1
|
Steffens RC, Folda P, Fendler NL, Höhn M, Bücher-Schossau K, Kempter S, Snyder NL, Hartmann L, Wagner E, Berger S. GalNAc- or Mannose-PEG-Functionalized Polyplexes Enable Effective Lectin-Mediated DNA Delivery. Bioconjug Chem 2024; 35:351-370. [PMID: 38440876 DOI: 10.1021/acs.bioconjchem.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Nikole L Fendler
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Katharina Bücher-Schossau
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Susanne Kempter
- Faculty of Physics, LMU Munich, 80539 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg im Breisgau, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| |
Collapse
|
2
|
Abstract
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
Collapse
Affiliation(s)
- Simone Berger
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Ulrich Lächelt
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna1090, Austria
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| |
Collapse
|
3
|
Albuquerque LJC, de Oliveira FA, Christoffolete MA, Nascimento-Sales M, Berger S, Wagner E, Lächelt U, Giacomelli FC. Nucleic acid delivery to retinal cells using lipopeptides as a potential tool towards ocular gene therapies. J Colloid Interface Sci 2024; 655:346-356. [PMID: 37948808 DOI: 10.1016/j.jcis.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
We evaluated the use of lipopeptides capable to bind to nucleic acids towards plasmid DNA (pDNA) delivery. The investigations were particularly focused on arising retinal pigment epithelial cells (ARPE-19) as motivated by the considerable number of ocular disorders linked to gene aberrations. The lipopeptides comprised the artificial oligoamino acid succinyl-tetraethylene pentamine (Stp) as well as incorporated lysines, histidines, cysteines, fatty acids, and tyrosine trimers. Regardless of the structural differences, the lipopeptides demonstrated to efficiently condense pDNA at nitrogen-to-phosphate molar ratio (N/P) ≥ 6. Spheric nanoparticles were observed by cryo-TEM and dynamic light scattering determined hydrodynamic sizes ranging from 50 to 130 nm. The biological assays evidenced highly efficient pDNA delivery with a lower degree of cytotoxicity compared to the well-known transfecting agent linear polyethylenimine (LPEI). Although more efficient than LPEI, cysteine-containing carriers were demonstrated to be less efficient than the other counterparts possibly due to exceeding polyplex stabilization via disulfide cross links, which could hamper pDNA unpacking at the target site. Therefore, clearly a balance between complex stability and cargo release should be taken into account to optimize the transfection efficiency of the non-viral vectors. The gene transfer activity in ARPE-19 cells suggests the applicability of this kind of carrier for ocular treatments based on retinal gene delivery.
Collapse
Affiliation(s)
| | | | | | | | - Simone Berger
- Department of Pharmacy and Center for NanoScience (CeNs), Ludwig-Maximilians-Universität, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNs), Ludwig-Maximilians-Universität, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNs), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
4
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
5
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
6
|
Huo Y, Ma L, Zhang M, Niu M, Gu X, Zhang W, Yan M, Wei G. Development of Anticancer Peptides with Low Hemolysis, High Penetrating Membrane Activity, Certain Analgesic Activity and the Synergistic Anticancer Effect. Biomater Sci 2022; 10:1724-1741. [DOI: 10.1039/d1bm02024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, an amphiphilic cationic α-helical anticancer lipopeptide P10 with the low toxicity and high penetrating membrane activity was developed. The lipopeptide could self-assemble into stable spherical aggregates in aqueous solution,...
Collapse
|
7
|
Krhač Levačić A, Berger S, Müller J, Wegner A, Lächelt U, Dohmen C, Rudolph C, Wagner E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J Control Release 2021; 339:27-40. [PMID: 34547258 DOI: 10.1016/j.jconrel.2021.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023]
Abstract
Currently, messenger RNA (mRNA)-based lipid nanoparticle formulations revolutionize the clinical field. Cationic polymer-based complexes (polyplexes) represent an alternative compound class for mRNA delivery. After establishing branched polyethylenimine with a succinylation degree of 10% (succPEI) as highly effective positive mRNA transfection standard, a diverse library of PEI-like peptides termed sequence-defined oligoaminoamides (OAAs) was screened for mRNA delivery. Notably, sequences, which had previously been identified as potent plasmid DNA (pDNA) or small-interfering RNA (siRNA) carriers, displayed only moderate mRNA transfection activity. A second round of screening combined the cationizable building block succinoyl tetraethylene pentamine and histidines for endosomal buffering, tyrosine tripeptides and various fatty acids for mRNA polyplex stabilization, as well as redox-sensitive units for programmed intracellular release. For the tested OAA carriers, balancing of extracellular stability, endosomal lytic activity, and intracellular release capability was found to be of utmost importance for optimum mRNA transfection efficiency. OAAs with T-shape topology containing two oleic acids as well-stabilizing fatty acids, attached via a dynamic bioreducible building block, displayed superior activity with up to 1000-fold increased transfection efficiency compared to their non-reducible analogs. In the absence of the dynamic linkage, incorporation of shorter less stabilizing fatty acids could only partly compensate for mRNA delivery. Highest GFP expression and the largest fraction of transfected cells (96%) could be detected for the bioreducible OAA with incorporated histidines and a dioleoyl motif, outperforming all other tested carriers as well as the positive control succPEI. The good in vitro performance of the dynamic lead structure was verified in vivo upon intratracheal administration of mRNA complexes in mice.
Collapse
Affiliation(s)
- Ana Krhač Levačić
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Judith Müller
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Andrea Wegner
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
8
|
Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021; 43:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Human transferrin protein (Tf) modified polyplexes have already displayed encouraging potential for receptor-mediated nucleic acid delivery into tumors. The use of a blood-derived targeting protein and polydisperse macromolecular cationic subunits however presents a practical challenge for pharmaceutical grade production. Here, Tf receptor (TfR) targeted small interfering RNA (siRNA) polyplexes are designed that are completely composed of synthetic, monodisperse, and sequence-defined subunits generated by solid-phase supported synthesis. An optimized cationizable lipo-oligoaminoamide (lipo-OAA) is used for siRNA core polyplex formation, and a retro-enantio peptide (reTfR) attached via a monodisperse polyethylene glycol (PEG) spacer via click chemistry is applied for targeting. Improved gene silencing is demonstrated in TfR-expressing KB and DU145 cells. Analogous plasmid DNA (pDNA) polyplexes are successfully used for receptor-mediated gene delivery in TfR-rich K562 cells and Neuro2a cells. Six lipo-OAAs differing in their lipidic domain and redox-sensitive attachment of lipid residues are tested in order to evaluate the impact of core polyplex stability on receptor-dependent gene transfer.
Collapse
Affiliation(s)
- Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Şurhan Göl Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| |
Collapse
|
9
|
Tomé I, Francisco V, Fernandes H, Ferreira L. High-throughput screening of nanoparticles in drug delivery. APL Bioeng 2021; 5:031511. [PMID: 34476328 PMCID: PMC8397474 DOI: 10.1063/5.0057204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
The use of pharmacologically active compounds to manage and treat diseases is of utmost relevance in clinical practice. It is well recognized that spatial-temporal control over the delivery of these biomolecules will greatly impact their pharmacokinetic profile and ultimately their therapeutic effect. Nanoparticles (NPs) prepared from different materials have been tested successfully in the clinic for the delivery of several biomolecules including non-coding RNAs (siRNA and miRNA) and mRNAs. Indeed, the recent success of mRNA vaccines is in part due to progress in the delivery systems (NP based) that have been developed for many years. In most cases, the identification of the best formulation was done by testing a small number of novel formulations or by modification of pre-existing ones. Unfortunately, this is a low throughput and time-consuming process that hinders the identification of formulations with the highest potential. Alternatively, high-throughput combinatorial design of NP libraries may allow the rapid identification of formulations with the required release and cell/tissue targeting profile for a given application. Combinatorial approaches offer several advantages over conventional methods since they allow the incorporation of multiple components with varied chemical properties into materials, such as polymers or lipid-like materials, that will subsequently form NPs by self-assembly or chemical conjugation processes. The current review highlights the impact of high-throughput in the development of more efficient drug delivery systems with enhanced targeting and release kinetics. It also describes the current challenges in this research area as well as future directions.
Collapse
Affiliation(s)
| | - Vitor Francisco
- Biomaterials and Stem-Cell Based Therapeutics Group, Centre of Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | | | - Lino Ferreira
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Luo J, Wagner E, Wang Y. Artificial peptides for antitumoral siRNA delivery. J Mater Chem B 2021; 8:2020-2031. [PMID: 32091038 DOI: 10.1039/c9tb02756d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular delivery has been critical for the success of siRNA and related therapeutic nucleic acids. Improvement of delivery carriers will positively influence the efficacy of future nanomedicines. Our strategy for optimizing siRNA nanocarriers focuses on a bioinspired sequence-defined process including (i) identification of artificial amino acids active in specific delivery steps, (ii) assembly into defined sequences by solid phase-assisted synthesis (SPS), and (iii) screening for siRNA delivery, selection of top candidates and understanding structure-activity relations, followed by (iv) sequence variation for the next round of carrier selection. In the current review, our experience with this artificial peptide evolution in tumor-directed siRNA delivery is addressed. The medium-sized oligoaminoamides show better biological compatibility and can be functionalized to meet the requirements of siRNA delivery, such as formation of stable nanoparticles, shielding against proteins in the bloodstream, targeting into tumor tissue, and intracellular siRNA release in bioactive form.
Collapse
Affiliation(s)
- Jie Luo
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany.
| | - Yanfang Wang
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany.
| |
Collapse
|
11
|
Berger S, Krhač Levačić A, Hörterer E, Wilk U, Benli-Hoppe T, Wang Y, Öztürk Ö, Luo J, Wagner E. Optimizing pDNA Lipo-polyplexes: A Balancing Act between Stability and Cargo Release. Biomacromolecules 2021; 22:1282-1296. [PMID: 33616407 DOI: 10.1021/acs.biomac.0c01779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When optimizing nanocarriers, structural motifs that are beneficial for the respective type of cargo need to be identified. Here, succinoyl tetraethylene pentamine (Stp)-based lipo-oligoaminoamides (OAAs) were optimized for the delivery of plasmid DNA (pDNA). Structural variations comprised saturated fatty acids with chain lengths between C2 and C18 and terminal cysteines as units promoting nanoparticle stabilization, histidines for endosomal buffering, and disulfide building blocks for redox-sensitive release. Biophysical and tumor cell culture screening established clear-cut relationships between lipo-OAAs and characteristics of the formed pDNA complexes. Based on the optimized alternating Stp-histidine backbones, lipo-OAAs containing fatty acids with chain lengths around C6 to C10 displayed maximum gene transfer with around 500-fold higher gene expression than that of C18 lipo-OAA analogues. Promising lipo-OAAs, however, showed only moderate in vivo efficiency. In vitro testing in 90% full serum, revealing considerable inhibition of lytic and gene-transfer activity, was found as a new screening model predictive for intravenous applications in vivo.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ana Krhač Levačić
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Yanfang Wang
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jie Luo
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
12
|
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021; 331:121-141. [PMID: 33453339 DOI: 10.1016/j.jconrel.2021.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy using nucleic acids has many clinical applications for the treatment of diseases with a genetic origin as well as for the development of innovative vaccine formulations. Since nucleic acids in their free form are rapidly degraded by nucleases present in extracellular matrices, have poor pharmacokinetics and hardly pass cellular membranes, carrier systems are required. Suitable carriers that protect the nucleic acid payload against enzymatic attack, prolong circulation time after systemic administration and assist in cellular binding and internalization are needed to develop nucleic acid based drug products. Viral vectors have been investigated and are also clinically used as delivery vehicles. However, some major drawbacks are associated with their use. Therefore there has been substantial attention on the use of non-viral carrier systems based on cationic lipids and polymers. This review focuses on the properties of polymer-based nucleic acid formulations, also referred as polyplexes. Different polymeric systems are summarized, and the cellular barriers polyplexes encounter and ways to tackle these are discussed. Finally attention is given to the clinical status of non-viral nucleic acid formulations.
Collapse
Affiliation(s)
- Annette I S van den Berg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Chae-Ok Yun
- Institute of Nano Science and Technology, Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
14
|
Luo J, Schmaus J, Cui M, Hörterer E, Wilk U, Höhn M, Däther M, Berger S, Benli-Hoppe T, Peng L, Wagner E. Hyaluronate siRNA nanoparticles with positive charge display rapid attachment to tumor endothelium and penetration into tumors. J Control Release 2020; 329:919-933. [PMID: 33069742 DOI: 10.1016/j.jconrel.2020.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
A cationizable sequence-defined lipo-oligoaminoamide (lipo-OAA) conferring stable assembly of siRNA into ~200 nm sized complexes contains an N-terminal azidolysine for covalent coating of formed nanoparticles with dibenzocyclooctyne-amine (DBCO)-modified hyaluronic acid (HA). Depending on the applied equivalents of DBCO-HA, stable nanoparticles with either cationic or anionic surface charge can be formed. The unmodified and two types of covalent HA-modified siRNA nanoparticles differ in their biological characteristics. Both types of HA coated siRNA complexes show an enhanced cellular uptake over uncoated complexes and facilitate efficient gene silencing, but differ in intracellular uptake pathways and distribution. Upon intravenous administration in mice, beyond our expectation and in contrast to the in vitro findings, only the cationic HA nanoparticles but neither the non-coated cationic nor the anionic HA complexes were able to target subcutaneous Huh 7 tumors and exert potent (78%) gene silencing. The favorable and very fast accumulation of cationic HA nanoparticles was confirmed in another subcutaneous tumor model. As evidenced by 3D nanoparticle distribution within Huh 7 tumors evaluated at early time points of 5 min and 45 min, only the cationic HA-based nanoparticles rapidly attach to the tumor endothelium and subsequently penetrate into tumor, in contrast to the analogous anionic HA coated or the cationic non-coated formulation.
Collapse
Affiliation(s)
- Jie Luo
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Johannes Schmaus
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Mochen Cui
- Faculty of Medicine, Munich Medical Research School (MMRS), Ludwig-Maximilians-Universität, Munich 80336, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Maike Däther
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Lun Peng
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany.
| |
Collapse
|
15
|
Wang Y, Wagner E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020; 12:E888. [PMID: 32961908 PMCID: PMC7559072 DOI: 10.3390/pharmaceutics12090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
In nature, genomes have been optimized by the evolution of their nucleic acid sequences. The design of peptide-like carriers as synthetic sequences provides a strategy for optimizing multifunctional targeted nucleic acid delivery in an iterative process. The optimization of sequence-defined nanocarriers differs for different nucleic acid cargos as well as their specific applications. Supramolecular self-assembly enriched the development of a virus-inspired non-viral nucleic acid delivery system. Incorporation of DNA barcodes presents a complementary approach of applying sequences for nanocarrier optimization. This strategy may greatly help to identify nucleic acid carriers that can overcome pharmacological barriers and facilitate targeted delivery in vivo. Barcode sequences enable simultaneous evaluation of multiple nucleic acid nanocarriers in a single test organism for in vivo biodistribution as well as in vivo bioactivity.
Collapse
Affiliation(s)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany;
| |
Collapse
|
16
|
Noske S, Karimov M, Aigner A, Ewe A. Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1809. [PMID: 32927826 PMCID: PMC7557430 DOI: 10.3390/nano10091809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNAs (siRNA) is an efficient method for gene silencing through the induction of RNA interference (RNAi). It critically relies, however, on efficient vehicles for siRNA formulation, for transfection in vitro as well as for their potential use in vivo. While polyethylenimines (PEIs) are among the most studied cationic polymers for nucleic acid delivery including small RNA molecules, polypropylenimines (PPIs) have been explored to a lesser extent. Previous studies have shown the benefit of the modification of small PEIs by tyrosine grafting which are featured in this paper. Additionally, we have now extended this approach towards PPIs, presenting tyrosine-modified PPIs (named PPI-Y) for the first time. In this study, we describe the marked improvement of PPI upon its tyrosine modification, leading to enhanced siRNA complexation, complex stability, siRNA delivery, knockdown efficacy and biocompatibility. Results of PPI-Y/siRNA complexes are also compared with data based on tyrosine-modified linear or branched PEIs (LPxY or PxY). Taken together, this establishes tyrosine-modified PPIs or PEIs as particularly promising polymeric systems for siRNA formulation and delivery.
Collapse
Affiliation(s)
| | | | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| |
Collapse
|
17
|
Particle-Size-Dependent Delivery of Antitumoral miRNA Using Targeted Mesoporous Silica Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12060505. [PMID: 32498278 PMCID: PMC7355705 DOI: 10.3390/pharmaceutics12060505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Multifunctional core-shell mesoporous silica nanoparticles (MSN) were tailored in size ranging from 60 to 160 nm as delivery agents for antitumoral microRNA (miRNA). The positively charged particle core with a pore diameter of about 5 nm and a stellate pore morphology allowed for an internal, protective adsorption of the fragile miRNA cargo. A negatively charged particle surface enabled the association of a deliberately designed block copolymer with the MSN shell by charge-matching, simultaneously acting as a capping as well as endosomal release agent. Furthermore, the copolymer was functionalized with the peptide ligand GE11 targeting the epidermal growth factor receptor, EGFR. These multifunctional nanoparticles showed an enhanced uptake into EGFR-overexpressing T24 bladder cancer cells through receptor-mediated cellular internalization. A luciferase gene knock-down of up to 65% and additional antitumoral effects such as a decreased cell migration as well as changes in cell cycle were observed. We demonstrate that nanoparticles with a diameter of 160 nm show the fastest cellular internalization after a very short incubation time of 45 min and produce the highest level of gene knock-down.
Collapse
|
18
|
Kuhn J, Lin Y, Krhac Levacic A, Al Danaf N, Peng L, Höhn M, Lamb DC, Wagner E, Lächelt U. Delivery of Cas9/sgRNA Ribonucleoprotein Complexes via Hydroxystearyl Oligoamino Amides. Bioconjug Chem 2020; 31:729-742. [PMID: 31967454 DOI: 10.1021/acs.bioconjchem.9b00853] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The programmable endonuclease activity and simple usage of CRISPR/Cas9 have revolutionized the field of genome editing. The binding of single guide RNA (sgRNA) by the Cas9 protein results in the formation of negatively charged ribonucleoprotein (RNP) complexes. The presence of this functional complex inside cells is imperative for the intended specific genome modifications. The direct intracellular delivery of Cas9/sgRNA RNP complexes is of great advantage. In this work, a compound library of sequence-defined oligo(ethylenamino) amides containing structural motifs for stable nanoparticle formation, cellular uptake, and endosomal release was used for the screening and development of suitable Cas9 RNP delivery vehicles. Lipid-containing oligoaminoamides (lipo-OAAs) were identified as the most efficient carriers for intracellular Cas9/sgRNA delivery and gene disruption. Fluorescence correlation spectroscopy measurements indicated that the lipo-OAAs only interact with sgRNA-loaded Cas9 protein, which suggests exclusive ionic interaction with the negatively charged RNPs. The type of contained fatty acid turned out to have a critical impact on the knock out efficiency: the presence of one hydroxy group in the fatty acid dramatically changes the properties and performance of the resulting Cas9/sgRNA lipo-OAA complexes. The lipo-OAA-containing hydroxy-stearic acid (OHSteA) was superior to the analogues with saturated or unsaturated fatty acids without hydroxylation; it formed smaller and more defined nanoparticles with Cas9/sgRNA and improved the cellular uptake and endosomal release, which altogether resulted in an increased nuclear association and the highest gene knock out levels. The efficient and adaptable delivery platform has high potential for the future development of therapeutics based on precise genome modifications.
Collapse
Affiliation(s)
- Jasmin Kuhn
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Yi Lin
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ana Krhac Levacic
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Nader Al Danaf
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Lun Peng
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Miriam Höhn
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 80539, Germany
- Nanosystems Initiative Munich (NIM), Munich 80799, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ernst Wagner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 80539, Germany
- Nanosystems Initiative Munich (NIM), Munich 80799, Germany
| | - Ulrich Lächelt
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 80539, Germany
| |
Collapse
|
19
|
Wang Y, Luo J, Truebenbach I, Reinhard S, Klein PM, Höhn M, Kern S, Morys S, Loy DM, Wagner E, Zhang W. Double Click-Functionalized siRNA Polyplexes for Gene Silencing in Epidermal Growth Factor Receptor-Positive Tumor Cells. ACS Biomater Sci Eng 2020; 6:1074-1089. [DOI: 10.1021/acsbiomaterials.9b01904] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanfang Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jie Luo
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ines Truebenbach
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Sören Reinhard
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Philipp Michael Klein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Sarah Kern
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Dominik M. Loy
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
- Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Munich, Germany
| | - Wei Zhang
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
20
|
Truebenbach I, Zhang W, Wang Y, Kern S, Höhn M, Reinhard S, Gorges J, Kazmaier U, Wagner E. Co-delivery of pretubulysin and siEG5 to EGFR overexpressing carcinoma cells. Int J Pharm 2019; 569:118570. [DOI: 10.1016/j.ijpharm.2019.118570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
21
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Holm R, Schwiertz D, Weber B, Schultze J, Kuhn J, Koynov K, Lächelt U, Barz M. Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromol Biosci 2019; 20:e1900152. [PMID: 31430057 DOI: 10.1002/mabi.201900152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Indexed: 12/23/2022]
Abstract
RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.
Collapse
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Schwiertz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmin Kuhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
23
|
Truebenbach I, Kern S, Loy DM, Höhn M, Gorges J, Kazmaier U, Wagner E. Combination Chemotherapy of L1210 Tumors in Mice with Pretubulysin and Methotrexate Lipo-Oligomer Nanoparticles. Mol Pharm 2019; 16:2405-2417. [DOI: 10.1021/acs.molpharmaceut.9b00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ines Truebenbach
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Sarah Kern
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Dominik M. Loy
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Jan Gorges
- Institute for Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | - Uli Kazmaier
- Institute for Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377 Munich, Germany
| |
Collapse
|
24
|
Uchida S, Kataoka K. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J Biomed Mater Res A 2019; 107:978-990. [PMID: 30665262 DOI: 10.1002/jbm.a.36614] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Nonviral delivery of plasmid (p)DNA or messenger (m)RNA is a safe and promising therapeutic option to continuously supply therapeutic proteins into diseased tissues. In most cases of in vivo pDNA and mRNA delivery, these nucleic acids are loaded into carriers based on cationic polymers and/or lipids to prevent nuclease-mediated degradation before reaching target cells. The carriers should also evade host clearance mechanisms, including uptake by scavenger cells and filtration in the spleen. Installation of ligands onto the carriers can facilitate their rapid uptake into target cells. Meanwhile, carrier toxicity should be minimized not only for preventing undesirable adverse responses in patients, but also for preserving the function of transfected cells to exert therapeutic effects. Long-term progressive improvement of platform technologies has helped overcome most of these issues, though some still remain hindering the widespread clinical application of nonviral pDNA and mRNA delivery. This review discusses design concepts of nonviral carriers for in vivo delivery and the issues to be overcome, focusing especially on our own efforts using polyplex micelles. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 978-990, 2019.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Abstract
As synthetic small interfering RNA (siRNA) against antitumoral gene targets show promise for cancer treatment, different siRNA delivery systems have sparkled intense investigations. To develop tumor-specific carriers for cytosolic and systemic siRNA delivery, our laboratory has recently generated folate-conjugated targeted combinatorial siRNA polyplexes based on sequence-defined oligomer platform compatible with solid-phase-supported synthesis. These polyplexes presented efficient siRNA-mediated gene silencing in folate receptor-expressing tumors in vitro and in vivo. In this chapter, we provide a brief background on the formulation design and detailed protocols to evaluate polyplex formation, gene silencing efficiency, and receptor-directed cell killing in cancer cells using targeted combinatorial siRNA polyplexes.
Collapse
Affiliation(s)
- Dian-Jang Lee
- Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich (NIM), Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Nanosystems Initiative Munich (NIM), Munich, Germany.
| |
Collapse
|
26
|
Abstract
Lipopolyplexes present well-established nucleic acid carriers assembled from sequence-defined cationic lipo-oligomers and DNA or RNA. They can be equipped with additional surface functionality, like shielding and targeting, in a stepwise assembly method using click chemistry. Here, we describe the synthesis of the required compounds, an azide-bearing lipo-oligomer structure and dibenzocyclooctyne (DBCO) click agents as well as the assembly of the compounds with siRNA into a surface-functionalized formulation. Both the lipo-oligomer and the DBCO-equipped shielding and targeting agents are produced by solid-phase synthesis (SPS). This enables for precise variation of all functional units, like variation in the amount of DBCO attachment sites or polyethylene glycol (PEG) length. Special cleavage conditions with only 5% trifluoroacetic acid (TFA) must be applied for the synthesis of the shielding and targeting agents due to acid lability of the DBCO unit. The two-step lipopolyplex assembly technique allows for separate optimization of the core and the shell of the formulation.
Collapse
Affiliation(s)
- Philipp Michael Klein
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| |
Collapse
|
27
|
Reinhard S, Wagner E. Sequence-Defined Cationic Lipo-Oligomers Containing Unsaturated Fatty Acids for Transfection. Methods Mol Biol 2019; 1943:1-25. [PMID: 30838606 DOI: 10.1007/978-1-4939-9092-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sequence-defined cationic lipo-oligomers containing unsaturated fatty acids are potent nucleic acid carriers that are produced by solid-phase supported synthesis. However, the trifluoroacetic acid (TFA)-mediated removal of acid-labile protecting groups and cleavage from the resin can be accompanied by side products caused by an addition of TFA to the double bonds of unsaturated fatty acids. These TFA adducts are converted into hydroxylated derivatives under aqueous conditions. Here we describe an optimized cleavage protocol (precooling cleavage solution to 4 °C, 20 min cleavage at 22 °C), which minimizes TFA adduct formation, retains the unsaturated hydrocarbon chain character, and ensures high yields of the synthesis.
Collapse
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität Butenandtstr, München, Germany.
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität Butenandtstr, München, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr, München, Germany
| |
Collapse
|
28
|
Hager S, Wagner E. Bioresponsive polyplexes - chemically programmed for nucleic acid delivery. Expert Opin Drug Deliv 2018; 15:1067-1083. [PMID: 30247975 DOI: 10.1080/17425247.2018.1526922] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The whole delivery process of nucleic acids is very challenging. Appropriate carrier systems are needed, which show extracellular stability and intracellular disassembly. Viruses have developed various strategies to meet these requirements, as they are optimized by biological evolution to transfer genetic information into host cells. Taking viruses as models, smart synthetic carriers can be designed, mimicking the efficient delivery process of viral infection. These 'synthetic viruses' are pre-programmed and respond to little differences in their microenvironment, caused by either exogenous or endogenous stimuli. AREAS COVERED This review deals with polymer-based, bioresponsive nanosystems (polyplexes) for the delivery of nucleic acids. Strategies utilizing pH-responsiveness, redox-responsiveness as well as sensitivity towards enzymes will be described more in detail. Systems, which respond to other endogenous triggers (i.e. reactive oxygen species, adenosine triphosphate, hypoxia), will be briefly illustrated. Moreover, some examples for combined bioresponsiveness will be presented. EXPERT OPINION Bioresponsive polyplexes are a smart way to facilitate programmed, timely delivery of nucleic acids to desired, specific sites. Nevertheless, further optimization is necessary to improve the still moderate transfection efficiency and specificity - also in regard to medical translation. For this purpose, precise carrier structures are desirable and stability issues of bioresponsive systems must be considered.
Collapse
Affiliation(s)
- Simone Hager
- a Pharmaceutical Biotechnology, Department of Pharmacy , Ludwig-Maximilians-Universität , Munich , Germany
| | - Ernst Wagner
- a Pharmaceutical Biotechnology, Department of Pharmacy , Ludwig-Maximilians-Universität , Munich , Germany
| |
Collapse
|
29
|
Reinhard S, Wang Y, Dengler S, Wagner E. Precise Enzymatic Cleavage Sites for Improved Bioactivity of siRNA Lipo-Polyplexes. Bioconjug Chem 2018; 29:3649-3657. [DOI: 10.1021/acs.bioconjchem.8b00585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Yanfang Wang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Sebastian Dengler
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
- Nanosystems Initiative
Munich (NIM), Schellingstrasse 4, 80799 München, Germany
| |
Collapse
|
30
|
Klein PM, Kern S, Lee DJ, Schmaus J, Höhn M, Gorges J, Kazmaier U, Wagner E. Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials 2018; 178:630-642. [DOI: 10.1016/j.biomaterials.2018.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
|
31
|
Klein PM, Klinker K, Zhang W, Kern S, Kessel E, Wagner E, Barz M. Efficient Shielding of Polyplexes Using Heterotelechelic Polysarcosines. Polymers (Basel) 2018; 10:E689. [PMID: 30966723 PMCID: PMC6404158 DOI: 10.3390/polym10060689] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/16/2022] Open
Abstract
Shielding agents are commonly used to shield polyelectrolyte complexes, e.g., polyplexes, from agglomeration and precipitation in complex media like blood, and thus enhance their in vivo circulation times. Since up to now primarily poly(ethylene glycol) (PEG) has been investigated to shield non-viral carriers for systemic delivery, we report on the use of polysarcosine (pSar) as a potential alternative for steric stabilization. A redox-sensitive, cationizable lipo-oligomer structure (containing two cholanic acids attached via a bioreducible disulfide linker to an oligoaminoamide backbone in T-shape configuration) was equipped with azide-functionality by solid phase supported synthesis. After mixing with small interfering RNA (siRNA), lipopolyplexes formed spontaneously and were further surface-functionalized with polysarcosines. Polysarcosine was synthesized by living controlled ring-opening polymerization using an azide-reactive dibenzo-aza-cyclooctyne-amine as an initiator. The shielding ability of the resulting formulations was investigated with biophysical assays and by near-infrared fluorescence bioimaging in mice. The modification of ~100 nm lipopolyplexes was only slightly increased upon functionalization. Cellular uptake into cells was strongly reduced by the pSar shielding. Moreover, polysarcosine-shielded polyplexes showed enhanced blood circulation times in bioimaging studies compared to unshielded polyplexes and similar to PEG-shielded polyplexes. Therefore, polysarcosine is a promising alternative for the shielding of non-viral, lipo-cationic polyplexes.
Collapse
Affiliation(s)
- Philipp Michael Klein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Kristina Klinker
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55128 Mainz, Germany.
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
| | - Wei Zhang
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Sarah Kern
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Eva Kessel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Ernst Wagner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Pharmaceutical Biotechnology, Butenandtstrasse 5-13, D-81377 Munich, Germany.
- Nanosystems Initiative Munich, Schellingstraße 4, D-80799 Munich, Germany.
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
32
|
He D, Lin H, Yu Y, Shi L, Tu J. Precisely Defined Polymers for Efficient Gene Delivery. Top Curr Chem (Cham) 2018; 376:2. [PMID: 29335799 DOI: 10.1007/s41061-017-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|
33
|
Patil S, Lalani R, Bhatt P, Vhora I, Patel V, Patel H, Misra A. Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics. RSC Adv 2018; 8:35461-35473. [PMID: 35547911 PMCID: PMC9087824 DOI: 10.1039/c8ra06298f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Linear polyethylenimine (LPEI) has been well reported as a carrier for siRNA delivery. However, its applications are limited due to its highly ionized state at physiologic pH and the resultant charge mediated toxicity. The presence of ionizable secondary amines in LPE are responsible for its unique characteristics such as pH dependent solubility and positive charge. Therefore, modification of LPEI was carried out to obtain hydroxyethyl substituted LPEI with the degree of substitution ranging from 15% to 45%. The impact of modification on the physicochemical parameters of the polymer, i.e. buffer capacity, solubility, biocompatibility and stability, was evaluated. Surprisingly, despite the loss of ionizable amines, the substitution improved solubility, and even overcame the pH dependent solubility of LPEI. In addition, the conversion of secondary amines to less basic tertiary amines after substitution improved the buffer capacity, in the endosomal pH range, required for efficient endosomal escape. It also reduced erythrocyte aggregation, hemolytic potential and in vitro cytotoxicity. The in vitro studies showed enhanced cell uptake and mRNA knockdown efficiency. Thus, the proposed modification shows a simple approach to overcome the limitation of LPEI for siRNA delivery. Hydroxyethyl substitution of linear polyethylenimine (LPEI) and its effects on physico-chemical and biological properties of polymer.![]()
Collapse
Affiliation(s)
- Sushilkumar Patil
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| | - Rohan Lalani
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| | - Priyanka Bhatt
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| | - Imran Vhora
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| | - Vivek Patel
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| | - Hinal Patel
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| | - Ambikanandan Misra
- Faculty of Pharmacy
- The Maharaja Sayajirao University of Baroda
- Kalabhavan Campus
- Vadodara-390001
- India
| |
Collapse
|
34
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
35
|
Levacic AK, Morys S, Kempter S, Lächelt U, Wagner E. Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes. Hum Gene Ther 2017; 28:862-874. [DOI: 10.1089/hum.2017.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Kempter
- Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| |
Collapse
|
36
|
Morys S, Urnauer S, Spitzweg C, Wagner E. EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequence-Defined PEG Agent. Macromol Biosci 2017; 18. [PMID: 28877405 DOI: 10.1002/mabi.201700203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Indexed: 12/20/2022]
Abstract
For successful nonviral gene delivery, cationic polymers are promising DNA carrier, which need to comprise several functionalities. The current work focuses on the postincorporation of epidermal growth factor receptor (EGFR) targeted PEGylation agents onto lipopolyplexes for pDNA delivery. T-shaped lipo-oligomers are previously found to be effective sequence-defined carriers for pDNA and siRNA. Here, the bis-oleoyl-oligoaminoethanamide 454 containing tyrosine trimer-cysteine ends is applied for complex formation with pDNA coding for luciferase or sodium iodide symporter (NIS). In a second step, the lipopolyplexes are modified via disulfide formation with sequence-defined monovalent or bivalent PEGylation agents containing one or two 3-nitro-2-pyridinesulfenyl (NPys)-activated cysteines, respectively. For targeting, the polyethylene glycol (PEG) agents comprise the EGFR targeting peptide GE11. In comparison of all transfection complexes, 454 lipopolyplexes modified with the bidentate PEG-GE11 agent show the best, EGFR-dependent uptake as well as luciferase and NIS gene expression into receptor-positive tumor cells.
Collapse
Affiliation(s)
- Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| |
Collapse
|
37
|
Polymeric micelles self-assembled from amphiphilic polymers with twin disulfides used as siRNA carriers to enhance the transfection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:546-552. [DOI: 10.1016/j.msec.2017.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
|
38
|
Lee DJ, Kessel E, Lehto T, Liu X, Yoshinaga N, Padari K, Chen YC, Kempter S, Uchida S, Rädler JO, Pooga M, Sheu MT, Kataoka K, Wagner E. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia. Bioconjug Chem 2017; 28:2393-2409. [PMID: 28772071 DOI: 10.1021/acs.bioconjchem.7b00383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protection of small interfering RNA (siRNA) against degradation and targeted delivery across the plasma and endosomal membranes to the final site of RNA interference (RNAi) are major aims for the development of siRNA therapeutics. Targeting for folate receptor (FR)-expressing tumors, we optimized siRNA polyplexes by coformulating a folate-PEG-oligoaminoamide (for surface shielding and targeting) with one of three lipo-oligoaminoamides (optionally tyrosine-modified, for optimizing stability and size) to generate ∼100 nm targeted lipopolyplexes (TLPs), which self-stabilize by cysteine disulfide cross-links. To better understand parameters for improved tumor-directed gene silencing, we analyzed intracellular distribution and siRNA release kinetics. FR-mediated endocytosis and endosomal escape of TLPs was confirmed by immuno-TEM. We monitored colocalization of TLPs with endosomes and lysosomes, and onset of siRNA release by time-lapse confocal microscopy; analyzed intracellular stability by FRET using double-labeled siRNA; and correlated results with knockdown of eGFPLuc protein and EG5 mRNA expression. The most potent formulation, TLP1, containing lipopolyplex-stabilizing tyrosine trimers, was found to unpack siRNA in sustained manner with up to 5-fold higher intracellular siRNA stability after 4 h compared to other TLPs. Unexpectedly, data indicated that intracellular siRNA stability instead of an early endosomal exit dominate as a deciding factor for silencing efficiency of TLPs. After i.v. administration in a subcutaneous leukemia mouse model, TLP1 exhibited ligand-dependent tumoral siRNA retention, resulting in 65% EG5 gene silencing at mRNA level without detectable adverse effects. In sum, tyrosine-modified TLP1 conveys superior protection of siRNA for an effective tumor-targeted delivery and RNAi in vivo.
Collapse
Affiliation(s)
- Dian-Jang Lee
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| | - Eva Kessel
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| | - Taavi Lehto
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Xueying Liu
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Kärt Padari
- Institute of Molecular and Cell Biology and Institute of Technology, University of Tartu , 23 Riia Str., 51010 Tartu, Estonia
| | - Ying-Chen Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University , No. 250, Wuxin St., 11031 Taipei, Taiwan
| | - Susanne Kempter
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Joachim O Rädler
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany.,Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Margus Pooga
- Institute of Molecular and Cell Biology and Institute of Technology, University of Tartu , 23 Riia Str., 51010 Tartu, Estonia
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University , No. 250, Wuxin St., 11031 Taipei, Taiwan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan.,Policy Alternatives Research Institute, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
39
|
Reinhard S, Zhang W, Wagner E. Optimized Solid‐Phase‐Assisted Synthesis of Oleic Acid Containing siRNA Nanocarriers. ChemMedChem 2017; 12:1464-1470. [DOI: 10.1002/cmdc.201700350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Wei Zhang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
- Nanosystems Initiative Munich, NIM Schellingstr. 4 80799 München Germany
| |
Collapse
|
40
|
Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers (Basel) 2017; 9:polym9040142. [PMID: 30970822 PMCID: PMC6432433 DOI: 10.3390/polym9040142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Cationic polymers are promising components of the versatile platform of non-viral nucleic acid (NA) delivery agents. For a successful gene delivery system, these NA vehicles need to comprise several functionalities. This work focuses on the modification of oligoaminoamide carriers with hydrophilic oligomer blocks mediating nanoparticle shielding potential, which is necessary to prevent aggregation or dissociation of NA polyplexes in vitro, and hinder opsonization with blood components in vivo. Herein, the shielding agent polyethylene glycol (PEG) in three defined lengths (12, 24, or 48 oxyethylene repeats) is compared with two peptidic shielding blocks composed of four or eight repeats of sequential proline-alanine-serine (PAS). With both types of shielding agents, we found opposing effects of the length of hydrophilic segments on shielding and compaction of formed plasmid DNA (pDNA) nanoparticles. Two-arm oligoaminoamides with 37 cationizable nitrogens linked to 12 oxyethylene units or four PAS repeats resulted in very compact 40⁻50 nm pDNA nanoparticles, whereas longer shielding molecules destabilize the investigated polyplexes. Thus, the balance between sufficiently shielded but still compact and stable particles can be considered a critical optimization parameter for non-viral nucleic acid vehicles based on hydrophilic-cationic block oligomers.
Collapse
|
41
|
Niño-Pariente A, Armiñán A, Reinhard S, Scholz C, Kos P, Wagner E, Vicent MJ. Design of Poly-l-Glutamate-Based Complexes for pDNA Delivery. Macromol Biosci 2017; 17. [PMID: 28378951 DOI: 10.1002/mabi.201700029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Due to the polyanionic nature of DNA, typically cationic or neutral delivery vehicles have been used for gene delivery. As a new approach, this study focuses on the design, development, and validation of nonviral polypeptide-based carriers for oligonucleotide delivery based on a negatively charged poly-l-glutamic acid (PGA) backbone partly derivatized with oligoaminoamide residues. To this end, PGA-derivatives modified with different pentameric succinyl tetraethylene pentamines (Stp5 ) are designed. Optionally, histidines for modulation of endosomal buffer capacity and cysteines for pDNA complex stabilization are included, followed by characterization of biophysical properties and gene transfer efficiency in N2a neuroblastoma or 4T1 breast cancer cells.
Collapse
Affiliation(s)
- Amaya Niño-Pariente
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | - Claudia Scholz
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| |
Collapse
|
42
|
Monitoring integrity and localization of modified single-stranded RNA oligonucleotides using ultrasensitive fluorescence methods. PLoS One 2017; 12:e0173401. [PMID: 28278199 PMCID: PMC5344492 DOI: 10.1371/journal.pone.0173401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Short single-stranded oligonucleotides represent a class of promising therapeutics with diverse application areas. Antisense oligonucleotides, for example, can interfere with various processes involved in mRNA processing through complementary base pairing. Also RNA interference can be regulated by antagomirs, single-stranded siRNA and single-stranded microRNA mimics. The increased susceptibility to nucleolytic degradation of unpaired RNAs can be counteracted by chemical modification of the sugar phosphate backbone. In order to understand the dynamics of such single-stranded RNAs, we investigated their fate after exposure to cellular environment by several fluorescence spectroscopy techniques. First, we elucidated the degradation of four differently modified, dual-dye labeled short RNA oligonucleotides in HeLa cell extracts by fluorescence correlation spectroscopy, fluorescence cross-correlation spectroscopy and Förster resonance energy transfer. We observed that the integrity of the oligonucleotide sequence correlates with the extent of chemical modifications. Furthermore, the data showed that nucleolytic degradation can only be distinguished from unspecific effects like aggregation, association with cellular proteins, or intramolecular dynamics when considering multiple measurement and analysis approaches. We also investigated the localization and integrity of the four modified oligonucleotides in cultured HeLa cells using fluorescence lifetime imaging microscopy. No intracellular accumulation could be observed for unmodified oligonucleotides, while completely stabilized oligonucleotides showed strong accumulation within HeLa cells with no changes in fluorescence lifetime over 24 h. The integrity and accumulation of partly modified oligonucleotides was in accordance with their extent of modification. In highly fluorescent cells, the oligonucleotides were transported to the nucleus. The lifetime of the RNA in the cells could be explained by a balance between release of the oligonucleotides from endosomes, degradation by RNases and subsequent depletion from the cells.
Collapse
|
43
|
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol Ther 2017; 25:1476-1490. [PMID: 28274797 DOI: 10.1016/j.ymthe.2017.01.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.
Collapse
Affiliation(s)
- Arnaldur Hall
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 65 Solna, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| | - Seyed Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
44
|
Zhang P, Wagner E. History of Polymeric Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:26. [PMID: 28181193 DOI: 10.1007/s41061-017-0112-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Abstract
As an option for genetic disease treatment and an alternative for traditional cancer chemotherapy, gene therapy achieves significant attention. Nucleic acid delivery, however, remains a main challenge in human gene therapy. Polymer-based delivery systems offer a safer and promising route for therapeutic gene delivery. Over the past five decades, various cationic polymers have been optimized for increasingly effective nucleic acid transfer. This resulted in a chemical evolution of cationic polymers from the first-generation polycations towards bioinspired multifunctional sequence-defined polymers and nanocomposites. With the increasing of knowledge in molecular biological processes and rapid progress of macromolecular chemistry, further improvement of polymeric nucleic acid delivery systems will provide effective tool for gene-based therapy in the near future.
Collapse
Affiliation(s)
- Peng Zhang
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany. .,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.,Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, 80799, Munich, Germany
| |
Collapse
|
45
|
Lee DJ, He D, Kessel E, Padari K, Kempter S, Lächelt U, Rädler JO, Pooga M, Wagner E. Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. J Control Release 2016; 244:280-291. [DOI: 10.1016/j.jconrel.2016.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 02/06/2023]
|
46
|
Müller K, Klein PM, Heissig P, Roidl A, Wagner E. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery. NANOTECHNOLOGY 2016; 27:464001. [PMID: 27736810 DOI: 10.1088/0957-4484/27/46/464001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.
Collapse
Affiliation(s)
- Katharina Müller
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
47
|
Klein PM, Reinhard S, Lee DJ, Müller K, Ponader D, Hartmann L, Wagner E. Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. NANOSCALE 2016; 8:18098-18104. [PMID: 27734055 DOI: 10.1039/c6nr05767e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipo-oligomers have been proven as potent siRNA carriers based on stable electrostatic and hydrophobic complex formation and endosomal membrane destabilization. Although high stability of siRNA polyplexes is desirable in the extracellular space and cellular uptake, intracellular disassembly is important for the cytosolic release of siRNA and RNA-induced silencing complex formation. To improve the release, bioreducible sequence-defined lipo-oligomers were synthesized by solid-phase assisted synthesis using the disulfide building block Fmoc-succinoyl-cystamine for precise positioning of a disulfide unit between a lipophilic diacyl (bis-myristyl, bis-stearyl or bis-cholestanyl) domain and an ionizable oligocationic siRNA binding unit. Reducible siRNA polyplexes show higher gene silencing efficacy and lower cytotoxicity than their stable analogs, consistent with glutathione-triggered siRNA release and reduced lytic activity.
Collapse
Affiliation(s)
- Philipp Michael Klein
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | - Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | - Dian-Jang Lee
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany. and Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | - Daniela Ponader
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Laura Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany. and Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
48
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
49
|
Reinhard S, Wagner E. How to Tackle the Challenge of siRNA Delivery with Sequence-Defined Oligoamino Amides. Macromol Biosci 2016; 17. [PMID: 27328447 DOI: 10.1002/mabi.201600152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/24/2016] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) as a mechanism of gene regulation provides exciting opportunities for medical applications. Synthetic small interfering RNA (siRNA) triggers the knockdown of complementary mRNA sequences in a catalytic fashion and has to be delivered into the cytosol of the targeted cells. The design of adequate carrier systems to overcome multiple extracellular and intracellular roadblocks within the delivery process has utmost importance. Cationic polymers form polyplexes through electrostatic interaction with negatively charged nucleic acids and present a promising class of carriers. Issues of polycations regarding toxicity, heterogeneity, and polydispersity can be overcome by solid-phase-assisted synthesis of sequence-defined cationic oligomers. These medium-sized highly versatile nucleic acid carriers display low cytotoxicity and can be modified and tailored in multiple ways to meet specific requirements of nucleic acid binding, polyplex size, shielding, targeting, and intracellular release of the cargo. In this way, sequence-defined cationic oligomers can mimic the dynamic and bioresponsive behavior of viruses.
Collapse
Affiliation(s)
- Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany
| |
Collapse
|
50
|
Zhang W, Müller K, Kessel E, Reinhard S, He D, Klein PM, Höhn M, Rödl W, Kempter S, Wagner E. Targeted siRNA Delivery Using a Lipo-Oligoaminoamide Nanocore with an Influenza Peptide and Transferrin Shell. Adv Healthc Mater 2016; 5:1493-504. [PMID: 27109317 DOI: 10.1002/adhm.201600057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Developing RNA-interference-based therapeutic approaches with efficient and targeted cytosolic delivery of small interfering RNA (siRNA) is remaining a critical challenge since two decades. Herein, a multifunctional transferrin receptor (TfR)-targeted siRNA delivery system (Tf&INF7) is designed based on siRNA complexes formed with the cationic lipo-oligoamino amide 454, sequentially surface-modified with polyethylene glycol-linked transferrin (Tf) for receptor targeting and the endosomolytic peptide INF7 for efficient cytosolic release of the siRNA. Effective Tf&INF7 polyplex internalization and target gene silencing are demonstrated for the TfR overexpressing tumor cell lines (K562, D145, and N2a). Treatment with antitumoral EG5 siRNA results in a block of tumor cell growth and triggered apoptosis. Tf-modified polyplexes are far more effective than the corresponding albumin- (Alb) or nonmodified 454 polyplexes. Competition experiments with excess of Tf demonstrate TfR target specificity. As alternative to the ligand Tf, an anti-murine TfR antibody is incorporated into the polyplexes for specific targeting and gene silencing in the murine N2a cell line. In vivo distribution studies not only demonstrate an enhanced tumor residence of siRNA in N2a tumor-bearing mice with the Tf&INF7 as compared to the 454 polyplex group but also a reduced siRNA nanoparticle stability limiting the in vivo performance.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Sören Reinhard
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Susanne Kempter
- Department of Physics Ludwig‐Maximilians‐Universität München Geschwister‐Scholl‐Platz 1 80539 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| |
Collapse
|