1
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Padial-Molina M, Gonzalez-Perez G, Martin-Morales N, Sanchez-Fernandez E, O'Valle F, Galindo-Moreno P. Periostin in the relation between periodontal disease and atherosclerotic coronary artery disease: A pilot randomized clinical study. J Periodontal Res 2024; 59:446-457. [PMID: 38140743 DOI: 10.1111/jre.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the effects of periodontal treatment on markers of atherosclerotic coronary artery disease and circulating levels of periostin. BACKGROUND Periostin is necessary for periodontal stability, but it is highly present in atherosclerotic plaques. Treatment of periodontal disease, with low levels of local periostin, is thought to reduce systemic levels of periostin. Thus, this may contribute to cardiovascular health. METHODS A pilot randomized controlled clinical trial was designed to include patients with severe periodontal disease and history of atherosclerotic coronary artery disease. Samples of gingival crevicular fluid (GCF) and serum were collected before and after periodontal treatment by periodontal surgery or non-surgical therapy. The levels of several markers of inflammation and cardiovascular damage were evaluated including CRP, IFN-γ, IL-1ß, IL-10, MIP-1α, periostin, and TNF-α in GCF and CRP, Fibrinogen, IFN-γ, IL-1ß, IL-6, IL-10, L-Selectin, MIP-1α, Periostin, TNF-α, and vWF in serum. RESULTS A total of 22 patients with an average of 56 years old were recruited for participating in this study. Twenty of them were male. Most of them (82%) had suffered an acute myocardial event and underwent surgery for placing 1, 2, or 3 stents in the coronary arteries more than 6 months ago but less than 1 year. The treatment of periodontal disease resulted in an overall improvement of all periodontal parameters. Regarding the evaluation of GCF and serum, a significant increase of periostin in the GCF was observed after periodontal surgery. In contrast, although other markers in GCF and serum improved, no significant correlations were found. CONCLUSION Treatment of periodontal disease through periodontal surgery induces a local and transient increase in the levels of periostin in the gingival crevicular fluid. The effects on systemic markers of inflammation and cardiovascular function have not been confirmed.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Gloria Gonzalez-Perez
- PhD Program in Clinical Medicine and Public Health, University of Granada, Granada, Spain
| | - Natividad Martin-Morales
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- PhD Program in Biomedicine, University of Granada, Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Elena Sanchez-Fernandez
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Francisco O'Valle
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
3
|
Liu G, Zhang L, Zhou X, Xue J, Xia R, Gan X, Lv C, Zhang Y, Mao X, Kou X, Shi S, Chen Z. Inducing the "re-development state" of periodontal ligament cells via tuning macrophage mediated immune microenvironment. J Adv Res 2024; 60:233-248. [PMID: 37597747 PMCID: PMC11156709 DOI: 10.1016/j.jare.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex. OBJECTIVES This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms. METHODS In this study, we conducted a comprehensive examination of the periodontium developmental process in the rat mandibular first molar using histological staining. Through the induction of diverse immune microenvironments in macrophages, we evaluated their potential effects on periodontal re-development events using a cytokine array. Additionally, we investigated PDLC-mediated periodontal re-development events under these distinct immune microenvironments through transcriptome sequencing and relevant functional assays. Furthermore, the underlying molecular mechanism was also performed. RESULTS The activation of development-related functions in PDLCs proved challenging due to their declined activity. However, our findings suggest that modulating the macrophage immune response can effectively regulate PDLCs-mediated periodontium development-related events. The M1 type macrophage immune microenvironment was found to promote PDLC activities associated with epithelial-mesenchymal transition, fiber degradation, osteoclastogenesis, and inflammation through the Wnt, IL-17, and TNF signaling pathways. Conversely, the M2 type macrophage immune microenvironment demonstrated superiority in inducing epithelium induction, fibers formation, and mineralization performance of PDLCs by upregulating the TGFβ and PI3K-Akt signaling pathway. CONCLUSION The results of this study could provide some favorable theoretical bases for applying periodontal development engineering strategy in resolving the difficulties in periodontal multi-tissue regeneration.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Linjun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xuejing Gan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Chunxiao Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
| |
Collapse
|
4
|
Li Y, Xu C, Xie X, Shi P, Wang J, Ding Y. Temporal and spatial expression analysis of periostin in mice periodontitis model. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:286-295. [PMID: 39049647 PMCID: PMC11190857 DOI: 10.7518/hxkq.2024.2023336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aimed to investigate the temporal and spatial changes in the expression of periostin during periodontal inflammation in mice. METHODS A periodontitis model was constructed using silk thread ligation. Mice were randomly divided into five groups including control group, 4-day ligation group, 7-day ligation group, 14-day ligation group, and self-healing group (thread removal for 14 days after 14-day ligation). Micro-CT and histological staining were performed to characterize the dynamic changes in the mouse periodontal tissue in each group. RNAscope and immunohistochemical staining were used to analyze the pattern of changes in periostin at various stages of periodontitis. The cell experiment was divided into three groups: control group, lipopolysaccharide (LPS) stimulation group (treated with LPS for 12 h), and LPS stimulation removal group (treated with LPS for 3 h followed by incubation with medium for 9 h). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of periostin, transforming growth factor-β1 (TGF-β1), and matrix metalloproteinase 2 (MMP2). RESULTS Significant alveolar bone resorption was observed 7 days after ligation. With increasing duration of ligation, the damage to the mouse periodontal tissue was aggravated, which manifested as increased osteoclasts, widening of the periodontal membrane space, and decreased alveolar bone height. Some degree of periodontal tissue repair was observed in the self-healing group. Periostin expression decreased at 4 and 7 days compared with the control group and increased at 14 days compared with 4 and 7 days. A significant recovery was found in the self-healing group. The qRT-PCR results showed that the expression of periostin and TGF-β1 in the LPS stimulation group decreased compared with that in the control group but significantly recovered in the LPS removal group. CONCLUSIONS Periostin expression in the PDL of mice showed a downward and upward trend with inflammation progression. The significant recovery of periostin expression after removing inflammatory stimuli may be related to TGF-β1, which is crucial to maintain the integrity of the PDL.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Huang TH, Chen JY, Suo WH, Shao WR, Huang CY, Li MT, Li YY, Li YH, Liang EL, Chen YH, Lee IT. Unlocking the Future of Periodontal Regeneration: An Interdisciplinary Approach to Tissue Engineering and Advanced Therapeutics. Biomedicines 2024; 12:1090. [PMID: 38791052 PMCID: PMC11118048 DOI: 10.3390/biomedicines12051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontal defects present a significant challenge in dentistry, necessitating innovative solutions for comprehensive regeneration. Traditional restoration methods have inherent limitations in achieving complete and functional periodontal tissue reconstruction. Tissue engineering, a multidisciplinary approach integrating cells, biomaterials, and bioactive factors, holds tremendous promise in addressing this challenge. Central to tissue engineering strategies are scaffolds, pivotal in supporting cell behavior and orchestrating tissue regeneration. Natural and synthetic materials have been extensively explored, each offering unique advantages in terms of biocompatibility and tunable properties. The integration of growth factors and stem cells further amplifies the regenerative potential, contributing to enhanced tissue healing and functional restoration. Despite significant progress, challenges persist. Achieving the seamless integration of regenerated tissues, establishing proper vascularization, and developing biomimetic scaffolds that faithfully replicate the natural periodontal environment are ongoing research endeavors. Collaborative efforts across diverse scientific disciplines are essential to overcoming these hurdles. This comprehensive review underscores the critical need for continued research and development in tissue engineering strategies for periodontal regeneration. By addressing current challenges and fostering interdisciplinary collaborations, we can unlock the full regenerative potential, paving the way for transformative advancements in periodontal care. This research not only enhances our understanding of periodontal tissues but also offers innovative approaches that can revolutionize dental therapies, improving patient outcomes and reshaping the future of periodontal treatments.
Collapse
Affiliation(s)
- Tsung-Hsi Huang
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan; (T.-H.H.); (Y.-H.C.)
| | - Jui-Yi Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Wei-Hsin Suo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Wen-Rou Shao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Chih-Ying Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Ming-Tse Li
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Yu-Ying Li
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Yuan-Hong Li
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - En-Lun Liang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan; (T.-H.H.); (Y.-H.C.)
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| |
Collapse
|
6
|
dos Santos AC, Aroni MAT, Pigossi SC, Lopes MES, Cerri PS, Miguel FB, Santos SRDA, Cirelli JA, Rosa FP. A new hydroxyapatite-alginate-gelatin biocomposite favor bone regeneration in a critical-sized calvarial defect model. Braz Dent J 2024; 35:e245461. [PMID: 38775590 PMCID: PMC11086609 DOI: 10.1590/0103-6440202405461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2024] Open
Abstract
This study aimed to evaluate the osteogenic potential of hydroxyapatite (HA), Alginate (Alg), and Gelatine (Gel) composite in a critical-size defect model in rats. Twenty-four male rats were divided into three groups: a negative control with no treatment (Control group), a positive control treated with deproteinized bovine bone mineral (DBBM group), and the experimental group treated with the new HA-Alg-Gel composite (HA-Alg-Gel group). A critical size defect (8.5mm) was made in the rat's calvaria, and the bone formation was evaluated by in vivo microcomputed tomography analysis (µCT) after 1, 15, 45, and 90 days. After 90 days, the animals were euthanized and histological and histomorphometric analyses were performed. A higher proportion of mineralized tissue/biomaterial was observed in the DBBM group when compared to the HA-Alg-Gel and Control groups in the µCT analysis during all analysis periods. However, no differences were observed in the mineralized tissue/biomaterial proportion observed on day 1 (immediate postoperative) in comparison to later periods of analysis in all groups. In the histomorphometric analysis, the HA-Alg-Gel and Control groups showed higher bone formation than the DBBM group. Moreover, in histological analysis, five samples of the HA-Alg-Gal group exhibited formed bone spicules adjacent to the graft granules against only two of eight samples in the DBBM group. Both graft materials ensured the maintenance of defect bone thickness, while a tissue thickness reduction was observed in the control group. In conclusion, this study demonstrated the osteoconductive potential of HA-Alg-Gel bone graft by supporting new bone formation around its particles.
Collapse
Affiliation(s)
- Anderson Cunha dos Santos
- Instituto de Ciências da Saúde(ICS), Universidade Federal da Bahia(UFBA), Salvador- BA, Brasil
- Centro Universitário Maria Milza(UNIMAM), Governador Mangabeira- BA, Brasil
| | - Mauricio Andres Tinajero Aroni
- Departamento de Diagnóstico e Cirurgia - Periodontia, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brasil
- Universidad de Especialidades Espíritu Santo(UEES), Samborondón, Ecuador
| | - Suzane Cristina Pigossi
- Departamento de Periodontia e Implantodontia, Faculdade de Odontologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - Maria Eduarda Scordamaia Lopes
- Departamento de Diagnóstico e Cirurgia - Periodontia, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brasil
| | - Paulo Sergio Cerri
- Departamento de Morfologia e Clínica Infantil, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara. São Paulo, Brasil
| | - Fúlvio Borges Miguel
- Instituto de Ciências da Saúde(ICS), Universidade Federal da Bahia(UFBA), Salvador- BA, Brasil
| | | | - Joni Augusto Cirelli
- Departamento de Diagnóstico e Cirurgia - Periodontia, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brasil
| | - Fabiana Paim Rosa
- Instituto de Ciências da Saúde(ICS), Universidade Federal da Bahia(UFBA), Salvador- BA, Brasil
| |
Collapse
|
7
|
Staples R, Ivanovski S, Vaswani K, Vaquette C. Melt electrowriting scaffolds with fibre-guiding features for periodontal attachment. Acta Biomater 2024; 180:337-357. [PMID: 38583749 DOI: 10.1016/j.actbio.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Periodontal regeneration requires the re-attachment of oblique and perpendicular periodontal ligament (PDL) fibres to newly formed cementum and alveolar bone, which has proven elusive with existing approaches. In this study, multiple fibre-guiding biphasic tissue engineered constructs were fabricated by melt electrowriting. The biphasic scaffolds were 95 % porous and consisted of a pore size gradient bone compartment and periodontal compartment made of fibre-guiding channels with micro-architectural features ranging from 100 to 60 µm aimed to direct PDL fibre alignment and attachment. In vitro evaluations over 3 and 7 days demonstrated a marked improvement in collagen fibre orientation (over 60 % fully aligned) for scaffolds with micro-architecture ≤100 µm. The biphasic scaffolds were placed on a dentine slice and implanted ectopically, and this demonstrated that all micro-channels groups facilitated oblique and perpendicular alignment and attachment on the dentine with a mean nuclei angle and mean collagen fibre angle of approximately 60° resembling the native periodontal ligament attachment. A further in vivo testing using a surgically created rodent periodontal model highlighted the 80 µm micro-channel group's effectiveness, showing a significant increase in oblique PDL fibre attachment (72 %) and periodontal regeneration (56 %) when compared to all other groups onto the tooth root compared to control groups. Further to this, immunohistochemistry demonstrated the presence of periostin in the newly formed ligament indicating that functional regeneration occurred These findings suggest that scaffold micro-architectures of 100 µm or below can play a crucial role in directing periodontal tissue regeneration, potentially addressing a critical gap in periodontal therapy. STATEMENT OF SIGNIFICANCE: Periodontal regeneration remains a significant clinical challenge. Essential to restoring dental health and function is the proper attachment of the periodontal ligament, which is functionally oriented, to regenerated bone and cementum. Our research presents an innovative biphasic scaffold, utilizing Melt Electrowriting to systematically guide tissue growth. Distinct from existing methods, our scaffold is highly porous, adaptable, and precisely guides periodontal ligament fibre attachment to the opposing tooth root and alveolar bone interfaces, a critical step for achieving periodontal functional regeneration. Our findings not only bridge a significant gap in biomaterial driven tissue guidance but also promise more predictable outcomes for patients, marking a transformative advancement in the field.
Collapse
Affiliation(s)
- Reuben Staples
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Kanchan Vaswani
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston 4006, QLD, Australia; Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia.
| |
Collapse
|
8
|
Kouhi M, de Souza Araújo IJ, Asa'ad F, Zeenat L, Bojedla SSR, Pati F, Zolfagharian A, Watts DC, Bottino MC, Bodaghi M. Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation. Dent Mater 2024; 40:700-715. [PMID: 38401992 DOI: 10.1016/j.dental.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Customization and the production of patient-specific devices, tailoring the unique anatomy of each patient's jaw and facial structures, are the new frontiers in dentistry and maxillofacial surgery. As a technological advancement, additive manufacturing has been applied to produce customized objects based on 3D computerized models. Therefore, this paper presents advances in additive manufacturing strategies for patient-specific devices in diverse dental specialties. METHODS This paper overviews current 3D printing techniques to fabricate dental and maxillofacial devices. Then, the most recent literature (2018-2023) available in scientific databases reporting advances in 3D-printed patient-specific devices for dental and maxillofacial applications is critically discussed, focusing on the major outcomes, material-related details, and potential clinical advantages. RESULTS The recent application of 3D-printed customized devices in oral prosthodontics, implantology and maxillofacial surgery, periodontics, orthodontics, and endodontics are presented. Moreover, the potential application of 4D printing as an advanced manufacturing technology and the challenges and future perspectives for additive manufacturing in the dental and maxillofacial area are reported. SIGNIFICANCE Additive manufacturing techniques have been designed to benefit several areas of dentistry, and the technologies, materials, and devices continue to be optimized. Image-based and accurately printed patient-specific devices to replace, repair, and regenerate dental and maxillofacial structures hold significant potential to maximize the standard of care in dentistry.
Collapse
Affiliation(s)
- Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lubna Zeenat
- School of Engineering, Deakin University, Geelong 3216, Australia; Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sri Sai Ramya Bojedla
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Falguni Pati
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong 3216, Australia
| | - David C Watts
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
9
|
Zhao F, Zhang Z, Guo W. The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges. Front Bioeng Biotechnol 2024; 12:1356580. [PMID: 38456006 PMCID: PMC10917914 DOI: 10.3389/fbioe.2024.1356580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Tooth loss or damage poses great threaten to oral and general health. While contemporary clinical treatments have enabled tooth restoration to a certain extent, achieving functional tooth regeneration remains a challenging task due to the intricate and hierarchically organized architecture of teeth. The past few decades have seen a rapid development of three-dimensional (3D) printing technology, which has provided new breakthroughs in the field of tissue engineering and regenerative dentistry. This review outlined the bioactive materials and stem/progenitor cells used in dental regeneration, summarized recent advancements in the application of 3D printing technology for tooth and tooth-supporting tissue regeneration, including dental pulp, dentin, periodontal ligament, alveolar bone and so on. It also discussed current obstacles and potential future directions, aiming to inspire innovative ideas and encourage further development in regenerative medicine.
Collapse
Affiliation(s)
- Fengxiao Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Davidopoulou S, Karakostas P, Batas L, Barmpalexis P, Assimopoulou A, Angelopoulos C, Tsalikis L. Multidimensional 3D-Printed Scaffolds and Regeneration of Intrabony Periodontal Defects: A Systematic Review. J Funct Biomater 2024; 15:44. [PMID: 38391897 PMCID: PMC10889986 DOI: 10.3390/jfb15020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The utilization of regenerative techniques in periodontology involves tailoring tissue engineering principles to suit the oral cavity's unique environment. Advancements in computer-assisted technology, specifically utilizing cone beam computed tomography (CBCT), enabled the fabrication of 3D-printed scaffolds. The current review aims to explore whether 3D-printed scaffolds are effective in promoting osteogenesis in patients with periodontal defects. METHODS A thorough exploration was undertaken across seven electronic databases (PubMed, Scopus, ScienceDirect, Google Scholar, Cochrane, Web of Science, Ovid) to detect pertinent research in accordance with specified eligibility criteria, aligning with the PRISMA guidelines. Two independent reviewers undertook the screening and selection of manuscripts, executed data extraction, and evaluated the bias risk using the Newcastle-Ottawa Scale for non-randomized clinical trials and SYRCLE's risk of bias tool for animal studies. RESULTS Initially, 799 articles were identified, refined by removing duplicates. After evaluating 471 articles based on title and abstract, 18 studies remained for full-text assessment. Eventually, merely two manuscripts fulfilled all the eligibility criteria concerning human trials. Both studies were prospective non-randomized clinical trials. Moreover, 11 animal studies were also included. CONCLUSIONS The use of multidimensional, 3D-printed, customized scaffolds appears to stimulate periodontal regeneration. While the reported results are encouraging, additional studies are required to identify the ideal characteristics of the 3D scaffold to be used in the regeneration of periodontal tissue.
Collapse
Affiliation(s)
- Sotiria Davidopoulou
- Department of Operative Dentistry, Dental School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Karakostas
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Leonidas Batas
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreana Assimopoulou
- Organic Chemistry Lab, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Angelopoulos
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athina, Greece
| | - Lazaros Tsalikis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Miron RJ. Optimized bone grafting. Periodontol 2000 2024; 94:143-160. [PMID: 37610202 DOI: 10.1111/prd.12517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
Bone grafting is routinely performed in periodontology and oral surgery to fill bone voids. While autogenous bone is considered the gold standard because of its regenerative properties, allografts and xenografts have more commonly been utilized owing to their availability as well as their differential regenerative/biomechanical properties. In particular, xenografts are sintered at high temperatures, which allows for their slower degradation and resorption rates and/or nonresorbable features. As a result, clinicians have combined xenografts with other classes of bone grafts (most notably allografts and autografts in various ratios) for procedures requiring better long-term stability, such as contour grafting, sinus elevation procedures, and vertical bone augmentations. This review addresses the regenerative properties of each class of bone grafts and then highlights the importance of understanding each of their biomechanical and regenerative properties for clinical applications, including extraction site management, contour augmentation, sinus grafting, and horizontal and vertical augmentation procedures. Thereafter, an introduction toward the novel production of nonresorbable bone allografts (NRBAs) via high-temperature sintering is presented. These NRBAs not only pose the advantage of being more biocompatible than xenografts owing to their origin (human vs. animal bone) but also display nonresorbable properties similar to those of xenografts. Thus, while packaging allografts with xenografts in premixtures specific to various clinical indications has never been permitted owing to cross-species contamination and FDA/CE requirements, the discovery and production of NRBAs allows premixing with standard allografts in various ratios without regulatory restrictions. Therefore, premixtures of allografts with NRBAs can be produced in various ratios for specific indications (e.g., a 1:1 ratio similar to an allograft/xenograft mixture for sinus grafting) without the need for purchasing separate classes of bone grafts. This optimized form of bone grafting could theoretically provide clinicians more precise ratios without the need to purchase separate bone grafts. This review highlights the future potential for simplified and optimized bone grafting in periodontology and implant dentistry.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Huang Y, Zhang Z, Bi F, Tang H, Chen J, Huo F, Chen J, Lan T, Qiao X, Sima X, Guo W. Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration. Adv Healthc Mater 2023; 12:e2300625. [PMID: 37523260 DOI: 10.1002/adhm.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Recent advances in 3D printing offer a prospective avenue for producing transplantable human tissues with complex geometries; however, the appropriate 3D-printed scaffolds possessing the biological compatibility for tooth regeneration remain unidentified. This study proposes a personalized scaffold of multiple bioactivities, including induction of stem cell proliferation and differentiation, biomimetic mineralization, and angiogenesis. A brand-new bioink system comprising a biocompatible and biodegradable polymer is developed and reinforced with extracellular matrix generated from dentin tissue (treated dentin matrix, TDM). Adding TDM optimizes physical properties including microstructure, hydrophilicity, and mechanical strength of the scaffolds. Proteomics analysis reveals that the released proteins of the 3D-printed TDM scaffolds relate to multiple biological processes and interact closely with each other. Additionally, 3D-printed TDM scaffolds establish a favorable microenvironment for cell attachment, proliferation, and differentiation in vitro. The 3D-printed TDM scaffolds are proangiogenic and facilitate whole-thickness vascularization of the graft in a subcutaneous model. Notably, the personalized TDM scaffold combined with dental follicle cells mimics the anatomy and physiology of the native tooth root three months after in situ transplantation in beagles. The remarkable in vitro and in vivo outcomes suggest that the 3D-printed TDM scaffolds have multiple bioactivities and immense clinical potential for tooth-loss therapy.
Collapse
Affiliation(s)
- Yibing Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Huilin Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiahao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jie Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangchen Qiao
- Chengdu Guardental Technology Limited Corporation, Chengdu, 610041, P. R. China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Yunnan Key Laboratory of Stomatology, Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, 650000, P. R. China
| |
Collapse
|
13
|
Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000 2023; 93:358-384. [PMID: 37823472 DOI: 10.1111/prd.12525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications. Furthermore, the regulatory pathway for approval of these devices is discussed, highlighting the main hurdles and obstacles. Finally, the review elaborates on a variety of strategies for increasing bone regeneration capacity and explores the future of 4D bioprinting and biodegradable metal 3D printing.
Collapse
Affiliation(s)
- Saso Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Omar Breik
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Danilo Carluccio
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Jamil Alayan
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Ruben Staples
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Cedryck Vaquette
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Blaudez F, Ivanovski S, Vaquette C. Harnessing the Native Extracellular Matrix for Periodontal Regeneration Using a Melt Electrowritten Biphasic Scaffold. J Funct Biomater 2023; 14:479. [PMID: 37754893 PMCID: PMC10531993 DOI: 10.3390/jfb14090479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Scaffolds have been used to promote periodontal regeneration by providing control over the spacio-temporal healing of the periodontium (cementum, periodontal ligament (PDL) and alveolar bone). This study proposes to enhance the biofunctionality of a biphasic scaffold for periodontal regeneration by means of cell-laid extracellular matrix (ECM) decoration. To this end, a melt electrowritten scaffold was cultured with human osteoblasts for the deposition of bone-specific ECM. In parallel, periodontal ligament cells were used to form a cell sheet, which was later combined with the bone ECM scaffold to form a biphasic PDL-bone construct. The resulting biphasic construct was decellularised to remove all cellular components while preserving the deposited matrix. Decellularisation efficacy was confirmed in vitro, before the regenerative performance of freshly decellularised constructs was compared to that of 3-months stored freeze-dried scaffolds in a rodent periodontal defect model. Four weeks post-surgery, microCT revealed similar bone formation in all groups. Histology showed higher amounts of newly formed cementum and periodontal attachment in the fresh and freeze-dried ECM functionalised scaffolds, although it did not reach statistical significance. This study demonstrated that the positive effect of ECM decoration was preserved after freeze-drying and storing the construct for 3 months, which has important implications for clinical translation.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry, Centre for Oral Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Herston, QLD 4006, Australia; (F.B.); (S.I.)
- School of Dentistry and Oral Health, Griffith University, Southport, QLD 4222, Australia
| | - Saso Ivanovski
- School of Dentistry, Centre for Oral Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Herston, QLD 4006, Australia; (F.B.); (S.I.)
| | - Cedryck Vaquette
- School of Dentistry and Oral Health, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
15
|
Figueiredo TDM, Do Amaral GCLS, Bezerra GN, Nakao LYS, Villar CC. Three-dimensional-printed scaffolds for periodontal regeneration: A systematic review. J Indian Soc Periodontol 2023; 27:451-460. [PMID: 37781321 PMCID: PMC10538520 DOI: 10.4103/jisp.jisp_350_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 10/03/2023] Open
Abstract
Background As current ethical codes preclude determining whether the clinical improvements obtained with the use of three-dimensional (3D)-printed scaffolds represent true periodontal regeneration, the histological proof of evidence for regeneration must be demonstrated in animal models. Thus, this systematic review investigated the regenerative potential of 3D-printed scaffolds in animal models of periodontal defects. Materials and Methods A systematic search was performed in four databases (Medline, Embase, Web of Science, and Scopus) to identify preclinical controlled studies that investigated the use of 3D-printed scaffolds for periodontal regeneration. Studies limited to periodontal defects treated with 3D scaffolds were eligible for inclusion. The primary outcome was periodontal regeneration, assessed histologically as new bone, cementum, and periodontal ligament (PDL). This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Quality was assessed according to the SRYCLE score. Results Six studies met the inclusion criteria. Scaffolds were designed using computer-aided design software. While the absence of a scaffold resulted in defects repaired mainly with fibrous connective tissue, the use of nonguiding 3D scaffolds promoted some bone formation. Notably, the regeneration of cementum and functional PDL fibers perpendicularly inserted into the root surface and the alveolar bone was limited to the defects treated with multi-compartment fiber-guiding or ion-containing 3D scaffolds. Nevertheless, the quality of the evidence was limited due to the unclear risk of bias. Conclusions Despite the limitations of the available evidence, the current data suggest that the use of printed multi-compartment fiber-guiding or ion-containing 3D scaffolds improves periodontal regeneration in animal models.
Collapse
Affiliation(s)
| | | | - Gabriela Neiva Bezerra
- Department of Periodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Lais Yumi Souza Nakao
- Department of Periodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Cristina Cunha Villar
- Department of Periodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Badr AM, Shalaby HK, Awad MA, Hashem MA. Assessment of bone morphogenetic protein-7 loaded chitosan/β-Glycerophosphate hydrogel on periodontium tissues regeneration of class III furcation defects. Saudi Dent J 2023; 35:760-767. [PMID: 37817788 PMCID: PMC10562118 DOI: 10.1016/j.sdentj.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 10/12/2023] Open
Abstract
Background Periodontitis is a long-term, multifactorial inflammatory condition that is triggered by bacterial germs and interacts with the host's immune system. The unique attachment of fibrous tissue between the cementum and bone presents a challenge for periodontal regeneration. Aim To achieve the lowest optimum dose of BMP-7 that helps in periodontal regeneration, involving newly formed cementum, PDL and bone. Materials and methods Five healthy mongrel dogs were used for the study. A critical class III furcation defect was created using rotating burs. The bone defects (ten defects for each group) were allocated to one of the subsequent groups: (Group 1) control with the surgical defect only. (Group 2) Surgical defect implanted with hydrogel only (CS/β-GP). (Group 3) Surgical defect implanted with CS/BMP-7 (50 ng/ml). (Group 4) Surgical defect implanted with CS/BMP-7 (100 ng/ml). Results Histomorphometric and H&E analysis revealed a statistically significant difference in bone, PDL, and cementum regeneration defects filled with CS/BMP-7 (100 ng/ml) compared with other groups. Conclusion The standard effective dose for BMP-7 use in periodontal regeneration is 100 ng/ml.
Collapse
|
17
|
Abstract
Conditions, accidents, and aging processes have brought with them the need to develop implants with higher technology that allow not only the replacement of missing tissue but also the formation of tissue and the recovery of its function. The development of implants is due to advances in different areas such as molecular-biochemistry (which allows the understanding of the molecular/cellular processes during tissue repair), materials engineering, tissue regeneration (which has contributed advances in the knowledge of the properties of the materials used for their manufacture), and the so-called intelligent biomaterials (which promote tissue regeneration through inductive effects of cell signaling in response to stimuli from the microenvironment to generate adhesion, migration, and cell differentiation processes). The implants currently used are combinations of biopolymers with properties that allow the formation of scaffolds with the capacity to mimic the characteristics of the tissue to be repaired. This review describes the advances of intelligent biomaterials in implants applied in different dental and orthopedic problems; by means of these advances, it is expected to overcome limitations such as additional surgeries, rejections and infections in implants, implant duration, pain mitigation, and mainly, tissue regeneration.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Luz E Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| |
Collapse
|
18
|
Nagayasu-Tanaka T, Anzai J, Takedachi M, Kitamura M, Harada T, Murakami S. Effects of combined application of fibroblast growth factor (FGF)-2 and carbonate apatite for tissue regeneration in a beagle dog model of one-wall periodontal defect. Regen Ther 2023; 23:84-93. [PMID: 37122358 PMCID: PMC10141504 DOI: 10.1016/j.reth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction There has been an increasing desire for the development of predictive periodontal regenerative therapy for severe periodontitis. In this study, we investigated the effect of the combined use of fibroblast growth factor-2 (FGF-2), a drug for periodontal regeneration approved in Japan, and carbonated apatite (CO3Ap), bioresorbable and osteoconductive scaffold, on periodontal regeneration in beagle dog model of one-wall periodontal defect (severe intraosseous defect) for 24 weeks in comparison with CO3Ap or vehicle alone. Methods One-wall periodontal defects were created (mesiodistal width × depth: 4 × 4 mm) on the mesial portion of the mandibular first molar (M1) of beagle dogs on both side. Mixture of FGF-2 and CO3Ap, vehicle and CO3Ap, or vehicle alone were administered to the defects and designated as groups FGF-2+CO3Ap, CO3Ap, and control, respectively. To assess the periodontal regeneration, radiographic analysis over time for 24 weeks, and micro computed tomography (μCT) and histological evaluation at 6 and 24 weeks were performed. Results For the regenerated tissue in the defect site, the mineral content of the FGF-2+CO3Ap group was higher than that of the CO3Ap group in the radiographic analysis at 6-24 weeks. In the context of new bone formation and replacement, the FGF-2+CO3Ap group exhibited significantly greater new bone volume and smaller CO3Ap volume than the CO3Ap group in the μCT analysis at 6 and 24 weeks. Furthermore, the density of the new bone in the FGF-2+CO3Ap group at 24 weeks was similar to those in the control and CO3Ap groups. Histological evaluation revealed that the length of the new periodontal ligament and cementum in the FGF-2+CO3Ap group was greater than that in the CO3Ap group at 6 weeks. We also examined the effect of the combined use of the FGF-2 and CO3Ap on the existing bone adjacent to the defect and demonstrated that the existing bone height and volume in the FGF-2+CO3Ap group remained significantly greater than those in the CO3Ap group. Conclusion This study demonstrated that the combination of FGF-2 and CO3Ap was effective not only in enhancing new bone formation and replacing scaffold but also in maintaining the existing bone adjacent to the defect site in a beagle dog model of one-wall periodontal defect. Additionally, new periodontal tissues induced by FGF-2 and CO3Ap may follow a maturation process similar to that formed by spontaneous healing. This suggests that the combined use of FGF-2 and CO3Ap would promote periodontal regeneration in severe bony defects of periodontitis patient.
Collapse
Affiliation(s)
- Toshie Nagayasu-Tanaka
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Jun Anzai
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuhiro Harada
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Corresponding author. Shinya Murakami Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Bourdon L, Attik N, Belkessam L, Chevalier C, Bousige C, Brioude A, Salles V. Direct-Writing Electrospun Functionalized Scaffolds for Periodontal Regeneration: In Vitro Studies. J Funct Biomater 2023; 14:jfb14050263. [PMID: 37233373 DOI: 10.3390/jfb14050263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration.
Collapse
Affiliation(s)
- Laura Bourdon
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Liza Belkessam
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Colin Bousige
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Arnaud Brioude
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
20
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
21
|
Liu C, Staples R, Gómez-Cerezo MN, Ivanovski S, Han P. Emerging Technologies of Three-Dimensional Printing and Mobile Health in COVID-19 Immunity and Regenerative Dentistry. Tissue Eng Part C Methods 2023; 29:163-182. [PMID: 36200626 DOI: 10.1089/ten.tec.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic highlights the importance of developing point-of-care (POC) antibody tests for monitoring the COVID-19 immune response upon viral infection or following vaccination, which requires three key aspects to achieve optimal monitoring, including three-dimensional (3D)-printed POC devices, mobile health (mHealth), and noninvasive sampling. As a critical tissue engineering concept, additive manufacturing (AM, also known as 3D printing) enables accurate control over the dimensional and architectural features of the devices. mHealth refers to the use of portable digital devices, such as smartphones, tablet computers, and fitness and medical wearables, to support health, which facilitates contact tracing, and telehealth consultations during the pandemic. Compared with invasive biosample (blood), saliva is of great importance in the spread and surveillance of COVID-19 as a noninvasive diagnostic method for virus detection and immune status monitoring. However, investigations into 3D-printed POC antibody test and mHealth using noninvasive saliva are relatively limited. Further exploration of 3D-printed antibody POC tests and mHealth applications to monitor antibody production for either disease onset or immune response following vaccination is warranted. This review briefly describes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and immune response after infection and vaccination, then discusses current widely used binding antibody tests using blood samples and enzyme-linked immunosorbent assays on two-dimensional microplates before focusing upon emerging POC technological platforms, such as field-effect transistor biosensors, lateral flow assay, microfluidics, and AM for fabricating immunoassays, and the possibility of their combination with mHealth. This review proposes that noninvasive biofluid sampling combined with 3D POC antibody tests and mHealth technologies is a promising and novel approach for POC detection and surveillance of SARS-CoV-2 immune response. Furthermore, as key concepts in dentistry, the application of 3D printing and mHealth was also included to facilitate the appreciation of cutting edge techniques in regenerative dentistry. This review highlights the potential of 3D printing and mHealth in both COVID-19 immunity monitoring and regenerative dentistry.
Collapse
Affiliation(s)
- Chun Liu
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Reuben Staples
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Natividad Gómez-Cerezo
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Pingping Han
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Ma Y, Yang X, Chen Y, Zhang J, Gai K, Chen J, Huo F, Guo Q, Guo W, Gou M, Yang B, Tian W. Biomimetic Peridontium Patches for Functional Periodontal Regeneration. Adv Healthc Mater 2023; 12:e2202169. [PMID: 36398560 DOI: 10.1002/adhm.202202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Indexed: 11/19/2022]
Abstract
The unique structure of the periodontium, including the alveolar bone, cementum, and periodontal ligament (PDL), presents difficulties for the regeneration of its intricate organization. Irreversible structural breakdown of the periodontium increases the risk of tooth loosening and loss. Although the current therapies can restore the periodontal hard tissues to a certain extent, the PDL with its high directionality of multiple groups with different orientations and functions cannot be reconstructed. Here, biomimetic peridontium patches (BPPs) for functional periodontal regeneration using a microscale continuous digital light projection bioprinting method is reported. Orthotopic transplantation in the mandibles shows effective periodontal reconstruction. The resulting bioengineered tissues closely resembles natural periodontium in terms of the "sandwich structures," especially the correctly oriented fibers, showing different and specific orientation in different regions of the tooth root, which has never been found in previous studies. Furthermore, after the assessment of clinically functional properties it is found that the regenerative periodontium can achieve stable tooth movement under orthodontic migration force with no adverse consequences. Overall, the BPPs promote reconstruction of the functional periodontium and the complex microstructure of the periodontal tissue, providing a proof of principle for the clinical functional treatment of periodontal defects.
Collapse
Affiliation(s)
- Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiumeng Zhang
- Department of Biotherapy, Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Kuo Gai
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pedodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jinlong Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pedodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Maling Gou
- Department of Biotherapy, Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
23
|
Yoshino Y, Miyaji H, Nishida E, Kanemoto Y, Hamamoto A, Kato A, Sugaya T, Akasaka T. Periodontal tissue regeneration by recombinant human collagen peptide granules applied with β-tricalcium phosphate fine particles. J Oral Biosci 2023; 65:62-71. [PMID: 36669699 DOI: 10.1016/j.job.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Recombinant human collagen peptide (RCP) is a recombinantly created xeno-free biomaterial enriched in arginine-glycine-aspartic acid sequences with good processability whose use for regenerative medicine applications is under investigation. The biocompatibility and osteogenic ability of RCP granules combined with β-tricalcium phosphate (TCP) submicron particles (β-TCP/RCP) were recently demonstrated. In the present study, β-TCP/RCP was implanted into experimental periodontal tissue defects created in beagles to investigate its regenerative effects. METHODS An RCP solution was lyophilized, granulated, and thermally cross-linked into particles approximately 1 mm in diameter. β-TCP dispersion (1 wt%; 500 μL) was added to 100 mg of RCP granules to form β-TCP/RCP. A three-walled intrabony defect (5 mm × 3 mm × 4 mm) was created on the mesial side of the mandibular first molar and filled with β-TCP/RCP. RESULTS A micro-computed tomography image analysis performed at 8 weeks postoperative showed a significantly greater amount of new bone after β-TCP/RCP grafting (2.2-fold, P < 0.05) than after no grafting. Histological findings showed that the transplanted β-TCP/RCP induced active bone-like tissue formation including tartaric acid-resistant acid phosphatase- and OCN-positive cells as well as bioabsorbability. Ankylosis did not occur, and periostin-positive periodontal ligament-like tissue formation was observed. Histological measurements performed at 8 weeks postoperative revealed that β-TCP/RCP implantation formed 1.7-fold more bone-like tissue and 2.1-fold more periodontal ligament-like tissue than the control condition and significantly suppressed gingival recession and epithelial downgrowth (P < 0.05). CONCLUSIONS β-TCP/RCP implantation promoted bone-like and periodontal ligament-like tissue formation, suggesting its efficacy as a periodontal tissue regenerative material.
Collapse
Affiliation(s)
- Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asako Hamamoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
24
|
Yang X, Ma Y, Wang X, Yuan S, Huo F, Yi G, Zhang J, Yang B, Tian W. A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205041. [PMID: 36516309 PMCID: PMC9929114 DOI: 10.1002/advs.202205041] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Poor fiber orientation and mismatched bone-ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the regeneration of hybrid periodontal tissues in beagles, especially the anchoring structures of the bone-ligament interface, well-aligned periodontal fibers, and highly mineralized alveolar bone. This demonstrates the effectiveness and feasibility of 3D bioprinting combined with a dental follicle-specific dECM bioink for periodontium regeneration, providing new avenues for future clinical practice.
Collapse
Affiliation(s)
- Xueting Yang
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yue Ma
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiuting Wang
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Shengmeng Yuan
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Genzheng Yi
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Jingyi Zhang
- Chengdu Shiliankangjian Biotechnology Co., Ltd.Chengdu610041P. R. China
| | - Bo Yang
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
25
|
Attik N, Garric X, Bethry A, Subra G, Chevalier C, Bouzouma B, Verdié P, Grosgogeat B, Gritsch K. Amelogenin-Derived Peptide (ADP-5) Hydrogel for Periodontal Regeneration: An In Vitro Study on Periodontal Cells Cytocompatibility, Remineralization and Inflammatory Profile. J Funct Biomater 2023; 14:jfb14020053. [PMID: 36826852 PMCID: PMC9966511 DOI: 10.3390/jfb14020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
A relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging. An experimental gellan-xanthan hydrogel was then designed as carrier for ADP-5 and compared to the commercial gel Emdogain®. Alizarin Red was used to determine the periodontal ligament and cementoblasts cell mineralization. The inflammatory profile of these two cells was also quantified using ELISA (vascular endothelial growth factor A, tumor necrosis factor α, and interleukin 11) mediators. ADP-5 enhanced cell proliferation and remineralization; the 100 µg/mL concentration was more efficient than 50 and 200 µg/mL. The ADP-5 experimental hydrogel exhibited equivalent good biological behavior compared to Emdogain® in terms of cell colonization, mineralization, and inflammatory profile. These findings revealed relevant insights regarding the ADP-5 biological behavior. From a clinical perspective, these outcomes could instigate the development of novel functionalized scaffold for periodontal regeneration.
Collapse
Affiliation(s)
- Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Correspondence:
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
- Departement of Pharmacy, Nîmes University Hospital, 30900 Nîmes, France
| | - Audrey Bethry
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Brahim Bouzouma
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Recherche Clinique), Hospices Civils de Lyon, 69007 Lyon, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Parodontologie), Hospices Civils de Lyon, 69007 Lyon, France
| |
Collapse
|
26
|
Daghrery A, Ferreira JA, Xu J, Golafshan N, Kaigler D, Bhaduri SB, Malda J, Castilho M, Bottino MC. Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues. Bioact Mater 2023; 19:268-281. [PMID: 35574052 PMCID: PMC9058963 DOI: 10.1016/j.bioactmat.2022.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic inflammatory condition that often causes serious damage to tooth-supporting tissues. The limited successful outcomes of clinically available approaches underscore the need for therapeutics that cannot only provide structural guidance to cells but can also modulate the local immune response. Here, three-dimensional melt electrowritten (i.e., poly(ε-caprolactone)) scaffolds with tissue-specific attributes were engineered to guide differentiation of human-derived periodontal ligament stem cells (hPDLSCs) and mediate macrophage polarization. The investigated tissue-specific scaffold attributes comprised fiber morphology (aligned vs. random) and highly-ordered architectures with distinct strand spacings (small 250 μm and large 500 μm). Macrophages exhibited an elongated morphology in aligned and highly-ordered scaffolds, while maintaining their round-shape on randomly-oriented fibrous scaffolds. Expressions of periostin and IL-10 were more pronounced on the aligned and highly-ordered scaffolds. While hPDLSCs on the scaffolds with 500 μm strand spacing show higher expression of osteogenic marker (Runx2) over 21 days, cells on randomly-oriented fibrous scaffolds showed upregulation of M1 markers. In an orthotopic mandibular fenestration defect model, findings revealed that the tissue-specific scaffolds (i.e., aligned fibers for periodontal ligament and highly-ordered 500 μm strand spacing fluorinated calcium phosphate [F/CaP]-coated fibers for bone) could enhance the mimicking of regeneration of natural periodontal tissues.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Jessica A. Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Utrecht, the Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Sarit B. Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, United States
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, VA, United States
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Utrecht, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Wang X, Chen J, Tian W. Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art. Stem Cell Res Ther 2022; 13:536. [PMID: 36575471 PMCID: PMC9795760 DOI: 10.1186/s13287-022-03225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Periodontitis often causes irrevocable destruction of tooth-supporting tissues and eventually leads to tooth loss. Currently, stem cell-based tissue engineering has achieved a favorable result in regenerating periodontal tissues. Moreover, cell-free therapies that aim to facilitate the recruitment of resident repair cell populations to injured sites by promoting cell mobilization and homing have become alternative options to cell therapy. MAIN TEXT Cell aggregates (e.g., cell sheets) retain a large amount of extracellular matrix which can improve cell viability and survival rates after implantation in vivo. Electrostatic spinning and 3D bioprinting through fabricating specific alignments and interactions scaffold structures have made promising outcomes in the construction of a microenvironment conducive to periodontal regeneration. Cell-free therapies with adding biological agents (growth factors, exosomes and conditioned media) to promote endogenous regeneration have somewhat addressed the limitations of cell therapy. CONCLUSION Hence, this article reviews the progress of stem cell-based tissue engineering and advanced strategies for endogenous regeneration based on stem cell derivatives in periodontal regeneration.
Collapse
Affiliation(s)
- Xiuting Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jinlong Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Weidong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
28
|
Roato I, Masante B, Putame G, Massai D, Mussano F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213878. [PMID: 36364654 PMCID: PMC9655809 DOI: 10.3390/nano12213878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/14/2023]
Abstract
In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-3528
| | - Beatrice Masante
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
29
|
Yao Y, Raymond J, Kauffmann F, Maekawa S, Sugai J, Lahann J, Giannobile W. Multicompartmental Scaffolds for Coordinated Periodontal Tissue Engineering. J Dent Res 2022; 101:1457-1466. [PMID: 35689382 PMCID: PMC9608095 DOI: 10.1177/00220345221099823] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Successful periodontal repair and regeneration requires the coordinated responses from soft and hard tissues as well as the soft tissue-to-bone interfaces. Inspired by the hierarchical structure of native periodontal tissues, tissue engineering technology provides unique opportunities to coordinate multiple cell types into scaffolds that mimic the natural periodontal structure in vitro. In this study, we designed and fabricated highly ordered multicompartmental scaffolds by melt electrowriting, an advanced 3-dimensional (3D) printing technique. This strategy attempted to mimic the characteristic periodontal microenvironment through multicompartmental constructs comprising 3 tissue-specific regions: 1) a bone compartment with dense mesh structure, 2) a ligament compartment mimicking the highly aligned periodontal ligaments (PDLs), and 3) a transition region that bridges the bone and ligament, a critical feature that differentiates this system from mono- or bicompartmental alternatives. The multicompartmental constructs successfully achieved coordinated proliferation and differentiation of multiple cell types in vitro within short time, including both ligamentous- and bone-derived cells. Long-term 3D coculture of primary human osteoblasts and PDL fibroblasts led to a mineral gradient from calcified to uncalcified regions with PDL-like insertions within the transition region, an effect that is challenging to achieve with mono- or bicompartmental platforms. This process effectively recapitulates the key feature of interfacial tissues in periodontium. Collectively, this tissue-engineered approach offers a fundament for engineering periodontal tissue constructs with characteristic 3D microenvironments similar to native tissues. This multicompartmental 3D printing approach is also highly compatible with the design of next-generation scaffolds, with both highly adjustable compartmentalization properties and patient-specific shapes, for multitissue engineering in complex periodontal defects.
Collapse
Affiliation(s)
- Y. Yao
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.E. Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - F. Kauffmann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Oral and Craniomaxillofacial Surgery, Center for Dental Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - S. Maekawa
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Current address: Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - J.V. Sugai
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J. Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - W.V. Giannobile
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Current address: Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Dual peptide-functionalized hydrogels differentially control periodontal cell function and promote tissue regeneration. BIOMATERIALS ADVANCES 2022; 141:213093. [PMID: 36067642 DOI: 10.1016/j.bioadv.2022.213093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Restoring the tooth-supporting tissues lost during periodontitis is a significant clinical challenge, despite advances in both biomaterial and cell-based approaches. This study investigated poly(ethylene glycol) (PEG) hydrogels functionalized with integrin-binding peptides RGD and GFOGER for controlling periodontal ligament cell (PDLC) activity and promoting periodontal tissue regeneration. Dual presentation of RGD and GFOGER within PEG hydrogels potentiated two key PDLC functions, alkaline phosphatase (ALP) activity and matrix mineralization, over either peptide alone and could be tuned to differentially promote each function. Hydrogel matrix mineralization, fostered by high concentrations of GFOGER together with RGD, identified a PDLC phenotype with accelerated matrix adhesion formation and expression of cementoblast and osteoblast genes. In contrast, maximizing ALP activity through high RGD and low GFOGER levels resulted in minimal hydrogel mineralization, in part, through altered PDLC pyrophosphate regulation. Transplantation of PDLCs in hydrogels optimized for either outcome promoted cementum formation in rat periodontal defects; however, only hydrogels optimized for in vitro mineralization improved new bone formation. Overall, these results highlight the utility of engineered hydrogel systems for controlling PDLC functions and their promise for promoting periodontal tissue regeneration.
Collapse
|
31
|
Sufaru IG, Macovei G, Stoleriu S, Martu MA, Luchian I, Kappenberg-Nitescu DC, Solomon SM. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. MEMBRANES 2022; 12:membranes12090902. [PMID: 36135920 PMCID: PMC9505571 DOI: 10.3390/membranes12090902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 05/31/2023]
Abstract
Numerous technologies and materials were developed with the aim of repairing and reconstructing the tissue loss in patients with periodontitis. Periodontal guided bone regeneration (GBR) and guided tissue regeneration (GTR) involves the use of a membrane which prevents epithelial cell migration, and helps to maintain the space, creating a protected area in which tissue regeneration is favored. Over the time, manufacturing procedures of such barrier membranes followed important improvements. Three-dimensional (3D) printing technology has led to major innovations in periodontal regeneration methods, using technologies such as inkjet printing, light-assisted 3D printing or micro-extrusion. Besides the 3D printing of monophasic and multi-phasic scaffolds, bioprinting and tissue engineering have emerged as innovative technologies which can change the way we see GTR and GBR.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Georgiana Macovei
- Department of Oral and Dental Diagnostics, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Maria-Alexandra Martu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
32
|
Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis 2022; 60:e23499. [PMID: 36086991 PMCID: PMC9787372 DOI: 10.1002/dvg.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
The periodontal complex involves the hard and soft tissues which support dentition, comprised of cementum, bone, and the periodontal ligament (PDL). Periodontitis, a prevalent infectious disease of the periodontium, threatens the integrity of these tissues and causes irreversible damage. Periodontal therapy aims to repair and ultimately regenerate these tissues toward preserving native dentition and improving the physiologic integration of dental implants. The PDL contains multipotent stem cells, which have a robust capacity to differentiate into various types of cells to form the PDL, cementum, and alveolar bone. Selection of appropriate growth factors and biomaterial matrices to facilitate periodontal regeneration are critical to recapitulate the physiologic organization and function of the periodontal complex. Herein, we discuss the current state of clinical periodontal regeneration including a review of FDA-approved growth factors. We will highlight advances in preclinical research toward identifying additional growth factors capable of robust repair and biomaterial matrices to augment regeneration similarly and synergistically, ultimately improving periodontal regeneration's predictability and long-term efficacy. This review should improve the readers' understanding of the molecular and cellular processes involving periodontal regeneration essential for designing comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- W. Benton Swanson
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yao Yao
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
33
|
Liang Y, Shakya A, Liu X. Biomimetic Tubular Matrix Induces Periodontal Ligament Principal Fiber Formation and Inhibits Osteogenic Differentiation of Periodontal Ligament Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36451-36461. [PMID: 35938610 PMCID: PMC10041666 DOI: 10.1021/acsami.2c09420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Periodontal ligament (PDL) is assembled from highly organized collagen fiber bundles (PDL principal fibers) that are crucial in supporting teeth and buffering mechanical force. Therefore, regeneration of PDL needs to reconstruct these well-ordered fiber bundles to restore PDL functions. However, the formation of PDL principal fibers has long been a challenge due to the absence of an effective three-dimensional (3D) matrix to guide the growth of periodontal ligament stem cells (PDLSCs) and to inhibit the osteogenic differentiation of PDLSCs during the PDL principal fibers deposition. In this work, we designed and fabricated a bio-inspired tubular 3D matrix to guide the migration and growth of human PDLSCs and form well-aligned PDL principal fibers. As a biomimetic 3D template, the tubular matrix controlled PDLSCs migration inside the tubules and aligned the cells to the designated direction. Inside the tubular matrix, the PDLSCs expressed PDL markers and formed oriented fiber bundles with the same size and density as those of natural PDL principal fibers. Furthermore, the tubular matrix downregulated the osteogenic differentiation of PDLSCs. A mechanism study revealed that the Yap1/Twist1 signaling pathway was involved in the inhibition of PDLSCs osteogenesis within the tubular matrix. This work provides an effective approach to induce PDLSCs to form principal fibers and gives insight into the underlying mechanism of inhibiting the osteogenic differentiation of PDLSCs in biomimetic tubular matrices.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| | - Ajay Shakya
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas 75246, United States
| |
Collapse
|
34
|
Staples R, Ivanovski S, Vaquette C. Fibre-guiding biphasic scaffold for perpendicular periodontal ligament attachment. Acta Biomater 2022; 150:221-237. [PMID: 35853598 DOI: 10.1016/j.actbio.2022.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022]
Abstract
Periodontal regeneration is characterized by the attachment of oblique periodontal ligament fibres on the tooth root surface. To facilitate periodontal ligament attachment, a fibre-guiding tissue engineered biphasic construct was manufactured by melt electrowriting (MEW) for influencing reproducible cell guidance and tissue orientation. The biphasic scaffold contained fibre-guiding features in the periodontal ligament component comprising of 100 µm spaced channels (100CH), a pore size gradient in the bone component and maintained a highly porous and fully interconnected interface between the compartments. The efficacy of the fibre-guiding channels was assessed in an ectopic periodontal attachment model in immunocompromised rats. This demonstrated an unprecedented and systematic tissue alignment perpendicular to the dentin in the 100CH group, resulting in the close mimicry of native periodontal ligament architecture. In addition, the histology revealed high levels of tissue integration between the two compartments as observed by the perpendicular collagen attachment on the dentin surface, which also extended and infiltrated the scaffold's bone compartment. In conclusion, the 100 µm fibre-guiding scaffold induced a systematic tissue orientation at the dentin-ligament interface, resembling the native periodontium and thus resulting in enhanced alignment mimicking periodontal ligament regeneration. STATEMENT OF SIGNIFICANCE: Periodontitis is a prevalent inflammatory disease affecting a large portion of the adult population and leading to the destruction of the tooth-supporting structures (alveolar bone, periodontal ligament, and cementum). Current surgical treatments are unpredictable and generally result in repair rather than functional regeneration. A key feature of functional regeneration is the re-insertion of the oblique or perpendicularly orientated periodontal ligament fibre in both the alveolar bone and root surface. This study demonstrates that a highly porous scaffold featuring 100 µm width channels manufactured by the stacking of melt electrospun fibres, induced perpendicular alignment and attachment of the neo-ligament onto a dentine surface. The fibre guiding micro-architecture may pave the way for enhanced and more functional regeneration of the periodontium.
Collapse
Affiliation(s)
- Reuben Staples
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
35
|
Investigating the Effects of Dehydrated Human Amnion-Chorion Membrane on Periodontal Healing. Biomolecules 2022; 12:biom12060857. [PMID: 35740981 PMCID: PMC9221211 DOI: 10.3390/biom12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Each growth factor (GF) has different effects and targets, and plays a critical role in periodontal healing. Dehydrated human amnion-chorion membrane (dHACM) contains various GFs and has been used to enhance wound healing. The purpose of this study was to evaluate the effects of dHACM on periodontal healing, using in vitro and in vivo experimental approaches. Standardized periodontal defects were created in rats. The defects were randomly divided into three groups: Unfilled, filled with hydroxypropyl cellulose (HPC), and dHACM+HPC. At 2 and 4 weeks postoperatively, periodontal healing was analyzed by microcomputed tomography (micro-CT), and histological and immunohistochemical analyses. In vitro, periodontal ligament-derived cells (PDLCs) isolated from rat incisors were incubated with dHACM extract. Cell proliferation and migration were evaluated by WST-1 and wound healing assay. In vivo, micro-CT examination at 2 weeks revealed enhanced formation of new bone in the dHACM+HPC group. At 4 weeks, the proportions of vascular endothelial growth factor (VEGF)-positive cells and α-smooth muscle actin (α-SMA)-positive blood vessels in the dHACM+HPC group were significantly greater than those in the Unfilled group. In vitro, dHACM extracts at 100 µg/mL significantly increased cell proliferation and migration compared with control. These findings suggest that GFs contained in dHACM promote proliferation and migration of PDLCs and angiogenesis, which lead to enhanced periodontal healing.
Collapse
|
36
|
Deng R, Xie Y, Chan U, Xu T, Huang Y. Biomaterials and biotechnology for periodontal tissue regeneration: Recent advances and perspectives. J Dent Res Dent Clin Dent Prospects 2022; 16:1-10. [PMID: 35936933 PMCID: PMC9339747 DOI: 10.34172/joddd.2022.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontal tissues are organized in a complex three-dimensional (3D) architecture, including the alveolar bone, cementum, and a highly aligned periodontal ligament (PDL). Regeneration is difficult due to the complex structure of these tissues. Currently, materials are developing rapidly, among which synthetic polymers and hydrogels have extensive applications. Moreover, techniques have made a spurt of progress. By applying guided tissue regeneration (GTR) to hydrogels and cell sheets and using 3D printing, a scaffold with an elaborate biomimetic structure can be constructed to guide the orientation of fibers. The incorporation of cells and biotic factors improves regeneration. Nevertheless, the current studies lack long-term effect tracking, clinical research, and in-depth mechanistic research. In summary, periodontal tissue engineering still has considerable room for development. The development of materials and techniques and an in-depth study of the mechanism will provide an impetus for periodontal regeneration.
Collapse
Affiliation(s)
- Rong Deng
- School of Stomatology, Jinan University, Guangdong, China
| | - Yuzheng Xie
- School of Stomatology, Jinan University, Guangdong, China
| | - Unman Chan
- School of Stomatology, Jinan University, Guangdong, China
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangdong, China
| |
Collapse
|
37
|
Kasai RD, Radhika D, Archana S, Shanavaz H, Koutavarapu R, Lee DY, Shim J. A review on hydrogels classification and recent developments in biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2075872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R. Deepak Kasai
- Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Ramnagara, India
| | - Devi Radhika
- Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Ramnagara, India
| | - S. Archana
- Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Ramnagara, India
| | - H. Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Ramnagara, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Dong-Yeon Lee
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
38
|
Shaikh MS, Shahzad Z, Tash EA, Janjua OS, Khan MI, Zafar MS. Human Umbilical Cord Mesenchymal Stem Cells: Current Literature and Role in Periodontal Regeneration. Cells 2022; 11:cells11071168. [PMID: 35406732 PMCID: PMC8997495 DOI: 10.3390/cells11071168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Periodontal disease can cause irreversible damage to tooth-supporting tissues such as the root cementum, periodontal ligament, and alveolar bone, eventually leading to tooth loss. While standard periodontal treatments are usually helpful in reducing disease progression, they cannot repair or replace lost periodontal tissue. Periodontal regeneration has been demonstrated to be beneficial in treating intraosseous and furcation defects to varied degrees. Cell-based treatment for periodontal regeneration will become more efficient and predictable as tissue engineering and progenitor cell biology advance, surpassing the limitations of present therapeutic techniques. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into several cell types when stimulated. Mesenchymal stem cells (MSCs) have been tested for periodontal regeneration in vitro and in humans, with promising results. Human umbilical cord mesenchymal stem cells (UC-MSCs) possess a great regenerative and therapeutic potential. Their added benefits comprise ease of collection, endless source of stem cells, less immunorejection, and affordability. Further, their collection does not include the concerns associated with human embryonic stem cells. The purpose of this review is to address the most recent findings about periodontal regenerative mechanisms, different stem cells accessible for periodontal regeneration, and UC-MSCs and their involvement in periodontal regeneration.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Zara Shahzad
- Lahore Medical and Dental College, University of Health Sciences, Lahore 53400, Pakistan;
| | - Esraa Abdulgader Tash
- Department of Oral and Clinical Basic Science, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia;
| | - Omer Sefvan Janjua
- Department of Maxillofacial Surgery, PMC Dental Institute, Faisalabad Medical University, Faisalabad 38000, Pakistan;
| | | | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
- Correspondence: ; Tel.: +966-507544691
| |
Collapse
|
39
|
Bousnaki M, Beketova A, Kontonasaki E. A Review of In Vivo and Clinical Studies Applying Scaffolds and Cell Sheet Technology for Periodontal Ligament Regeneration. Biomolecules 2022; 12:435. [PMID: 35327627 PMCID: PMC8945901 DOI: 10.3390/biom12030435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues' architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues.
Collapse
Affiliation(s)
| | | | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.B.); (A.B.)
| |
Collapse
|
40
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
41
|
A hierarchical bilayer architecture for complex tissue regeneration. Bioact Mater 2021; 10:93-106. [PMID: 34901532 PMCID: PMC8636921 DOI: 10.1016/j.bioactmat.2021.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
Engineering a complete, physiologically functional, periodontal complex structure remains a great clinical challenge due to the highly hierarchical architecture of the periodontium and coordinated regulation of multiple growth factors required to induce stem cell multilineage differentiation. Using biomimetic self-assembly and microstamping techniques, we construct a hierarchical bilayer architecture consisting of intrafibrillarly mineralized collagen resembling bone and cementum, and unmineralized parallel-aligned fibrils mimicking periodontal ligament. The prepared biphasic scaffold possesses unique micro/nano structure, differential mechanical properties, and growth factor-rich microenvironment between the two phases, realizing a perfect simulation of natural periodontal hard/soft tissue interface. The interconnected porous hard compartment with a Young's modulus of 1409.00 ± 160.83 MPa could induce cross-arrangement and osteogenic differentiation of stem cells in vitro, whereas the micropatterned soft compartment with a Young's modulus of 42.62 ± 4.58 MPa containing abundant endogenous growth factors, could guide parallel arrangement and fibrogenic differentiation of stem cells in vitro. After implantation in critical-sized complete periodontal tissue defect, the biomimetic bilayer architecture potently reconstructs native periodontium with the insertion of periodontal ligament fibers into newly formed cementum and alveolar bone by recruiting host mesenchymal stem cells and activating the transforming growth factor beta 1/Smad3 signaling pathway. Taken together, integration of self-assembly and microstamping strategies could successfully fabricate a hierarchical bilayer architecture, which exhibits great potential for recruiting and regulating host stem cells to promote synergistic regeneration of hard/soft tissues.
Collapse
|
42
|
Abstract
Successful periodontal regeneration requires the hierarchical reorganization of multiple tissues including periodontal ligament, cementum, alveolar bone, and gingiva. The limitation of conventional regenerative therapies has been attracting research interest in tissue engineering-based periodontal therapies where progenitor cells, scaffolds, and bioactive molecules are delivered. Scaffolds offer not only structural support but also provide geometrical clue to guide cell fate. Additionally, functionalization improves bioactive properties to the scaffold. Various scaffold designs have been proposed for periodontal regeneration. These include the fabrication of biomimetic periodontal extracellular matrix, multiphasic scaffolds with tissue-specific layers, and personalized 3D printed scaffolds. This review summarizes the basic concept as well as the recent advancement of scaffold designing and fabrication for periodontal regeneration and provides an insight of future clinical translation.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway.
| |
Collapse
|
43
|
Immunohistochemical Evaluation of Periodontal Regeneration Using a Porous Collagen Scaffold. Int J Mol Sci 2021; 22:ijms222010915. [PMID: 34681574 PMCID: PMC8535773 DOI: 10.3390/ijms222010915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Aim: To immunohistochemically evaluate the effect of a volume-stable collagen scaffold (VCMX) on periodontal regeneration. (2) Methods: In eight beagle dogs, acute two-wall intrabony defects were treated with open flap debridement either with VCMX (test) or without (control). After 12 weeks, eight defects out of four animals were processed for paraffin histology and immunohistochemistry. (3) Results: All defects (four test + four control) revealed periodontal regeneration with cementum and bone formation. VCMX remnants were integrated in bone, periodontal ligament (PDL), and cementum. No differences in immunohistochemical labeling patterns were observed between test and control sites. New bone and cementum were labeled for bone sialoprotein, while the regenerated PDL was labeled for periostin and collagen type 1. Cytokeratin-positive epithelial cell rests of Malassez were detected in 50% of the defects. The regenerated PDL demonstrated a larger blood vessel area at the test (14.48% ± 3.52%) than at control sites (8.04% ± 1.85%, p = 0.0007). The number of blood vessels was higher in the regenerated PDL (test + control) compared to the pristine one (p = 0.012). The cell proliferative index was not statistically significantly different in pristine and regenerated PDL. (4) Conclusions: The data suggest a positive effect of VCMX on angiogenesis and an equally high cell turnover in the regenerated and pristine PDL. This VCMX supported periodontal regeneration in intrabony defects.
Collapse
|
44
|
Zhao B, Chen J, Zhao L, Deng J, Li Q. A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration. J Appl Biomater Funct Mater 2021; 18:2280800019900094. [PMID: 32931350 DOI: 10.1177/2280800019900094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Simvastatin (SIM) has been documented to induce the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). To establish an efficient release system for periodontal regeneration, a polycaprolactone (PCL) membrane scaffold containing SIM was electrospun and evaluated. The obtained PCL-SIM membrane scaffold showed sustained release up to 28 days, without deleterious effect on proliferation of PDLSCs on the scaffolds. PDLSCs were seeded onto scaffolds and their osteogenic differentiation was evaluated. After 21 days, expressions of collagen type I, alkaline phosphatase and bone sialoprotein genes were significantly upregulated and mineralized matrix formation was increased on the PCL-SIM scaffolds compared with the PCL scaffolds. In a heterotopic periodontal regeneration model, a cell sheet-scaffold construct was assembled by placement of multilayers of PDLSC sheets on PCL or PCL-SIM scaffolds, and these were then placed between dentin and ceramic bovine bone for subcutaneous implantation in athymic mice. After 8 weeks, the PCL-SIM membrane showed formation of significantly more ectopic cementum-like mineral on the dentin surface. These findings demonstrated that the PCL-SIM membrane scaffold promotes cementum-like tissue formation by sustained drug release, suggesting the feasibility of its therapeutic use with PDLSC sheets to improve periodontal regeneration.
Collapse
Affiliation(s)
- Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liru Zhao
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Department of Orthodontics, School of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
46
|
Jiang N, Mao M, Li X, Zhang W, He J, Li D. Advanced biofabrication strategies for biomimetic composite scaffolds to regenerate ligament‐bone interface. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- Department of Surgical Oncology Shaanxi Provincial People’s Hospital (Third Hospital of Medical College of Xi’an Jiaotong University) Xi’an Shaanxi China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Weijie Zhang
- Department of Knee Joint Surgery Hong Hui Hospital Health Science Center Xi’an Jiaotong University Xi’an Shaanxi China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
47
|
Capparè P, Tetè G, Sberna MT, Panina-Bordignon P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr Gene Ther 2021; 20:259-268. [PMID: 32811413 DOI: 10.2174/1566523220999200818115803] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.
Collapse
Affiliation(s)
- Paolo Capparè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Giulia Tetè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Paola Panina-Bordignon
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
48
|
Biomaterials for Periodontal and Peri-Implant Regeneration. MATERIALS 2021; 14:ma14123319. [PMID: 34203989 PMCID: PMC8232756 DOI: 10.3390/ma14123319] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Periodontal and peri-implant regeneration is the technique that aims to restore the damaged tissue around teeth and implants. They are surrounded by a different apparatus, and according to it, the regenerative procedure can differ for both sites. During the last century, several biomaterials and biological mediators were proposed to achieve a complete restoration of the damaged tissues with less invasiveness and a tailored approach. Based on relevant systematic reviews and articles searched on PubMed, Scopus, and Cochrane databases, data regarding different biomaterials were extracted and summarized. Bone grafts of different origin, membranes for guided tissue regeneration, growth factors, and stem cells are currently the foundation of the routinary clinical practice. Moreover, a tailored approach, according to the patient and specific to the involved tooth or implant, is mandatory to achieve a better result and a reduction in patient morbidity and discomfort. The aim of this review is to summarize clinical findings and future developments regarding grafts, membranes, molecules, and emerging therapies. In conclusion, tissue engineering is constantly evolving; moreover, a tailor-made approach for each patient is essential to obtain a reliable result and the combination of several biomaterials is the elective choice in several conditions.
Collapse
|
49
|
Murakami T, Matsugami D, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Healing of Experimental Periodontal Defects Following Treatment with Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral. Biomolecules 2021; 11:biom11060805. [PMID: 34072351 PMCID: PMC8226676 DOI: 10.3390/biom11060805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the effects of fibroblast growth factor (FGF)-2 used in combination with deproteinized bovine bone mineral (DBBM) on the healing of experimental periodontal defects. Periodontal defects created in rats were treated by FGF-2, DBBM, FGF-2 + DBBM, or left unfilled. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing. In vitro cell viability/proliferation on DBBM with/without FGF-2 was assessed by WST-1. Cell behavior was analyzed using scanning electron and confocal laser scanning microscopy. Osteogenic differentiation was evaluated by staining with alkaline phosphatase and alizarin red. Bone volume fraction was significantly greater in FGF-2 and FGF-2 + DBBM groups than in other groups at 2 and 4 weeks postoperatively. In histological assessment, newly formed bone in FGF-2 and FGF-2 + DBBM groups appeared to be greater than other groups. Significantly greater levels of proliferating cell nuclear antigen-, vascular endothelial growth factor-, and osterix-positive cells were observed in FGF-2 and FGF-2 + DBBM groups compared to Unfilled group. In vitro, addition of FGF-2 to DBBM promoted cell viability/proliferation, attachment/spreading, and osteogenic differentiation. The combination therapy using FGF-2 and DBBM was similarly effective as FGF-2 alone in the healing of experimental periodontal defects. In certain bone defect configurations, the combined use of FGF-2 and DBBM may enhance healing via promotion of cell proliferation, angiogenesis, and osteogenic differentiation.
Collapse
Affiliation(s)
- Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Takahiro Bizenjima
- Chiba Dental Center, Tokyo Dental College, Mihama-ku, Chiba 2618502, Japan;
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
- Correspondence:
| |
Collapse
|
50
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|