1
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
2
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
3
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
4
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
5
|
Mao J, Saiding Q, Qian S, Liu Z, Zhao B, Zhao Q, Lu B, Mao X, Zhang L, Zhang Y, Sun X, Cui W. Reprogramming stem cells in regenerative medicine. SMART MEDICINE 2022; 1:e20220005. [PMID: 39188749 PMCID: PMC11235200 DOI: 10.1002/smmd.20220005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 08/28/2024]
Abstract
Induced pluripotent stem cells (iPSCs) that are generated from adult somatic cells are induced to express genes that make them pluripotent through reprogramming techniques. With their unlimited proliferative capacity and multifaceted differentiation potential and circumventing the ethical problems encountered in the application of embryonic stem cells (ESC), iPSCs have a broad application in the fields of cell therapy, drug screening, and disease models and may open up new possibilities for regenerative medicine to treat diseases in the future. In this review, we begin with different reprogramming cell technologies to obtain iPSCs, including biotechnological, chemical, and physical modulation techniques, and present their respective strengths, and limitations, as well as the recent progress of research. Secondly, we review recent research advances in iPSC reprogramming-based regenerative therapies. iPSCs are now widely used to study various clinical diseases of hair follicle defects, myocardial infarction, neurological disorders, liver diseases, and spinal cord injuries. This review focuses on the translational clinical research around iPSCs as well as their potential for growth in the medical field. Finally, we summarize the overall review and look at the potential future of iPSCs in the field of cell therapy as well as tissue regeneration engineering and possible problems. We believe that the advancing iPSC research will help drive long-awaited breakthroughs in cellular therapy.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhimo Liu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Binfan Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Li S, Ding C, Guo Y, Zhang Y, Wang H, Sun X, Zhang J, Cui Z, Chen J. Mechanotransduction Regulates Reprogramming Enhancement in Adherent 3D Keratocyte Cultures. Front Bioeng Biotechnol 2021; 9:709488. [PMID: 34568299 PMCID: PMC8460903 DOI: 10.3389/fbioe.2021.709488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Suspended spheroid culture using ultralow attachment plates (ULAPs) is reported to effect corneal fibroblast reprogramming. Polydimethylsiloxane (PDMS), with hydrophobic and soft substrate properties, facilitates adherent spheroid formation that promotes cellular physical reprogramming into stem-like cells without using transcription factors. However, it is still unknown whether the biophysical properties of PDMS have the same effect on adult human corneal keratocyte reprogramming. Here, PDMS and essential 8 (E8) medium were utilized to culture keratocyte spheroids and fibroblast spheroids, and the reprogramming results were compared. We provide insights into the probable mechanisms of the PDMS effect on spheroids. qPCR analysis showed that the expression of some stem cell marker genes (OCT4, NANOG, SOX2, KLF4, CMYC, ABCG2 and PAX6) was significantly greater in keratocyte spheroids than in fibroblast spheroids. The endogenous level of stemness transcription factors (OCT4, NANOG, SOX2, KLF4 and CMYC) was higher in keratocytes than in fibroblasts. Immunofluorescence staining revealed Klf4, Nanog, Sox2, ABCG2 and Pax6 were positively stained in adherent 3D spheroids but weakly or negatively stained in adherent 2D cells. Furthermore, OCT4, NANOG, SOX2, KLF4, HNK1, ABCG2 and PAX6 gene expression was significantly higher in adherent 3D spheroids than in adherent 2D cells. Meanwhile, SOX2, ABCG2 and PAX6 were more upregulated in adherent 3D spheroids than in suspended 3D spheroids. The RNA-seq analysis suggested that regulation of the actin cytoskeleton, TGFβ/BMP and HIF-1 signaling pathways induced changes in mechanotransduction, the mesenchymal-to-epithelial transition and hypoxia, which might be responsible for the effect of PDMS on facilitating reprogramming. In conclusion, compared to corneal fibroblasts, keratocytes were more susceptible to reprogramming due to higher levels of endogenous stemness transcription factors. Spheroid culture of keratocytes using PDMS had a positive impact on promoting the expression of some stem cell markers. PDMS, as a substrate to form spheroids, was better able to promote reprogramming than ULAPs. These results indicated that the physiological cells and culture conditions herein enhance reprogramming. Therefore, adherent spheroid culture of keratocytes using PDMS is a promising strategy to more safely promote reprogramming, suggesting its potential application for developing clinical implants in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shenyang Li
- Aier School of Ophthalmology, Central South University, Changsha, China
| | | | - Yonglong Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Hao Wang
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Xihao Sun
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Poudel BK, Robert MC, Simpson FC, Malhotra K, Jacques L, LaBarre P, Griffith M. In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs 2021; 211:506-526. [PMID: 34380144 DOI: 10.1159/000514690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Bijay K Poudel
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Marie-Claude Robert
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Fiona C Simpson
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| | - Kamal Malhotra
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Ludovic Jacques
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - May Griffith
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
10
|
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, Alemzadeh-Ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Alemzadeh-Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021; 13:pharmaceutics13030319. [PMID: 33671011 PMCID: PMC7997321 DOI: 10.3390/pharmaceutics13030319] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications.
Collapse
|
12
|
Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 2021; 9:2979-2992. [DOI: 10.1039/d0tb02877k] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-sensitive hydrogels based on different polymers have been broadly used in the pharmaceutical fields. In this review, the state-of-the-art thermo-sensitive hydrogels for drug delivery are elaborated
Collapse
Affiliation(s)
- Yibin Yu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yi Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junye Tong
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing 100084
- China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou
- Zhejiang, 310009
- China
| |
Collapse
|
13
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
14
|
Wang S, Hou Y, Li X, Song Z, Sun B, Li X, Zhang H. Comparison of exosomes derived from induced pluripotent stem cells and mesenchymal stem cells as therapeutic nanoparticles for treatment of corneal epithelial defects. Aging (Albany NY) 2020; 12:19546-19562. [PMID: 33049719 PMCID: PMC7732275 DOI: 10.18632/aging.103904] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cells and mesenchymal stem cells are pluripotent stem cells that represent promising therapies for treating various tissue injuries and wound healing. Exosomes are nanosized extracellular vesicles that have been identified as important mediators of therapeutic functions, which are performed via cell communication. In this study, we compared the efficacy of induced pluripotent stem cells-derived exosomes (iPSCs-Exos) and mesenchymal stem cells-derived exosomes (MSCs-Exos) in treating corneal epithelial defects. The characteristics of the two types of exosomes were not significantly different. Compared to MSCs-Exos, iPSCs-Exos had a better in vitro effect on the proliferation, migration, cell cycle promotion and apoptosis inhibition of human corneal epithelial cells. iPSCs/MSCs-Exos promoted cell regeneration by upregulating cyclin A and CDK2 to drive HCECs to enter the S phase from the G0/G1 phase. In vivo results from a corneal epithelial defect model showed that both iPSCs-Exos and MSCs-Exos accelerated corneal epithelium defect healing while the effects of iPSCs-Exos were much stronger than those of MSCs-Exos. This study demonstrated that iPSCs-Exos had a better therapeutic effect on corneal epithelial defect healing. Thus, a novel potential nanotherapeutic strategy for treating corneal epithelial defects and even more ocular surface disease could be undertaken by using iPSCs-Exos dissolved in eye drops.
Collapse
Affiliation(s)
- Shudan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China,National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang 050200, China
| | - Xuran Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhen Song
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Baoqi Sun
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261042, China
| | - Xinyue Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
15
|
Chitosan: Structural modification, biological activity and application. Int J Biol Macromol 2020; 164:4532-4546. [PMID: 32941908 DOI: 10.1016/j.ijbiomac.2020.09.042] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Many by-products that are harmful to the environment and human health are generated during food processing. However, these wastes are often potential resources with high-added value. For example, crustacean waste contains large amounts of chitin. Chitin is one of the most abundant polysaccharides in natural macromolecules, and is a typical component of crustaceans, mollusks, insect exoskeleton and fungal cell walls. Chitosan is prepared by deacetylation of chitin and a copolymer of D-glucosamine and N-acetyl-D-glucosamine through β-(1 → 4)-glycosidic bonds. Chitosan has better solubility, biocompatibility and degradability compared with chitin. This review introduces the preparation, physicochemical properties, chemical and physical modification methods of chitosan, which could help us understand its biological activities and applications. According to the latest reports, the antibacterial activity, antioxidant, immune and antitumor activities of chitosan and its derivatives are summarized. Simultaneously, the various applications of chitosan and its derivatives are reviewed, including food, chemical, textile, medical and health, and functional materials. Finally, some insights into its future potential are provided, including novel modification methods, directional modification according to structure-activity relationship, activity and application development direction, etc.
Collapse
|
16
|
McKay TB, Hutcheon AEK, Guo X, Zieske JD, Karamichos D. Modeling the cornea in 3-dimensions: Current and future perspectives. Exp Eye Res 2020; 197:108127. [PMID: 32619578 PMCID: PMC8116933 DOI: 10.1016/j.exer.2020.108127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023]
Abstract
The cornea is an avascular, transparent ocular tissue that serves as a refractive and protective structure for the eye. Over 90% of the cornea is composed of a collagenous-rich extracellular matrix within the stroma with the other 10% composed by the corneal epithelium and endothelium layers and their corresponding supporting collagen layers (e.g., Bowman's and Descemet's membranes) at the anterior and posterior cornea, respectively. Due to its prominent role in corneal structure, tissue engineering approaches to model the human cornea in vitro have focused heavily on the cellular and functional properties of the corneal stroma. In this review, we discuss model development in the context of culture dimensionality (e.g., 2-dimensional versus 3-dimensional) and expand on the optical, biomechanical, and cellular functions promoted by the culture microenvironment. We describe current methods to model the human cornea with focus on organotypic approaches, compressed collagen, bioprinting, and self-assembled stromal models. We also expand on co-culture applications with the inclusion of relevant corneal cell types, such as epithelial, stromal keratocyte or fibroblast, endothelial, and neuronal cells. Further advancements in corneal tissue model development will markedly improve our current understanding of corneal wound healing and regeneration.
Collapse
Affiliation(s)
- Tina B McKay
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Audrey E K Hutcheon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaoqing Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - James D Zieske
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
17
|
Westin CB, Nagahara MH, Decarli MC, Kelly DJ, Moraes ÂM. Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Chandel L, Sharma R, Rana V. Exploring the Protective Potential of Carboxymethyl Terminalia catappa Polysaccharide on Blue Light Light-Emitting Diode Induced Corneal Damage. ACTA ACUST UNITED AC 2019; 13:310-322. [PMID: 31849292 DOI: 10.2174/1872211314666191218110440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Excessive blue light light-emitting diode (LED) exposure and consequent oxidative stress causes corneal damage and corneal injuries are the major problem arising these days due to excessive use of mobile phone, TV, environment pollution, etc. Objective: In the present investigation, the protectiveness of carboxymethyl Terminalia catappa (CTC) from blue light LED-induced corneal damage was explored. METHODS For this purpose, Terminalia catappa (TC) was functionalized by carboxymethylation and its structural modification was confirmed by spectral attributes. Further, the CTC protective eye drop formulations (0.025-1%, w/v) were prepared and evaluated for their capability of protection from blue light LEDinduced corneal damage as compared to CTC protective eye gel (1.25-7%, w/v). The findings pointed towards excellent protection of CTC gel formulations as compared to CTC eye drop formulations. In addition, the prepared optimized CTC gel had thixotropic behavior as evident from percentage structural recovery which was 1.75 fold higher than marketed formulation (I-Comfort, HPMC 2%, w/v). The safety and non-toxicity of CTC protective eye drop and gel were confirmed by HET-CAM test. Further, a rat eye model was implemented that mimic blue light light-emitting diode induced corneal damage in day to day life to assess the protective effect of CTC protective eye drop and gel. RESULTS The order of protectiveness of CTC formulations was found to be CTC protective eye gel (4%, w/v) (no corneal damage)>marketed eye gel (12.34% corneal damage)=CTC protective eye drop (0.75%, w/v) (17.48% corneal damage)> marketed eye drop (51% corneal damage). The mechanism behind the protective effect of CTC eye drop and gel was associated with good free radical scavenging activity and corneal adhesive property of CTC. It is established from the present work that, carboxymethyl Terminalia catappa has protective action against blue light light-emitting diode induced corneal damage.
Collapse
Affiliation(s)
- Lalit Chandel
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Radhika Sharma
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Vikas Rana
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
19
|
Lin TC, Lin YY, Hsu CC, Yang YP, Yang CH, Hwang DK, Wang CY, Liu YY, Lo WL, Chiou SH, Peng CH, Chen SJ, Chang YL. Nanomedicine-based Curcumin Approach Improved ROS Damage in Best Dystrophy-specific Induced Pluripotent Stem Cells. Cell Transplant 2019; 28:1345-1357. [PMID: 31313605 PMCID: PMC6802151 DOI: 10.1177/0963689719860130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Best dystrophy (BD), also termed best vitelliform macular dystrophy (BVMD), is a
juvenile-onset form of macular degeneration and can cause central visual loss.
Unfortunately, there is no clear definite therapy for BD or improving the visual function
on this progressive disease. The human induced pluripotent stem cell (iPSC) system has
been recently applied as an effective tool for genetic consultation and chemical drug
screening. In this study, we developed patient-specific induced pluripotent stem cells
(BD-iPSCs) from BD patient-derived dental pulp stromal cells and then differentiated
BD-iPSCs into retinal pigment epithelial cells (BD-RPEs). BD-RPEs were used as an
expandable platform for in vitro candidate drug screening. Compared with unaffected
sibling-derived iPSC-derived RPE cells (Ctrl-RPEs), BD-RPEs exhibited typical RPE-specific
markers with a lower expression of the tight junction protein ZO-1 and Bestrophin-1
(BEST1), as well as reduced phagocytic capabilities. Notably, among all candidate drugs,
curcumin was the most effective for upregulating both the BEST1 and ZO-1 genes in BD-RPEs.
Using the iPSC-based drug-screening platform, we further found that curcumin can
significantly improve the mRNA expression levels of Best gene in BD-iPSC-derived RPEs.
Importantly, we demonstrated that curcumin-loaded PLGA nanoparticles (Cur-NPs) were
efficiently internalized by BD-RPEs. The Cur-NPs-based controlled release formulation
further increased the expression of ZO-1 and Bestrophin-1, and promoted the function of
phagocytosis and voltage-dependent calcium channels in BD-iPSC-derived RPEs. We further
demonstrated that Cur-NPs enhanced the expression of antioxidant enzymes with a decrease
in intracellular ROS production and hydrogen peroxide-induced oxidative stress.
Collectively, these data supported that Cur-NPs provide a potential cytoprotective effect
by regulating the anti-oxidative abilities of degenerated RPEs. In addition, the
application of patient-specific iPSCs provides an effective platform for drug screening
and personalized medicine in incurable diseases.
Collapse
Affiliation(s)
- Tai-Chi Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei
| | - Yi-Ying Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei
| | - Chih-Chen Hsu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei
| | - Yi-Ping Yang
- Institute of Pharmacology, National Yang-Ming University, Taipei.,School of Medicine, National Yang-Ming University, Taipei.,Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming University, Taipei.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei
| | - Yung-Yang Liu
- School of Medicine, National Yang-Ming University, Taipei.,Department of Chest, Taipei Veterans General Hospital, Taipei
| | - Wen-Liang Lo
- Department of Stomatology, Taipei Veterans General Hospital & Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Institute of Pharmacology, National Yang-Ming University, Taipei.,Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital & Fu-Jen Catholic University, Taipei
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei.,School of Medicine, National Yang-Ming University, Taipei.,Department of Pharmacology, Taipei Veterans General Hospital, Taipei.,School of Pharmaceutical Sciences, National Yang-Ming University, Taipei
| |
Collapse
|
20
|
Huang WT, Chang MC, Chu CY, Chang CC, Li MC, Liu DM. Self-assembled amphiphilic chitosan: A time-dependent nanostructural evolution and associated drug encapsulation/elution mechanism. Carbohydr Polym 2019; 215:246-252. [PMID: 30981351 DOI: 10.1016/j.carbpol.2019.03.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023]
Abstract
This investigation reports the nanostructural evolution and associated encapsulation and elution of a hydrophobic drug, demethoxycurcumin (DMC), as a molecular probe, with the carboxymethyl-hexanoyl chitosan (CHC), which has been a technically interesting amphiphilic chitosan-based polymer successfully developed in this lab for years. The self-assembly nature of the CHC in neutral aqueous solutions allowed efficient encapsulation of various drugs without deteriorating or changing drugs' activity. However, its self-assembly behavior associated with nanostructural stability or variation, in terms of residence time in aqueous solution has not been well characterized and how the CHC nanostructure may be altered upon entrapping a drug, followed releasing out of the nanostructure. In this study, the CHC/DMC assembled model was used to evaluate entrapping efficiency, CHC-DMC interaction, and nanostructural variation while the drug being encapsulated and released from the CHC nanoparticles. Experimental outcomes showed a fractal transition between nanoparticulate and short fiber-like network evolution of the CHC as time elapsed, with the presence or absence of the DMC probe. This entrapment of DMC is relatively efficient upon CHC assembly and the associated DMC arrangement inside the helical CHC macromolecule gave largely increasing space over the resulting CHC/DMC assembly. Its excellent colloidal and nanostructural stability over a reasonably long period of time in testing environment suggests that this CHC/DMC assembly not only provides a crucial advantage for drug delivery application but also considers as a nanostructural model for better understanding of the mechanism upon drug encapsulation and elution which may be applicable to alternative amphiphilic polysaccharide-based macromolecules.
Collapse
Affiliation(s)
- Wei-Ting Huang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30013, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Taiwan
| | - Min-Chih Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30013, Taiwan
| | - Che-Yi Chu
- Department of Chemical Engineering, National Cung Hsing University, Taichung, 40227, Taiwan
| | - Chia-Ching Chang
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ming-Chia Li
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Dean-Mo Liu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30013, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Taiwan.
| |
Collapse
|
21
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
22
|
A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym 2019; 206:664-673. [DOI: 10.1016/j.carbpol.2018.11.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
23
|
Establishing Liposome-Immobilized Dexamethasone-Releasing PDMS Membrane for the Cultivation of Retinal Pigment Epithelial Cells and Suppression of Neovascularization. Int J Mol Sci 2019; 20:ijms20020241. [PMID: 30634448 PMCID: PMC6358770 DOI: 10.3390/ijms20020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is the eye disease with the highest epidemic incidence, and has great impact on the aged population. Wet-type AMD commonly has the feature of neovascularization, which destroys the normal retinal structure and visual function. So far, effective therapy options for rescuing visual function in advanced AMD patients are highly limited, especially in wet-type AMD, in which the retinal pigmented epithelium and Bruch's membrane structure (RPE-BM) are destroyed by abnormal angiogenesis. Anti-VEGF treatment is an effective remedy for the latter type of AMD; however, it is not a curative therapy. Therefore, reconstruction of the complex structure of RPE-BM and controlled release of angiogenesis inhibitors are strongly required for sustained therapy. The major purpose of this study was to develop a dual function biomimetic material, which could mimic the RPE-BM structure and ensure slow release of angiogenesis inhibitor as a novel therapeutic strategy for wet AMD. We herein utilized plasma-modified polydimethylsiloxane (PDMS) sheet to create a biomimetic scaffold mimicking subretinal BM. This dual-surface biomimetic scaffold was coated with laminin and dexamethasone-loaded liposomes. The top surface of PDMS was covalently grafted with laminin and used for cultivation of the retinal pigment epithelial cells differentiated from human induced pluripotent stem cells (hiPSC-RPE). To reach the objective of inhibiting angiogenesis required for treatment of wet AMD, the bottom surface of modified PDMS membrane was further loaded with dexamethasone-containing liposomes via biotin-streptavidin linkage. We demonstrated that hiPSC-RPE cells could proliferate, express normal RPE-specific genes and maintain their phenotype on laminin-coated PDMS membrane, including phagocytosis ability, and secretion of anti-angiogenesis factor PEDF. By using in vitro HUVEC angiogenesis assay, we showed that application of our membrane could suppress oxidative stress-induced angiogenesis, which was manifested in decreased secretion of VEGF by RPE cells and suppression of vascularization. In conclusion, we propose modified biomimetic material for dual delivery of RPE cells and liposome-enveloped dexamethasone, which can be potentially applied for AMD therapy.
Collapse
|
24
|
Roy S, Yadav S, Dasgupta T, Chawla S, Tandon R, Ghosh S. Interplay between hereditary and environmental factors to establish an in vitro disease model of keratoconus. Drug Discov Today 2018; 24:403-416. [PMID: 30408528 DOI: 10.1016/j.drudis.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/03/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
Abstract
Keratoconus (KC) is a bilateral corneal dystrophy and a multifactorial, multigenic disorder with an etiology involving a strong environmental component and complex inheritance patterns. The underlying pathophysiology of KC is poorly understood because of potential crosstalk between genetic-epigenetic variants possibly triggered by the environmental factors. Here, we decode the etiopathological basis of KC using genomic, transcriptomic, proteomic and metabolic approaches. The lack of relevant models that accurately imitate this condition has been particularly limiting in terms of the effective management of KC. Tissue-engineered in vitro models of KC could address this need and generate valuable insights into its etiopathology for the establishment of disease models to accelerate drug discovery.
Collapse
Affiliation(s)
- Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Saumya Yadav
- Cornea & Refractive Surgery Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tanushree Dasgupta
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Shikha Chawla
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Radhika Tandon
- Cornea & Refractive Surgery Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
25
|
Irimia T, Ghica MV, Popa L, Anuţa V, Arsene AL, Dinu-Pîrvu CE. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers (Basel) 2018; 10:E1221. [PMID: 30961146 PMCID: PMC6290606 DOI: 10.3390/polym10111221] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
The main inconvenience of conventional eye drops is the rapid washout of the drugs due to nasolacrimal drainage or ophthalmic barriers. The ocular drug bioavailability can be improved by either prolonging retention time in the cul-de-sac or by increasing the ocular permeability. The focus of this review is to highlight some chitosan-based drug delivery approaches that proved to have good clinical efficacy and high potential for use in ophthalmology. They are exemplified by recent studies exploring in-depth the techniques and mechanisms in order to improve ocular bioavailability of the active substances. Used alone or in combination with other compounds with synergistic action, chitosan enables ocular retention time and corneal permeability. Associated with other stimuli-responsive polymers, it enhances the mechanical strength of the gels. Chitosan and its derivatives increase drug permeability through the cornea by temporarily opening tight junctions between epithelial cells. Different types of chitosan-based colloidal systems have the potential to overcome the ocular barriers without disturbing the vision process. Chitosan also plays a key role in improving corneal wound healing by stimulating the migration of keratinocytes when it is used alone or in combination with other compounds with synergistic action.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Andreea-Letiţia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
26
|
Singh RS, Kaur N, Sharma R, Rana V. Carbamoylethyl pullulan: QbD based synthesis, characterization and corneal wound healing potential. Int J Biol Macromol 2018; 118:2245-2255. [DOI: 10.1016/j.ijbiomac.2018.07.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
|
27
|
Xu W, Wang Z, Liu Y, Wang L, Jiang Z, Li T, Zhang W, Liang Y. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym 2018; 192:240-250. [DOI: 10.1016/j.carbpol.2018.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
|
28
|
Altomare L, Bonetti L, Campiglio CE, De Nardo L, Draghi L, Tana F, Farè S. Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int J Artif Organs 2018; 41:337-359. [PMID: 29614899 PMCID: PMC6159845 DOI: 10.1177/0391398818765323] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Advances in regenerative medicine and in modern biomedical therapies are fast evolving and set goals causing an upheaval in the field of materials science. This review discusses recent developments involving the use of biopolymers as smart materials, in terms of material properties and stimulus-responsive behavior, in the presence of environmental physico-chemical changes. An overview on the transformations that can be triggered in natural-based polymeric systems (sol-gel transition, polymer relaxation, cross-linking, and swelling) is presented, with specific focus on the benefits these materials can provide in biomedical applications.
Collapse
Affiliation(s)
- Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Chiara E Campiglio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Francesca Tana
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| |
Collapse
|
29
|
Chien Y, Chien CS, Chiang HC, Huang WL, Chou SJ, Chang WC, Chang YL, Leu HB, Chen KH, Wang KL, Lai YH, Liu YY, Lu KH, Li HY, Sung YJ, Jong YJ, Chen YJ, Chen CH, Yu WC. Interleukin-18 deteriorates Fabry cardiomyopathy and contributes to the development of left ventricular hypertrophy in Fabry patients with GLA IVS4+919 G>A mutation. Oncotarget 2018; 7:87161-87179. [PMID: 27888626 PMCID: PMC5349979 DOI: 10.18632/oncotarget.13552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
RATIONALE A high incidence of GLA IVS4+919 G>A mutation in patients with Fabry disease of the later-onset cardiac phenotype, has been reported in Taiwan. However, suitable biomarkers or potential therapeutic surrogates for Fabry cardiomyopathy (FC) in such patients under enzyme replacement treatment (ERT) remain unknown. OBJECTIVE Using FC patients carrying IVS4+919 G>A mutation, we constructed an induced pluripotent stem cell (iPSC)-based disease model to investigate the pathogenetic biomarkers and potential therapeutic targets in ERT-treated FC. RESULTS AND METHODS The iPSC-differentiated cardiomyocytes derived from FC-patients (FC-iPSC-CMs) carried IVS4+919 G>A mutation recapitulating FC characteristics, including low α-galactosidase A enzyme activity, cellular hypertrophy, and massive globotriaosylceramide accumulation. Microarray analysis revealed that interleukin-18 (IL-18), a pleiotropic cytokine involved in various myocardial diseases, was the most highly upregulated marker in FC-iPSC-CMs. Meanwhile, IL-18 levels were found to be significantly elevated in the culture media of FC-iPSC-CMs and patients' sera. Notably, the serum IL-18 levels were highly paralleled with the progression of left ventricular hypertrophy in Fabry patients receiving ERT. Finally, using FC-iPSC-CMs as in vitro FC model, neutralization of IL-18 with specific antibodies combined with ERT synergistically reduced the secretion of IL-18 and the progression of cardiomyocyte hypertrophy in FC-iPSC-CMs. CONCLUSION Our data demonstrated that cardiac IL-18 and circulating IL-18 are involved in the pathogenesis of FC and LVH. IL-18 may be a novel marker for evaluating ERT efficacy, and targeting IL-18 might be a potential adjunctive therapy combined with ERT for the treatment of advanced cardiomyopathy in FC patients with IVS4+919 G>A mutation.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Huai-Chih Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Wei-Lin Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, Taipei, Taiwan
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University and Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Kuan-Hsuan Chen
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Kang-Ling Wang
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | | | - Yung-Yang Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research, Cheng-Hsin Hospital, Taipei, Taiwan
| | - Hsin-Yang Li
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, Taipei, Taiwan
| | - Yen-Jen Sung
- Institute of Anatomy and Cell Biology, Taipei, Taiwan
| | - Yuh-Jyh Jong
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yann-Jang Chen
- Department of Life Sciences and Institute of Genome Sciences, Taipei, Taiwan
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wen-Chung Yu
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
30
|
Chien KH, Chang YL, Wang ML, Chuang JH, Yang YC, Tai MC, Wang CY, Liu YY, Li HY, Chen JT, Kao SY, Chen HL, Lo WL. Promoting Induced Pluripotent Stem Cell-driven Biomineralization and Periodontal Regeneration in Rats with Maxillary-Molar Defects using Injectable BMP-6 Hydrogel. Sci Rep 2018; 8:114. [PMID: 29311578 PMCID: PMC5758833 DOI: 10.1038/s41598-017-18415-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
Periodontal disease may cause considerable destruction of alveolar bone, periodontal ligaments (PDLs) and cementum and even lead to progressive oral dysfunction. Periodontal tissue regeneration is the ultimate goal of periodontal disease treatment to reconstruct both structures and functions. However, the regenerative efficiency is low, possibly due to the lack of a proper periodontal microenvironment. In this study, we applied an injectable and thermosensitive chitosan/gelatin/glycerol phosphate hydrogel to provide a 3D environment for transplanted stem cells and to enhance stem cell delivery and engraftment. The iPSCs-BMP-6-hydrogel complex promoted osteogenesis and the differentiation of new connective tissue and PDL formation. In animal models of maxillary-molar defects, the iPSCs-BMP-6-hydrogel-treated group showed significant mineralization with increased bone volume, trabecular number and trabecular thickness. Synergistic effects of iPSCs and BMP-6 increased both bone and cementum formation. IPSCs-BMP-6-hydrogel-treated animals showed new bone synthesis (increased ALP- and TRAP-positive cells), new PDL regeneration (shown through Masson’s trichrome staining and a qualification assay), and reduced levels of inflammatory cytokines. These findings suggest that hydrogel-encapsulated iPSCs combined with BMP-6 provide a new strategy to enhance periodontal regeneration. This combination not only promoted stem cell-derived graft engraftment but also minimized the progress of inflammation, which resulted in highly possible periodontal regeneration.
Collapse
Affiliation(s)
- Ke-Hung Chien
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Pharmacology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Mong-Lien Wang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jen-Hua Chuang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Ya-Chi Yang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yung-Yang Liu
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Chest, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Hsin-Yang Li
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Jiang-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Hen-Li Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Wen-Liang Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, 112, Taiwan. .,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan. .,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
31
|
Wang K, Han Z. Injectable hydrogels for ophthalmic applications. J Control Release 2017; 268:212-224. [PMID: 29061512 PMCID: PMC5722685 DOI: 10.1016/j.jconrel.2017.10.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022]
Abstract
The demand for effective eye therapies is driving the development of injectable hydrogels as new medical devices for controlled delivery and filling purposes. This article introduces the properties of injectable hydrogels and summarizes their versatile application in the treatment of ophthalmic diseases, including age-related macular degeneration, cataracts, diabetic retinopathy, glaucoma, and intraocular cancers. A number of injectable hydrogels are approved by FDA as surgery sealants, tissue adhesives, and are now being investigated as a vitreous humor substitute. Research on hydrogels for drug, factor, nanoparticle, and stem cell delivery is still under pre-clinical investigation or in clinical trials. Although substantial progress has been achieved using injectable hydrogels, some challenging issues must still be overcome before they can be effectively used in medical practice.
Collapse
Affiliation(s)
- Kai Wang
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Nano Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Pluripotent Stem Cells and Other Innovative Strategies for the Treatment of Ocular Surface Diseases. Stem Cell Rev Rep 2017; 12:171-8. [PMID: 26779895 DOI: 10.1007/s12015-016-9643-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cornea provides two thirds of the refractive power of the eye and protection against insults such as infection and injury. The outermost tissue of the cornea is renewed by stem cells located in the limbus. Depletion or destruction of these stem cells may lead to blinding limbal stem cell deficiency (LSCD) that concerns millions of patients around the world. Innovative strategies based on adult stem cell therapies have been developed in the recent years but they are still facing numerous unresolved issues, and the long term results can be deceiving. Today there is a clear need to improve these therapies, and/or to develop new approaches for the treatment of LSCD. Here, we review the current cell-based therapies used for the treatment of ocular diseases, and discuss the potential of pluripotent stem cells (embryonic and induced pluripotent stem cells) in corneal repair. As the secretion of paracrine factors is known to have a crucial role in maintaining stem cell homeostasis and in wound repair, we also consider the therapeutic potential of a promising novel pathway, the exosomes. Exosomes are nano-sized vesicles that have the ability to transfer RNAs and proteins to recipient cells, and several studies demonstrated their role in cell protection and wound healing. Exosomes could circumvent the hurdles of stem-cell based approaches, and they could become a strong candidate as an alternative therapy for ocular surface diseases.
Collapse
|
33
|
Tang Q, Luo C, Lu B, Fu Q, Yin H, Qin Z, Lyu D, Zhang L, Fang Z, Zhu Y, Yao K. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater 2017; 61:101-113. [PMID: 28780431 DOI: 10.1016/j.actbio.2017.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/04/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
Abstract
Corneal epithelium integrity depends on continuous self-renewing of epithelium and connections between adjacent cells or between the cells and the basement membrane. Self-renewing epithelium cells mainly arise from the continuous proliferation and differentiation of the basal layer and limbal stem cells. The aim of the present study was to generate a bioactive, thermosensitive chitosan-gelatin hydrogel (CHI hydrogel) by incorporating exogenous recombinant human stromal cell-derived factor-1 alpha (SDF-1 alpha) for corneal epithelium regeneration. The exogenous SDF-1 alpha could enhance the stem cells proliferation, chemotaxis and migration, and the expression levels of related genes were significantly elevated in LESCs and mesenchymal stem cells (MSCs) in vitro. Moreover, the MSCs promoted the proliferation and maintained the corneal fate of the LESCs. The rat alkali injury model was used for in vivo study. The injured eyes were covered with CHI hydrogel alone or rhSDF-1 alpha-loaded CHI hydrogel. All rats were followed for 13days. Histological examination showed that the SDF-1 alpha/CHI hydrogel complex group had a nearly normal thickness; moreover, it was also found that this group could upregulate the expression of some genes and had more ΔNp63-positive cells. The SDF-1 alpha/CHI hydrogel complex group had a more tightly arranged epithelium compared with the control group using transmission electron microscopy (TEM). The mechanism for this may have involved the activation of stem cell homing and the secretion of growth factors via the SDF-1/CXCR4 chemokine axis. Therefore, SDF-1 alpha/CHI hydrogel complexes could provide a new idea for the clinical application. STATEMENT OF SIGNIFICANCE The clarity of cornea is important for normal vision. The loss or dysfunction of LESCs leads to the impairment of corneal epithelium. The complete regeneration of corneal epithelium has not been achieved. Our study demonstrated that the incorporation of rhSDF-1 alpha with CHI hydrogel accelerated corneal epithelium reconstruction with more native structural and functional properties. The mechanism may involve in inducing proliferation and migration of the LESCs and MSCs to the injury site via the SDF-1/CXCR4 chemokine axis. Therefore, SDF-1 alpha/CHI hydrogel complexes could be a practical application for clinical therapy.
Collapse
|
34
|
Zahir-Jouzdani F, Mahbod M, Soleimani M, Vakhshiteh F, Arefian E, Shahosseini S, Dinarvand R, Atyabi F. Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries. Carbohydr Polym 2017; 179:42-49. [PMID: 29111069 DOI: 10.1016/j.carbpol.2017.09.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/14/2023]
Abstract
Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ1) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ1, Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ1 and PDGF comparable to that of TGFβ1 knockdown experiment. However, down-regulation of TGFβ1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries.
Collapse
Affiliation(s)
- Forouhe Zahir-Jouzdani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Noor Ophthalmology Research Center, Noor Eye hospital, Tehran, Iran
| | | | - Rasoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Joseph R, Srivastava OP, Pfister RR. Modeling Keratoconus Using Induced Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2017; 57:3685-97. [PMID: 27403997 PMCID: PMC5996875 DOI: 10.1167/iovs.16-19105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To model keratoconus (KC) using induced pluripotent stem cells (iPSC) generated from fibroblasts of both KC and normal human corneal stroma by a viral method. METHODS Both normal and KC corneal fibroblasts from four human donors were reprogramed directly by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, using a single polycistronic lentiviral vector coexpressing four transcription factors (Oct 4, Sox2, Klf4, and Myc) to yield iPSC. These iPS cells were characterized by immunofluorescence detection using of stem cell markers (SSEA4, Oct4, and Sox2). The mRNA sequencing was performed and the datasets were analyzed using ingenuity pathways analysis (IPA) software. RESULTS The generated stem cell-like clones expressed the pluripotency markers, SSEA4, Oct4, Sox2, Tra-1-60, and also expressed pax6. Our transcriptome analysis showed 4300 genes, which had 2-fold change and 870 genes with a q-value of <0.05 in keratoconus iPSC compared to normal iPSC. One of the genes that showed difference in KC iPSC was FGFR2 (down-regulated by 2.4 fold), an upstream target of Pi3-Kinase pathway, was further validated in keratoconus corneal sections and also KC iPSC-derived keratocytes (down regulated by 2.0-fold). Both normal and KC-derived keratocytes expressed keratocan, signature marker for keratocytes. KC iPSC-derived keratocytes showed adverse growth and proliferation and was further confirmed by using Ly2924002, a PI3k inhibitor, which severely affected the growth and differentiation in normal iPSC. CONCLUSIONS Based on our result, we propose a model for KC in which inhibition FGFR2-Pi3-Kinase pathway affects the AKT phosphorylation, and thus affecting the keratocytes survival signals. This inhibition of the survival signals could be a potential mechanism for the KC-specific decreased cell survival and apoptosis of keratocytes.
Collapse
Affiliation(s)
- Roy Joseph
- Department of Optometry and Vision Science University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P Srivastava
- Department of Optometry and Vision Science University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Roswell R Pfister
- Eye Research Laboratory, Eye Research Foundation, Birmingham, Alabama, United States
| |
Collapse
|
36
|
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int J Mol Sci 2017; 18:ijms18061257. [PMID: 28604651 PMCID: PMC5486079 DOI: 10.3390/ijms18061257] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
Collapse
|
37
|
Li YC, Zhu K, Young TH. Induced pluripotent stem cells, form in vitro tissue engineering to in vivo allogeneic transplantation. J Thorac Dis 2017; 9:455-459. [PMID: 28449443 DOI: 10.21037/jtd.2017.02.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi-Chen Li
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kai Zhu
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells. MATERIALS 2017; 10:ma10010066. [PMID: 28772424 PMCID: PMC5344595 DOI: 10.3390/ma10010066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Stem-cell-based therapies require a high number (106–109) of cells, therefore in vitro expansion is needed because of the initially low amount of stem cells obtainable from human tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization technique enables three-dimensional micro-structures to be fabricated, which we named synthetic nichoids. Here we review our activity on the technological improvements in manufacturing biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction to increase the patterned area and the percentage of cell culture surface covered by such synthetic nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time. These results establish two-photon laser polymerization as a promising tool to fabricate substrates for stem cell expansion, without any chemical supplement and in feeder-free conditions for potential therapeutic uses.
Collapse
|
39
|
Kumar P, Pandit A, Zeugolis DI. Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue-Like Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5381-5399. [PMID: 27028373 DOI: 10.1002/adma.201503986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Corneal injuries and degenerative conditions have major socioeconomic consequences, given that in most cases, they result in blindness. In the quest of the ideal therapy, tissue grafts, biomaterials, and modular engineering approaches are under intense investigation. Herein, advancements and shortfalls are reviewed and future perspectives for these therapeutic strategies discussed.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
40
|
Yuan XL, Wen Q, Zhang MY, Fan TJ. Cytotoxicity of pilocarpine to human corneal stromal cells and its underlying cytotoxic mechanisms. Int J Ophthalmol 2016; 9:505-11. [PMID: 27162720 DOI: 10.18240/ijo.2016.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/29/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To examine the cytotoxic effect of pilocarpine, an anti-glaucoma drug, on human corneal stromal (HCS) cells and its underlying cytotoxic mechanisms using an in vitro model of non-transfected HCS cells. METHODS After HCS cells were treated with pilocarpine at a concentration from 0.15625 g/L to 20.0 g/L, their morphology and viability were detected by light microscopy and MTT assay. The membrane permeability, DNA fragmentation and ultrastructure were examined by acridine orange (AO)/ethidium bromide (EB) double-staining. DNA electrophoresis and transmission electron microscopy (TEM), cell cycle, phosphatidylserine (PS) orientation and mitochondrial transmembrane potential (MTP) were assayed by flow cytometry (FCM). And the activation of caspases was checked by ELISA. RESULTS Morphology observations and viability assay showed that pilocarpine at concentrations above 0.625 g/L induced dose- and time-dependent morphological abnormality and viability decline of HCS cells. AO/EB double-staining, DNA electrophoresis and TEM noted that pilocarpine at concentrations above 0.625 g/L induced dose- and/or time-dependent membrane permeability elevation, DNA fragmentation, and apoptotic body formation of the cells. Moreover, FCM and ELISA assays revealed that 2.5 g/L pilocarpine also induced S phase arrest, PS externalization, MTP disruption, and caspase-8, -9 and -3 activation of the cells. CONCLUSION Pilocarpine at concentrations above 0.625 g/L (1/32 of its clinical therapeutic dosage) has a dose- and time-dependent cytotoxicity to HCS cells by inducing apoptosis in these cells, which is most probably regulated by a death receptor-mediated mitochondrion-dependent signaling pathway.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Qian Wen
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Meng-Yu Zhang
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| |
Collapse
|
41
|
Benayoun Y, Petellat F, Leclerc O, Dost L, Dallaudière B, Reddy C, Robert PY, Salomon JL. [Current treatments for corneal neovascularization]. J Fr Ophtalmol 2015; 38:996-1008. [PMID: 26522890 DOI: 10.1016/j.jfo.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/12/2015] [Accepted: 09/17/2015] [Indexed: 11/27/2022]
Abstract
The extension of blood vessels into the normally avascular stroma defines corneal neovascularization. Though this phenomenon, pathophysiological and clinical features are well characterized, therapeutic modalities have been hindered by a lack of safe, efficacious and non-controversial treatments. In this literature review, we focus on available therapeutic options in light of recent evidence provided by animal and clinical studies. First, this review will focus on pharmacological treatments that target angiogenesis. The low cost and market availability of bevacizumab make it the first anti-angiogenic therapy choice, and it has demonstrable efficacy in reducing corneal neovascularization when administered topically or subconjunctivally. However, novel anti-angiogenic molecules targeting the intracellular pathways of angiogenesis (siRNA, antisense oligonucleotides) provide a promising alternative. Laser therapy (direct photocoagulation or photo-dynamic therapy) and fine needle diathermy also find a place in the treatment of stabilized corneal neovascularization alone or in association with anti-angiogenic therapy. Additionally, ocular surface reconstruction using amniotic membrane graft or limbal stem cell transplantation is essential when corneal neovascularization is secondary to primary or acquired limbal deficiency.
Collapse
Affiliation(s)
- Y Benayoun
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France.
| | - F Petellat
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France
| | - O Leclerc
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - L Dost
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - B Dallaudière
- Service de radiologie, hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - C Reddy
- Baylor Scott & White Memorial Hospital, Texas A&M University, Texas, États-Unis
| | - P-Y Robert
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - J-L Salomon
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France
| |
Collapse
|
42
|
Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2015; 97:338-49. [DOI: 10.1016/j.ejpb.2015.05.017] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 11/21/2022]
|
43
|
Subbot AM, Kasparova EA, Subbot AM, Kasparova EA. [Review of approaches to cell therapy in ophthalmology]. Vestn Oftalmol 2015; 131:74-81. [PMID: 26845876 DOI: 10.17116/oftalma2015131574-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The review covers global trends in cell therapy research and clinical trials aimed at the treatment of ophthalmic diseases. Some definitions are provided and mechanisms of action of cell products studied to date are listed.
Collapse
Affiliation(s)
- A M Subbot
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - Evg A Kasparova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - A M Subbot
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - Evg A Kasparova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
44
|
Guo XL, Chen JS. Research on induced pluripotent stem cells and the application in ocular tissues. Int J Ophthalmol 2015; 8:818-25. [PMID: 26309885 DOI: 10.3980/j.issn.2222-3959.2015.04.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) were firstly induced from mouse fibroblasts since 2006, and then the research on iPSCs had made great progress in the following years. iPSCs were established from different somatic cells through DNA, RNA, protein or small molecule pathways and transduction vehicles. With continuous improvement of technology on reprogramming, the induction of iPSCs became more secure and effective, and showed enormous promise for clinical applications. We reviewed different reprogramming of somatic cells, four kinds of pathways of reprogramming and three types of transduction vehicles, and discuss the research of iPSCs in ophthalmology and the prospect of iPSCs applications.
Collapse
Affiliation(s)
- Xiao-Ling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jian-Su Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, Guangdong Province, China ; Eye Institute, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Department of Ophthalmology, the First Clinical Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
45
|
Branch MJ, Yu WY, Sheridan C, Hopkinson A. Isolation of adult stem cell populations from the human cornea. Methods Mol Biol 2015; 1235:165-77. [PMID: 25388394 DOI: 10.1007/978-1-4939-1785-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Corneal blindness is a leading cause of vision loss globally. From a tissue engineering perspective, the cornea represents specific challenges in respect to isolating, stably expanding, banking, and effectively manipulating the various cell types required for effective corneal regeneration. The current research trend in this area focuses on a combined stem cell component with a biological or synthetic carrier or engineering scaffold. Corneal derived stem cells play an important role in such strategies as they represent an available supply of cells with specific abilities to further generate corneal cells in the long term. This chapter describes the isolation protocols of the epithelial stromal and endothelial stem cell populations.
Collapse
Affiliation(s)
- Matthew J Branch
- Ophthalmology DCN, University of Nottingham, Queen's Medical Center, Clifton Blvd., Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
46
|
Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:201-8. [PMID: 26117756 DOI: 10.1016/j.msec.2015.05.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)-citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col-CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS=60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30±5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin-eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col-CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications.
Collapse
|
47
|
Sati A, Shukla S, Lal I, Sangwan VS. Treating limbal stem cell deficiency: current and emerging therapies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1035253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Chien CS, Wang ML, Chu PY, Chang YL, Liu WH, Yu CC, Lan YT, Huang PI, Lee YY, Chen YW, Lo WL, Chiou SH. Lin28B/Let-7 Regulates Expression of Oct4 and Sox2 and Reprograms Oral Squamous Cell Carcinoma Cells to a Stem-like State. Cancer Res 2015; 75:2553-65. [PMID: 25858147 DOI: 10.1158/0008-5472.can-14-2215] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/07/2015] [Indexed: 12/16/2022]
Abstract
Lin28, a key factor for cellular reprogramming and generation of induced pluripotent stem cell (iPSC), makes a critical contribution to tumorigenicity by suppressing Let-7. However, it is unclear whether Lin28 is involved in regulating cancer stem-like cells (CSC), including in oral squamous carcinoma cells (OSCC). In this study, we demonstrate a correlation between high levels of Lin28B, Oct4, and Sox2, and a high percentage of CD44(+)ALDH1(+) CSC in OSCC. Ectopic Lin28B expression in CD44(-)ALDH1(-)/OSCC cells was sufficient to enhance Oct4/Sox2 expression and CSC properties, whereas Let7 co-overexpression effectively reversed these phenomena. We identified ARID3B and HMGA2 as downstream effectors of Lin28B/Let7 signaling in regulating endogenous Oct4 and Sox2 expression. Let7 targeted the 3' untranslated region of ARID3B and HMGA2 and suppressed their expression, whereas ARID3B and HMGA2 increased the transcription of Oct4 and Sox2, respectively, through promoter binding. Chromatin immunoprecipitation assays revealed a direct association between ARID3B and a specific ARID3B-binding sequence in the Oct4 promoter. Notably, by modulating Oct4/Sox2 expression, the Lin28B-Let7 pathway not only regulated stemness properties in OSCC but also determined the efficiency by which normal human oral keratinocytes could be reprogrammed to iPSC. Clinically, a Lin28B(high)-Let7(low) expression pattern was highly correlated with high levels of ARID3B, HMGA2, OCT4, and SOX2 expression in OSCC specimens. Taken together, our results show how Lin28B/Let7 regulates key cancer stem-like properties in oral squamous cancers.
Collapse
Affiliation(s)
- Chian-Shiu Chien
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan. Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pen-Yuan Chu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan. Laryngology and Head and Neck Surgery, Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan. Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Graduate Institute of Medical Sciences, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Science, School of Dentistry & Oral Medicine Research Center, Chung Shan Medical University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan. Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. School of Medicine, National Yang-Ming University, Taipei, Taiwan. Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
49
|
Huang WT, Larsson M, Wang YJ, Chiou SH, Lin HY, Liu DM. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: from in vitro characterization to in vivo evaluation. Mol Pharm 2015; 12:1242-9. [PMID: 25760774 DOI: 10.1021/mp500747w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting controlled release core-shell nanocarriers with the potential to overcome multidrug resistant (MDR) lung cancer were prepared based on demethoxycurcumin (DMC) loaded amphiphilic chitosan nanoparticles coated with an anti-EGFR antibody layer. The nanocarriers were characterized with regard to size with dynamic light scattering, SEM, and TEM. The characterization confirmed the nanocarriers to have a surface coating of the anti-EGFR antibody and a final size excellently suited for circulating targeting nanocarriers, i.e., <200 nm in diameter. In vitro drug release revealed extended quasi-Fickian release from the nanocarriers, with the anti-EGFR layer further reducing the release rate. Cell culture experiments using normoxic and MDR hypoxic cells overexpressing EGFR confirmed improved DMC delivery for anti-EGFR coated particles and revealed that the DMC was delivered to the cytoplasmic region of the cells, forming nanoprecipitates in lysosomes and endosomes. The effective endocytosis and targeting of the core-shell nanoparticles resulted in the nanocarriers achieving high cytotoxicity also against MDR cells. The therapeutic potential was further confirmed in an A549 xenograft lung tumor mouse model, where DMC loaded core-shell nanocarriers achieved about 8-fold reduction in tumor volume compared with control group over the 8 weeks of the investigation. Both in vitro and in vivo data suggest the anti-EGFR coated core-shell nanocarriers as highly promising for treatment of hypoxic MDR cancers, especially for non-small cell lung cancer.
Collapse
Affiliation(s)
- Wei-Ting Huang
- †Nano-Bioengineering Lab, Department of Material Science and Engineering, BioICT Consortium, National Chiao Tung University, Hsinchu 301, Taiwan
| | - Mikael Larsson
- †Nano-Bioengineering Lab, Department of Material Science and Engineering, BioICT Consortium, National Chiao Tung University, Hsinchu 301, Taiwan.,‡Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Yen-Jen Wang
- †Nano-Bioengineering Lab, Department of Material Science and Engineering, BioICT Consortium, National Chiao Tung University, Hsinchu 301, Taiwan
| | - Shih-Hwa Chiou
- §Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,∥Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Yi Lin
- ⊥School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Dean-Mo Liu
- †Nano-Bioengineering Lab, Department of Material Science and Engineering, BioICT Consortium, National Chiao Tung University, Hsinchu 301, Taiwan
| |
Collapse
|
50
|
Li M, Zhao Y, Hao H, Dai H, Han Q, Tong C, Liu J, Han W, Fu X. Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. INT J LOW EXTR WOUND 2015; 14:73-86. [PMID: 25759411 DOI: 10.1177/1534734615569053] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impairment of wound healing in diabetic patients is an important clinical problem. Proper keratinocyte migration and proliferation are the crucial steps during reepithelialization, and these steps may be impaired in diabetes mellitus (DM) due to hyperglycemia and chronic inflammation in wound site. In this study, we explored the effects of diabetes-like microenvironment with high glucose (HG) and intense inflammation on the migration and proliferation of keratinocytes in vitro. We found that the migration and proliferation of rat keratinocytes were reduced with HG and lipopolysaccharide (LPS) stimulation via Erk signaling pathway in a reactive oxygen species (ROS)-dependent manner. Nevertheless, mesenchymal stem cell-conditioned medium (MSC-CM) counteracts the effects of HG and LPS. Treatment of rat keratinocyte with MSC-CM decreased HG- and/or LPS-induced ROS overproduction. Furthermore, MSC-CM reversed the downregulation of phosphorylation of MEK1/2 and Erk 1/2, which was induced by HG and/or LPS without affecting total levels. Our results may provide a possible mechanism for delayed wound healing in DM and provide a foundation to develop MSC-CM as an alternative therapeutic strategy to ameliorate the poor wound-healing conditions.
Collapse
Affiliation(s)
- Meirong Li
- Chinese PLA General Hospital, Beijing, People's Republic of China Chinese PLA General Hospital Hainan Branch, Sanya, People's Republic of China
| | - Yali Zhao
- Chinese PLA General Hospital, Beijing, People's Republic of China Chinese PLA General Hospital Hainan Branch, Sanya, People's Republic of China
| | - Haojie Hao
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hanren Dai
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qingwang Han
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chuan Tong
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiejie Liu
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weidong Han
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaobing Fu
- Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|