histología, Embriología, Biología Celular y Genética; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” IBCN UBA-CONICET; Buenos Aires Argentina
| | - Priscila Schilrreff
- Programa de Nanomedicinas; Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
| | - Gerardo Rosciszewski
- Departamento de Histología, Embriología, Biología Celular y Genética; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” IBCN UBA-CONICET; Buenos Aires Argentina
| | - Maria Jose Morilla
- Programa de Nanomedicinas; Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
| | - Alberto Javier Ramos
- Departamento de Histología, Embriología, Biología Celular y Genética; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” IBCN UBA-CONICET; Buenos Aires Argentina
| |
Collapse
|
5
|
Pro-Inflammatory Versus Anti-Inflammatory Effects of Dendrimers: The Two Faces of Immuno-Modulatory Nanoparticles. NANOMATERIALS 2017; 7:nano7090251. [PMID: 28862693 PMCID: PMC5618362 DOI: 10.3390/nano7090251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023]
Abstract
Dendrimers are soft matter, hyperbranched, and multivalent nanoparticles whose synthesis theoretically affords monodisperse compounds. They are built from a core on which one or several successive series of branches are engrafted in an arborescent way. At the end of the synthesis, the tunable addition of surface groups gives birth to multivalent nano-objects which are generally intended for a specific use. For these reasons, dendrimers have received a lot of attention from biomedical researchers. In particular, some of us have demonstrated that dendrimers can be intrinsically drug-candidate for the treatment of inflammatory disorders, amongst others, using relevant preclinical animal models. These anti-inflammatory dendrimers are innovative in the pharmaceutical field. More recently, it has appeared that some dendrimers (even among those which have been described as anti-inflammatory) can promote inflammatory responses in non-diseased animals. The main corpus of this concise review is focused on the reports which describe anti-inflammatory properties of dendrimers in vivo, following which we review the few recent articles that show pro-inflammatory effects of our favorite molecules, to finally discuss this duality in immuno-modulation which has to be taken into account for the preclinical and clinical developments of dendrimers.
Collapse
|
6
|
Jones DE, Lund AM, Ghandehari H, Facelli JC. Molecular dynamics simulations in drug delivery research: Calcium chelation of G3.5 PAMAM dendrimers. COGENT CHEMISTRY 2016; 2:1229830. [PMID: 29177183 PMCID: PMC5699217 DOI: 10.1080/23312009.2016.1229830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022]
Abstract
Poly(amido amine) (PAMAM) dendrimers have been considered as possible delivery systems for anticancer drugs. One potential advantage of these carriers would be their use in oral formulations, which will require absorption in the intestinal lumen. This may require the opening of tight junctions which may be enabled by reducing the Ca2+ concentration in the intestinal lumen, which has been shown as an absorption mechanism for EDTA (ethylenediaminetetraacetic acid). Using molecular dynamics simulations, we show that the G3.5 PAMAM dendrimers are able to chelate Ca2+ at similar proportions to EDTA, providing support to the hypothesis that oral formulations of PAMAM dendrimers could use this high chelating efficiency as a potential mechanism for permeating the tight junctions of the intestines if other formulation barriers could be overcome.
Collapse
Affiliation(s)
- David E. Jones
- Department of Biomedical Informatics, University of Utah, 421 Wakara, Salt Lake City, UT 84108, USA
| | - Albert M. Lund
- Department of Biomedical Informatics, University of Utah, 421 Wakara, Salt Lake City, UT 84108, USA
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, 421 Wakara, Salt Lake City, UT 84108, USA
| |
Collapse
|
7
|
Billod JM, Lacetera A, Guzmán-Caldentey J, Martín-Santamaría S. Computational Approaches to Toll-Like Receptor 4 Modulation. Molecules 2016; 21:molecules21080994. [PMID: 27483231 PMCID: PMC6274477 DOI: 10.3390/molecules21080994] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4), along with its accessory protein myeloid differentiation factor 2 (MD-2), builds a heterodimeric complex that specifically recognizes lipopolysaccharides (LPS), which are present on the cell wall of Gram-negative bacteria, activating the innate immune response. Some TLR4 modulators are undergoing preclinical and clinical evaluation for the treatment of sepsis, inflammatory diseases, cancer and rheumatoid arthritis. Since the relatively recent elucidation of the X-ray crystallographic structure of the extracellular domain of TLR4, research around this fascinating receptor has risen to a new level, and thus, new perspectives have been opened. In particular, diverse computational techniques have been applied to decipher some of the basis at the atomic level regarding the mechanism of functioning and the ligand recognition processes involving the TLR4/MD-2 system at the atomic level. This review summarizes the reported molecular modeling and computational studies that have recently provided insights into the mechanism regulating the activation/inactivation of the TLR4/MD-2 system receptor and the key interactions modulating the molecular recognition process by agonist and antagonist ligands. These studies have contributed to the design and the discovery of novel small molecules with promising activity as TLR4 modulators.
Collapse
Affiliation(s)
| | | | - Joan Guzmán-Caldentey
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Sonsoles Martín-Santamaría
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Shaunak S. Perspective: Dendrimer drugs for infection and inflammation. Biochem Biophys Res Commun 2015; 468:435-41. [DOI: 10.1016/j.bbrc.2015.07.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
|
9
|
Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T. Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules 2014; 19:20424-20467. [PMID: 25493631 PMCID: PMC6270869 DOI: 10.3390/molecules191220424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023] Open
Abstract
Molecular modeling techniques provide a powerful tool to study the properties of molecules and their interactions at the molecular level. The use of computational techniques to predict interaction patterns and molecular properties can inform the design of drug delivery systems and therapeutic agents. Dendrimers are hyperbranched macromolecular structures that comprise repetitive building blocks and have defined architecture and functionality. Their unique structural features can be exploited to design novel carriers for both therapeutic and diagnostic agents. Many studies have been performed to iteratively optimise the properties of dendrimers in solution as well as their interaction with drugs, nucleic acids, proteins and lipid membranes. Key features including dendrimer size and surface have been revealed that can be modified to increase their performance as drug carriers. Computational studies have supported experimental work by providing valuable insights about dendrimer structure and possible molecular interactions at the molecular level. The progress in computational simulation techniques and models provides a basis to improve our ability to better predict and understand the biological activities and interactions of dendrimers. This review will focus on the use of molecular modeling tools for the study and design of dendrimers, with particular emphasis on the efforts that have been made to improve the efficacy of this class of molecules in biomedical applications.
Collapse
Affiliation(s)
- Nuno Martinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Helena Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Liana Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Steve Brocchini
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Mire Zloh
- Department of Pharmacy, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - Teresa Barata
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
10
|
|
11
|
Simanek EE, Enciso AE, Pavan GM. Computational design principles for the discovery of bioactive dendrimers: [s]-triazines and other examples. Expert Opin Drug Discov 2013; 8:1057-69. [PMID: 23826946 DOI: 10.1517/17460441.2013.813479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Chemistry yields dendrimers of many classes and compositions. Translating this synthetic success to bioactivity is significantly aided by the use of computational modeling and our knowledge of the three-dimensional shapes of these macromolecules. AREAS COVERED This review discusses the lessons learned during the investigations of [s]-triazine dendrimers. Specifically, the article focuses on the evolving role that computational models have taken in the exploration of these macromolecules. These lessons, furthermore, can be generalized across many dendrimer classes. EXPERT OPINION Computational models and the resulting structural data from molecular dynamics simulations provide insights into: shape, solvent penetration, shielding of biolabile linkers, and the density of hydrophobic patches. These models have evolved from artistic representations, through bases for rationalization, to hypothesis-generating tools that drive synthesis. With further advances expected in both software and hardware the answer to the question, 'What does a specific dendrimer look like in solution?' is becoming increasingly clear. Moreover, the authors believe that answer to this question lies at the heart of the design of bioactive dendrimers.
Collapse
Affiliation(s)
- Eric E Simanek
- Texas Christian University, Department of Chemistry , 2800 South University Drive, Fort Worth, TX 76129, USA.
| | | | | |
Collapse
|
12
|
Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 2013; 168:179-99. [PMID: 23524187 DOI: 10.1016/j.jconrel.2013.03.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
The concept of therapeutic cancer vaccines is based on the activation of the immune system against tumor cells after the presentation of tumor antigens. Nanoparticles (NPs) have shown great potential as delivery systems for cancer vaccines as they potentiate the co-delivery of tumor-associated antigens and adjuvants to dendritic cells (DCs), insuring effective activation of the immune system against tumor cells. In this review, the immunological mechanisms behind cancer vaccines, including the role of DCs in the stimulation of T lymphocytes and the use of Toll-like receptor (TLR) ligands as adjuvants will be discussed. An overview of each of the three essential components of a therapeutic cancer vaccine - antigen, adjuvant and delivery system - will be provided with special emphasis on the potential of particulate delivery systems for cancer vaccines, in particular those made of biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA) and poly-ε-caprolactone (PCL). Some of the factors that can influence NP uptake by DCs, including size, surface charge, surface functionalization and route of administration, will also be considered.
Collapse
Affiliation(s)
- Joana M Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
13
|
Chabre YM, Roy R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem Soc Rev 2013; 42:4657-708. [PMID: 23400414 DOI: 10.1039/c3cs35483k] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan-protein interactions are of utmost importance in several biological phenomena. Although the variety of carbohydrate residues in mammalian cells is limited to less than a dozen different sugars, their spatial topographical presentation in what is now associated as the "glycocodes" provides the fundamental keys for specific and high affinity "lock-in" recognition events associated with a wide range of pathologies. Toward deciphering our understanding of these glycocodes, chemists have developed new creative tools that included dendrimer chemistry in order to provide monodisperse multivalent glycoconjugates. This review provides a survey of the numerous aromatic architectures generated for the multivalent presentation of relevant carbohydrates using covalent attachment or supramolecular self-assemblies. The basic concepts toward their controlled syntheses will be described using modern synthetic procedures with a particular emphasis on powerful organometallic methodologies. The large variety of dendritic aromatic scaffolds, together with a brief survey of their unique biophysical and biological properties will be critically reviewed. The distinctiveness of the resulting multivalent glycoarchitectures, encompassing glycoclusters, glycodendrimers and molecularly defined self-assemblies, in forming well organized cross-linked lattices with multivalent carbohydrate binding proteins (lectins) together with their photophysical, medical, and imaging properties will also be briefly highlighted. The topic will be presented in increasing order of aromatic backbone complexities and will end with fullerenes together with self-assembled nanostructures, thus complementing the various scaffolds described in this special thematic issue dedicated to multivalent glycoscience.
Collapse
Affiliation(s)
- Yoann M Chabre
- Pharmaqam - Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
14
|
Teo I, Toms SM, Marteyn B, Barata TS, Simpson P, Johnston KA, Schnupf P, Puhar A, Bell T, Tang C, Zloh M, Matthews S, Rendle PM, Sansonetti PJ, Shaunak S. Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers. EMBO Mol Med 2012; 4:866-81. [PMID: 22887873 PMCID: PMC3491821 DOI: 10.1002/emmm.201201290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 01/25/2023] Open
Abstract
Intestinal pathogens use the host's excessive inflammatory cytokine response, designed to eliminate dangerous bacteria, to disrupt epithelial gut wall integrity and promote their tissue invasion. We sought to develop a non-antibiotic-based approach to prevent this injury. Molecular docking studies suggested that glycosylated dendrimers block the TLR4-MD-2-LPS complex, and a 13.6 kDa polyamidoamine (PAMAM) dendrimer glucosamine (DG) reduced the induction of human monocyte interleukin (IL)-6 by Gram-negative bacteria. In a rabbit model of shigellosis, PAMAM-DG prevented epithelial gut wall damage and intestinal villous destruction, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. Computational modelling studies identified a 3.3 kDa polypropyletherimine (PETIM)-DG as the smallest likely bioactive molecule. In human monocytes, high purity PETIM-DG potently inhibited Shigella Lipid A-induced IL-6 expression. In rabbits, PETIM-DG prevented Shigella-induced epithelial gut wall damage, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. There was no change in β-defensin, IL-10, interferon-β, transforming growth factor-β, CD3 or FoxP3 expression. Small and orally delivered DG could be useful for preventing gut wall tissue damage in a wide spectrum of infectious diarrhoeal diseases. –>See accompanying article http://dx.doi.org/10.1002/emmm.201201668
Collapse
Affiliation(s)
- Ian Teo
- Departments of Medicine, Infectious Diseases & Immunity, Imperial College London, Hammersmith Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lim J, Simanek EE. Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 2012; 64:826-35. [PMID: 22465784 DOI: 10.1016/j.addr.2012.03.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/05/2012] [Accepted: 03/13/2012] [Indexed: 11/29/2022]
Abstract
The use of triazine dendrimers as drug delivery systems benefits from their synthetic versatility and well-defined structure. Triazine dendrimers can be designed and readily synthesized to display orthogonally functional surfaces that facilitate post-synthetic manipulation such as attachment of drug, PEGylation, and/or the installation of ligands or reporting groups. The synthesis is scalable, and large generations can be accessed. To date, triazine dendrimers have been probed for a variety of medicinal applications including drug delivery with an emphasis on cancer, nonviral DNA and RNA delivery systems, in sensing applications, and as bioactive materials. Specifically, triazine adducts with paclitaxel, camptothecin, brefeldin A, and desferrioxamine have been prepared and assessed. Paclitaxel constructs show promising activity in vivo. The use of these materials in fluorescence-based glucose sensors is being pursued. Glycosylated triazine dendrimers interfere with signal transduction in the Toll-4 receptor pathway.
Collapse
Affiliation(s)
- Jongdoo Lim
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | | |
Collapse
|