1
|
Maduka CV, Makela AV, Tundo A, Ural E, Stivers KB, Kuhnert MM, Alhaj M, Hoque Apu E, Ashammakhi N, Hankenson KD, Narayan R, Elisseeff JH, Contag CH. Regulating the proinflammatory response to composite biomaterials by targeting immunometabolism. Bioact Mater 2024; 40:64-73. [PMID: 38948254 PMCID: PMC11214186 DOI: 10.1016/j.bioactmat.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Composite biomaterials comprising polylactide (PLA) and hydroxyapatite (HA) are applied in bone, cartilage and dental regenerative medicine, where HA confers osteoconductive properties. However, after surgical implantation, adverse immune responses to these composites can occur, which have been attributed to size and morphology of HA particles. Approaches to effectively modulate these adverse immune responses have not been described. PLA degradation products have been shown to alter immune cell metabolism (immunometabolism), which drives the inflammatory response. Accordingly, to modulate the inflammatory response to composite biomaterials, inhibitors were incorporated into composites comprised of amorphous PLA (aPLA) and HA (aPLA + HA) to regulate glycolytic flux. Inhibition at specific steps in glycolysis reduced proinflammatory (CD86+CD206-) and increased pro-regenerative (CD206+) immune cell populations around implanted aPLA + HA. Notably, neutrophil and dendritic cell (DC) numbers along with proinflammatory monocyte and macrophage populations were decreased, and Arginase 1 expression among DCs was increased. Targeting immunometabolism to control the proinflammatory response to biomaterial composites, thereby creating a pro-regenerative microenvironment, is a significant advance in tissue engineering where immunomodulation enhances osseointegration and angiogenesis, which could lead to improved bone regeneration.
Collapse
Affiliation(s)
- Chima V. Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ashley V. Makela
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony Tundo
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Evran Ural
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Katlin B. Stivers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Maxwell M. Kuhnert
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, 37917, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ramani Narayan
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christopher H. Contag
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, 48864, USA
| |
Collapse
|
2
|
Dandia HY, Pillai MM, Sharma D, Suvarna M, Dalal N, Madhok A, Ingle A, Chiplunkar SV, Galande S, Tayalia P. Acellular scaffold-based approach for in situ genetic engineering of host T-cells in solid tumor immunotherapy. Mil Med Res 2024; 11:3. [PMID: 38173045 PMCID: PMC10765574 DOI: 10.1186/s40779-023-00503-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Targeted T-cell therapy has emerged as a promising strategy for the treatment of hematological malignancies. However, its application to solid tumors presents significant challenges due to the limited accessibility and heterogeneity. Localized delivery of tumor-specific T-cells using biomaterials has shown promise, however, procedures required for genetic modification and generation of a sufficient number of tumor-specific T-cells ex vivo remain major obstacles due to cost and time constraints. METHODS Polyethylene glycol (PEG)-based three-dimensional (3D) scaffolds were developed and conjugated with positively charged poly-L-lysine (PLL) using carbamide chemistry for efficient loading of lentiviruses (LVs) carrying tumor antigen-specific T-cell receptors (TCRs). The physical and biological properties of the scaffold were extensively characterized. Further, the scaffold loaded with OVA-TCR LVs was implanted in B16F10 cells expressing ovalbumin (B16-OVA) tumor model to evaluate the anti-tumor response and the presence of transduced T-cells. RESULTS Our findings demonstrate that the scaffolds do not induce any systemic inflammation upon subcutaneous implantation and effectively recruit T-cells to the site. In B16-OVA melanoma tumor-bearing mice, the scaffolds efficiently transduce host T-cells with OVA-specific TCRs. These genetically modified T-cells exhibit homing capability towards the tumor and secondary lymphoid organs, resulting in a significant reduction of tumor size and systemic increase in anti-tumor cytokines. Immune cell profiling revealed a significantly high percentage of transduced T-cells and a notable reduction in suppressor immune cells within the tumors of mice implanted with these scaffolds. CONCLUSION Our scaffold-based T-cell therapy presents an innovative in situ localized approach for programming T-cells to target solid tumors. This approach offers a viable alternative to in vitro manipulation of T-cells, circumventing the need for large-scale in vitro generation and culture of tumor-specific T-cells. It offers an off-the-shelf alternative that facilitates the use of host cells instead of allogeneic cells, thereby, overcoming a major hurdle.
Collapse
Affiliation(s)
- Hiren Y Dandia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Meghna Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Arvind Ingle
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Shubhada V Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
3
|
Song JE, Lee DH, Choi JH, Lee SW, Khang G, Yoon SJ. Biomimetic sponge using duck's feet derived collagen and hydroxyapatite to promote bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:769-782. [PMID: 34913857 DOI: 10.1080/09205063.2021.2019366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Collagen, a natural biomaterial derived from animal tissues, has attracted the attention of biomedical material researchers because of its excellent cell affinity and low rejection in vivo. In this study, collagen was extracted using livestock by-product flippers, and an experiment was performed to assess its application as a scaffold for bone tissue implantation. For this purpose, we fabricated 2%, and 3% duck's feet derived collagen (DC) sponges. We then compared them to hydroxyapatite (HAp)-coated DC sponges, and measured the porosity and pore size using scanning electron microscopy (SEM) to analyze the physical properties and morphology of DC and DC/HAp sponges. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were carried out to measure the proliferation of bone marrow stem cells (BMSCs) in DC and DC/HAp sponges. An alkaline phosphatase activity assay confirmed the osteogenic differentiation ability of BMSCs. Polymerase chain reaction (PCR) was performed to confirm the BMSC-specific genetic marker. The osteogenic potential was confirmed by the bone formation in an in vivo environment on the scaffold by histological and immunohistochemical analysis. Overall, this study shows that DC/HAp sponges have biocompatibility and good physical properties. Additionally, DC/HAp sponges show potential use as bone graft materials for tissue engineering applications.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Seong Won Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sun-Jung Yoon
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Orthopedic Surgery, Medical School, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
4
|
Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury. Cells 2021; 10:cells10082102. [PMID: 34440872 PMCID: PMC8394044 DOI: 10.3390/cells10082102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma that can cause permanent disability, life-long chronic issues for sufferers and is a big socioeconomic burden. Regenerative medicine aims to overcome injury caused deficits and restore function after SCI through gene therapy and tissue engineering approaches. SCI has a multifaceted pathophysiology. Due to this, producing therapies that target multiple different cellular and molecular mechanisms might prove to be a superior approach in attempts at regeneration. Both biomaterials and nucleic acid delivery via lentiviral vectors (LVs) have proven to promote repair and restoration of function post SCI in animal models. Studies indicate that a combination of biomaterials and LVs is more effective than either approach alone. This review presents studies supporting the use of LVs and LVs delivered with biomaterials in therapies for SCI and summarises methods to combine LVs with biomaterials for SCI treatment. By summarising this knowledge this review aims to demonstrate how LV delivery with biomaterials can augment/compliment both LV and biomaterial therapeutic effects in SCI.
Collapse
|
5
|
Fu Z, Cui J, Zhao B, Shen SG, Lin K. An overview of polyester/hydroxyapatite composites for bone tissue repairing. J Orthop Translat 2021; 28:118-130. [PMID: 33898248 PMCID: PMC8050106 DOI: 10.1016/j.jot.2021.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Objectives The polyester/hydroxyapatite (polyester/HA) composites play an important role in bone tissue repairing, mostly because they mimic the composition and structure of naturally mineralized bone tissue. This review aimed to discuss commonly used geometries of polyester/HA composites, including microspheres, membranes, scaffolds and bulks, and their applications in bone tissue repairing and to discuss existed restrictions and developing trends of polyester/HA. Methods The current review was conducted by searching Web of Science, and Google Scholar for relevant studies published related with polyester/HA composites. Selected studies were analyzed with a focus on the fabrication techniques, properties (mechanical properties, biodegradable properties and biological properties) and applications of polyester/HA composites in bone repairing. Results A total of 111 articles were introduced to discuss the review. Different geometries of polyester/HA composites were discussed. In addition, properties and applications of polyester/HA composites were evaluated. The addition of HA into polyester can adjust the mechanical and biodegradability of composites. Besides, the addition of HA into polyester can improve its osteogenic abilities. The results showed that polyester/HA composites can ideal candidate for bone tissue repairing. Conclusion Polyester/HA composites have many remarkable properties, such as appropriate mechanical strength, biodegradability, favorable biological properties. Diverse geometries of polyester/HA composites have been used in bone repairing, drug delivery and implant fixation. Further work needs to be done to investigate existed restrictions, including the controlled degradation rate, controlled drug release performance, well-matched mechanical properties, and novel fabrication techniques. The translational potential of this article The present review reveals the current state of the polyester/HA composites used in bone tissue repairing, contributing to future trends of polyester/HA composites in the forthcoming future.
Collapse
Affiliation(s)
- Zeyu Fu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.,School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinjie Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Bin Zhao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.,Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
6
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
7
|
Youngblood R, Flesher CG, Delproposto J, Baker NA, Neeley CK, Li F, Lumeng CN, Shea LD, O'Rourke RW. Regulation of adipose tissue inflammation and systemic metabolism in murine obesity by polymer implants loaded with lentiviral vectors encoding human interleukin-4. Biotechnol Bioeng 2020; 117:3891-3901. [PMID: 32729936 PMCID: PMC8358590 DOI: 10.1002/bit.27523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Dysfunctional adipose tissue plays a central role in the pathogenesis of the obesity-related metabolic disease, including type 2 diabetes. Targeting adipose tissue using biopolymer implants is a novel therapeutic approach for metabolic disease. We transplanted porous poly(lactide-co-glycolide) (PLG) implants coated with human interleukin-4 (hIL-4)-expressing lentivirus into epididymal white adipose tissue (eWAT) of mice fed a high-fat diet. Tissue and systemic inflammation and metabolism were studied with flow cytometry, immunohistochemistry, quantitative real-time polymerase chain reaction, adipose tissue histology, and in vivo glucose tolerance testing at 2 and 10 weeks of a high-fat diet. PLG implants carrying hIL-4-expressing lentivirus implanted into epididymal white adipose tissue of mice-regulated adipose tissue inflammation, including increased CD3+ CD4+ T-cell frequency, increased eWAT adipocyte hypertrophy, and decreased FASN and ATGL expression, along with reduced fasting blood glucose levels. These effects were observed in early obesity but were not maintained in established obesity. Local delivery of bioimplants loaded with cytokine-expressing lentivirus vectors to adipose tissue influences tissue inflammation and systemic metabolism in early obesity. Further study will be required to show more durable metabolic effects. These data demonstrate that polymer biomaterials implanted into adipose tissue have the potential to modulate local tissue and systemic inflammation and metabolism.
Collapse
Affiliation(s)
- Richard Youngblood
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer Delproposto
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christopher K Neeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Fanghua Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Graduate Program in Cellular and Molecular Biology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
8
|
Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats. NANOMATERIALS 2020; 10:nano10050918. [PMID: 32397466 PMCID: PMC7279500 DOI: 10.3390/nano10050918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/18/2023]
Abstract
Novel three-dimensional (3D) nanohydroxyapatite-PLGA scaffolds with high porosity was developed to better mimic mineral component and microstructure of natural bone. To perform a final assessment of this nanomaterial as a potential bone substitute, its toxicological profile was particularly investigated. Therefore, we performed a comet assay on human monocytes for in vitro genotoxicity investigation, and the systemic subchronic toxicity investigation on rats being per oral feed with exactly administrated extract quantities of the nano calcium hydroxyapatite covered with tiny layers of PLGA (ALBO-OS) for 120 days. Histological and stereological parameters of the liver, kidney, and spleen tissue were analyzed. Comet assay revealed low genotoxic potential, while histological analysis and stereological investigation revealed no significant changes in exposed animals when compared to controls, although the volume density of blood sinusoids and connective tissue, as well as numerical density and number of mitosis were slightly increased. Additionally, despite the significantly increased average number of the Ki67 and slightly increased number of CD68 positive cells in the presence of ALBO-OS, immunoreactive cells proliferation was almost neglected. Blood analyses showed that all of the blood parameters in rats fed with extract nanomaterial are comparable with corresponding parameters of no feed rats, taken as blind probe. This study contributes to the toxicological profiling of ALBO-OS scaffold for potential future application in bone tissue engineering.
Collapse
|
9
|
Shi D, Shen J, Zhang Z, Shi C, Chen M, Gu Y, Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J Biomed Mater Res A 2019; 107:1615-1627. [PMID: 30920134 DOI: 10.1002/jbm.a.36678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) homogenous scaffolds composed of natural biopolymers have been reported as superior candidates for bone tissue engineering. There are still remaining challenges in fabricating the functional scaffolds with gradient structures to similar with natural bone tissues, as well as high mechanical properties and excellent affinity to surround tissues. Herein, inspired by the natural bone structure, a gradient-structural scaffold composed of functional biopolymers was designed to provide an optimized 3D environment for promoting cell growth. To increase the interactions among the scaffolds, dopamine (DA) was employed to modify alginate (Alg) and needle-like nano-hydroxyapatite (HA) was prepared with quaternized chitosan as template. The obtained dopamine-modified alginate (Alg-DA) and quaternized chitosan-templated hydroxyapatite (QCHA) were then used to fabricate the porous gradient scaffold by "iterative layering" freeze-drying technique with further crosslinking by calcium ions (Ca2+ ). The as-prepared Alg-DA/QCHA gradient scaffolds were possessed seamlessly integrated layer structures and high levels of porosity at around 77.5%. Moreover, the scaffolds showed higher compression modules (1.7 MPa) than many other biopolyermic scaffolds. The gradient scaffolds showed appropriate degradation rate to satisfy with the time of the bone regeneration. Both human chondrocytes and fibroblasts could adhesive and growth well on the scaffolds in vitro. Furthermore, an excellent osteogenetic activity of the gradient scaffold can effectively promote the regeneration of the bone tissue and accelerate the repair of the bone defects in vivo, compared with that of the scaffold with the homogenous structure. The novel multilayered scaffold with gradient structure provided an interesting option for bone tissue engineering. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1615-1627, 2019.
Collapse
Affiliation(s)
- Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jiali Shen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Zhuying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Chang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Yanglin Gu
- The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Chong'an District, Jiangsu, China
| | - Yang Liu
- The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Chong'an District, Jiangsu, China
| |
Collapse
|
10
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
11
|
Novel polysaccharide hybrid scaffold loaded with hydroxyapatite: Fabrication, bioactivity, and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1-11. [DOI: 10.1016/j.msec.2018.07.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/02/2018] [Accepted: 07/20/2018] [Indexed: 02/05/2023]
|
12
|
Zhu W, Zhang H, Chen X, Jin K, Ning L. Numerical characterization of regenerative axons growing along a spherical multifunctional scaffold after spinal cord injury. PLoS One 2018; 13:e0205961. [PMID: 30365562 PMCID: PMC6203361 DOI: 10.1371/journal.pone.0205961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) followed by extensive cell loss, inflammation, and scarring, often permanently damages neurological function. Biomaterial scaffolds are promising but currently have limited applicability in SCI because after entering the scaffold, regenerating axons tend to become trapped and rarelyre-enter the host tissue, the reasons for which remain to be completely explored. Here, we propose a mathematical model and computer simulation for characterizing regenerative axons growing along a scaffold following SCI, and how their growth may be guided. The model assumed a solid, spherical, multifunctional, biomaterial scaffold, that would bridge the rostral and caudal stumps of a completely transected spinal cord in a rat model and would guide the rostral regenerative axons toward the caudal tissue. Other assumptions include the whole scaffold being coated with extracellular matrix components, and the caudal area being additionally seeded with chemoattractants. The chemical factors on and around the scaffold were formulated to several coupled variables, and the parameter values were derived fromexisting experimental data. Special attention was given to the effects of coating strength, seeding location, and seeding density, as well as the ramp slope of the scaffold, on axonal regeneration. In numerical simulations, a slimmer scaffold provided a small slope at the entry "on-ramp" area that improved the success rate of axonal regeneration. If success rates are high, an increased number of regenerative axons traverse through the narrow channels, causing congestion and lowering the growth rate. An increase in the number of severed axons (300-12000) did not significantly affect the growth rate, but it reduced the success rate of axonal regeneration. However, an increase in the seeding densities of the complexes on the whole scaffold, and that in the seeding densities of the chemoattractants on the caudal area, improved both the success and growth rates. However, an increase in the density of thecomplexes on the whole scaffold risks an over-eutrophic surface that harms axonal regeneration.Although theoretical predictions are yet to be validated directly by experiments, this theoretical tool can advance the treatment of SCI, and is also applicable to scaffolds with other architectures.
Collapse
Affiliation(s)
- Weiping Zhu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, People's Republic of China
- * E-mail:
| | - Han Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, People's Republic of China
| | - Xuning Chen
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, People's Republic of China
| | - Kan Jin
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, People's Republic of China
| | - Le Ning
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Lopera A, Montoya A, Vélez I, Robledo S, Garcia C. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther 2018; 21:138-146. [DOI: 10.1016/j.pdpdt.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
|
14
|
Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol 2018; 112:448-460. [PMID: 29408578 DOI: 10.1016/j.ijbiomac.2018.01.181] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/21/2018] [Accepted: 01/28/2018] [Indexed: 11/21/2022]
Abstract
Sodium alginate (SA)/hydroxyethylcellulose (HEC)/hydroxyapatite (HA) composite scaffolds were explored for enhanced in vitro bone regeneration. The SA/HEC/HA composites were synthesized using the lyophilization technique and further cross-linked in the presence of calcium ions to form composite hydrogel networks. The physicochemical, thermal behavior and morphology properties of the prepared scaffolds were characterized through XRD, DSC/TGA, FTIR and SEM. Furthermore, the mechanical behavior of the under investigated scaffolds was determined using texture analyzer. The in vitro bioactivity in SBF and adsorption of bovine serum albumin as well as cell viability for all the prepared scaffolds were also tested. The results indicated that the higher HA concentration (40wt%) enhanced the mechanical properties (23.9MPa), bioactivity and protein adsorption. Cell viability of the tested scaffolds confirmed the non-toxicity of the fabricated systems on the human mesenchymal stem cells (hMSCs). Proliferation capability was also confirmed for the tested scaffolds after 3 and 7days, but the higher HA-containing scaffold showed increased cell populations specially after 7days compared to HA-free scaffolds. This novel composite material could be used in bone tissue engineering as a scaffold material to deliver cells and biologically active molecules.
Collapse
|
15
|
Mitra D, Whitehead J, Yasui OW, Leach JK. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials 2017; 146:29-39. [PMID: 28898756 PMCID: PMC5618709 DOI: 10.1016/j.biomaterials.2017.08.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
Perfusion culture of mesenchymal stem cells (MSCs) seeded in biomaterial scaffolds provides nutrients for cell survival, enhances extracellular matrix deposition, and increases osteogenic cell differentiation. However, there is no consensus on the appropriate perfusion duration of cellular constructs in vitro to boost their bone forming capacity in vivo. We investigated this phenomenon by culturing human MSCs in macroporous composite scaffolds in a direct perfusion bioreactor and compared their response to scaffolds in continuous dynamic culture conditions on an XYZ shaker. Cell seeding in continuous perfusion bioreactors resulted in more uniform MSC distribution than static seeding. We observed similar calcium deposition in all composite scaffolds over 21 days of bioreactor culture, regardless of pore size. Compared to scaffolds in dynamic culture, perfused scaffolds exhibited increased DNA content and expression of osteogenic markers up to 14 days in culture that plateaued thereafter. We then evaluated the effect of perfusion culture duration on bone formation when MSC-seeded scaffolds were implanted in a murine ectopic site. Human MSCs persisted in all scaffolds at 2 weeks in vivo, and we observed increased neovascularization in constructs cultured under perfusion for 7 days relative to those cultured for 1 day within each gender. At 8 weeks post-implantation, we observed greater bone volume fraction, bone mineral density, tissue ingrowth, collagen density, and osteoblastic markers in bioreactor constructs cultured for 14 days compared to those cultured for 1 or 7 days, and acellular constructs. Taken together, these data demonstrate that culturing MSCs under perfusion culture for at least 14 days in vitro improves the quantity and quality of bone formation in vivo. This study highlights the need for optimizing in vitro bioreactor culture duration of engineered constructs to achieve the desired level of bone formation.
Collapse
Affiliation(s)
- Debika Mitra
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Osamu W Yasui
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Li J, Jahr H, Zheng W, Ren PG. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair. J Vis Exp 2017. [PMID: 28930985 DOI: 10.3791/55381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in vivo and in real-time.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
| | - Holger Jahr
- Department of Orthopedic Surgery, Maastricht UMC+; Department of Orthopaedic Surgery, University Hospital RWTH
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences;
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences;
| |
Collapse
|
17
|
Madrigal JL, Stilhano R, Silva EA. Biomaterial-Guided Gene Delivery for Musculoskeletal Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:347-361. [PMID: 28166711 PMCID: PMC5749599 DOI: 10.1089/ten.teb.2016.0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy is a promising strategy for musculoskeletal tissue repair and regeneration where local and sustained expression of proteins and/or therapeutic nucleic acids can be achieved. However, the musculoskeletal tissues present unique engineering and biological challenges as recipients of genetic vectors. Targeting specific cell populations, regulating expression in vivo, and overcoming the harsh environment of damaged tissue accompany the general concerns of safety and efficacy common to all applications of gene therapy. In this review, we will first summarize these challenges and then discuss how biomaterial carriers for genetic vectors can address these issues. Second, we will review how limitations specific to given vectors further motivate the utility of biomaterial carriers. Finally, we will discuss how these concepts have been combined with tissue engineering strategies and approaches to improve the delivery of these vectors for musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Roberta Stilhano
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| |
Collapse
|
18
|
Sun Y, Li Y, Xu J, Huang L, Qiu T, Zhong S. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein. Colloids Surf B Biointerfaces 2017; 155:142-149. [DOI: 10.1016/j.colsurfb.2017.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/25/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
|
19
|
Li J, Xu Q, Teng B, Yu C, Li J, Song L, Lai YX, Zhang J, Zheng W, Ren PG. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomater 2016; 42:389-399. [PMID: 27326916 DOI: 10.1016/j.actbio.2016.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. STATEMENT OF SIGNIFICANCE Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chen Yu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yu-Xiao Lai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
20
|
Skoumal M, Seidlits S, Shin S, Shea L. Localized lentivirus delivery via peptide interactions. Biotechnol Bioeng 2016; 113:2033-40. [PMID: 26913962 PMCID: PMC11322858 DOI: 10.1002/bit.25961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 11/09/2022]
Abstract
Gene delivery from biomaterial scaffolds has been employed to induce the expression of tissue inductive factors for applications in regenerative medicine. The delivery of viral vectors has been described as reflecting a balance between vector retention and release. Herein, we investigated the design of hydrogels in order to retain the vector at the material in order to enhance transgene expression. Poly(ethylene-glycol) (PEG) hydrogels were modified with poly-l-lysine (PLL) to non-covalently bind lentivirus. For cells cultured on the hydrogels, increasing the PLL molecular weight from 1 to 70 kDa led to increased transgene expression. The incubation time of the virus with the hydrogel and the PLL concentration modulated the extent of virus adsorption, and adsorbed virus had a 20% increase in the half-life at 37°C. Alternatives to high molecular weight PLL were identified through phage display technology, with peptide sequences specific for the VSV-G ectodomain, an envelope protein pseudotyped on the virus. These affinity peptides could easily be incorporated into the hydrogel, and expression was increased 20-fold relative to control peptide, and comparable to levels observed with the high molecular weight PLL. The modification of hydrogels with affinity proteins or peptides to bind lentivirus can be a powerful strategy to enhance and localized transgene expression. Biotechnol. Bioeng. 2016;113: 2033-2040. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Skoumal
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Stephanie Seidlits
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Seungjin Shin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Lonnie Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, 1119 Gerstacker, Ann Arbor, Michigan, 48109.
| |
Collapse
|
21
|
Hu Y, Ma S, Yang Z, Zhou W, Du Z, Huang J, Yi H, Wang C. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids Surf B Biointerfaces 2016; 140:382-391. [DOI: 10.1016/j.colsurfb.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/03/2015] [Accepted: 01/02/2016] [Indexed: 01/09/2023]
|
22
|
Cha SR, Jeong HK, Kim SY, Kim EY, Song JE, Park CH, Kwon SY, Khang G. Effect of Duck's Feet Derived Collagen Sponge on Skin Regeneration: In Vitro Study. POLYMER KOREA 2015. [DOI: 10.7317/pk.2015.39.3.493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Hu Y, Gao H, Du Z, Liu Y, Yang Y, Wang C. Pickering high internal phase emulsion-based hydroxyapatite-poly(ε-caprolactone) nanocomposite scaffolds. J Mater Chem B 2015; 3:3848-3857. [PMID: 32262858 DOI: 10.1039/c5tb00093a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biocompatible, biodegradable and bioactive nanocomposite (NC) scaffolds with well-defined interconnected porous structures have attracted increasing attention in bone tissue engineering. In this work, we develop a facile method to fabricate poly(l-lactic acid)-modified hydroxyapatite (g-HAp)-poly(ε-caprolactone) (PCL) NC porous scaffolds by solvent evaporation based on water-in-dichloromethane (W/O) Pickering high internal phase emulsion (HIPE) templates, which are stabilized using g-HAp nanoparticles. The resultant porous scaffolds demonstrate interconnected and rough pore structures, which can be adjusted readily by varying g-HAp nanoparticle concentration, PCL concentration and the internal phase volume fraction. Moreover, the investigation of mechanical properties and in vitro biomineralization activity shows that the Young's modulus, compressive stress and bioactivity of the fabricated porous scaffolds are significantly enhanced upon increasing the g-HAp nanoparticle concentration. In addition, in vitro drug release studies of the porous scaffolds using ibuprofen (IBU) as a model drug show that the loaded IBU displays a sustained release profile. In vitro cell culture assays confirm that mouse bone mesenchymal stem cells can adhere, spread, and proliferate on the porous scaffolds, indicating that the porous scaffolds are biocompatible. All these results suggest that the fabricated g-HAp-PCL NC scaffolds have a promising potential for bone tissue engineering application.
Collapse
Affiliation(s)
- Yang Hu
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
24
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
25
|
Hu Y, Zou S, Chen W, Tong Z, Wang C. Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating. Colloids Surf B Biointerfaces 2014; 122:559-565. [PMID: 25127362 DOI: 10.1016/j.colsurfb.2014.07.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 11/16/2022]
Abstract
Biodegradable and bioactive nanocomposite (NC) biomaterials with controlled microstructures and able to deliver special drugs have gained increasing attention in bone tissue engineering. In this study, the hydroxyapatite (HAp)/poly(l-lactic acid) (PLLA) NC scaffolds were facilely prepared using solvent evaporation from templating Pickering emulsions stabilized with PLLA-modified HAp (g-HAp) nanoparticles. Then, in vitro mineralization experiments were performed in a simulated body fluid (SBF) to evaluate the bioactivity of the NC scaffolds. Moreover, in vitro drug release of the NC scaffolds using anti-inflammatory drug (ibuprofen, IBU) as the model drug was also investigated. The results showed that the NC scaffolds possessed interconnected pore structures, which could be modulated by varying the g-HAp nanoparticle concentration. The NC scaffolds exhibited excellent bioactivity, since they induced the formation of calcium-sufficient, carbonated apatite nanoparticles on the scaffolds after mineralization in SBF for 3 days. The IBU loaded in the NC scaffolds showed a sustained release profile, and the release kinetic followed the Higuchi model with diffusion process. Thus, solvent evaporation based on Pickering emulsion droplets is a simple and effective method to prepare biodegradable and bioactive porous NC scaffolds for bone repair and replacement applications.
Collapse
Affiliation(s)
- Yang Hu
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Shengwen Zou
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Weike Chen
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Zhen Tong
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
26
|
Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors. Biomaterials 2014; 35:8687-93. [PMID: 25023395 DOI: 10.1016/j.biomaterials.2014.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/11/2014] [Indexed: 11/20/2022]
Abstract
Hydrogels have been extensively used for regenerative medicine strategies given their tailorable mechanical and chemical properties. Gene delivery represents a promising strategy by which to enhance the bioactivity of the hydrogels, though the efficiency and localization of gene transfer have been challenging. Here, we functionalized porous poly(ethylene glycol) hydrogels with heparin-chitosan nanoparticles to retain the vectors locally and enhance lentivirus delivery while minimizing changes to hydrogel architecture and mechanical properties. The immobilization of nanoparticles, as compared to homogeneous heparin and/or chitosan, is essential to lentivirus immobilization and retention of activity. Using this gene-delivering platform, we over-expressed the angiogenic factors sonic hedgehog (Shh) and vascular endothelial growth factor (Vegf) to promote blood vessel recruitment to the implant site. Shh enhanced endothelial recruitment and blood vessel formation around the hydrogel compared to both Vegf-delivering and control hydrogels. The nanoparticle-modified porous hydrogels for delivering gene therapy vectors can provide a platform for numerous regenerative medicine applications.
Collapse
|
27
|
Jang JE, Kim HM, Kim H, Jeon DY, Park CH, Kwon SY, Chung JW, Khang G. Inflammatory Responses to Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds with Variation of Compositions. POLYMER-KOREA 2014. [DOI: 10.7317/pk.2014.38.2.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Boehler RM, Kuo R, Shin S, Goodman AG, Pilecki MA, Gower RM, Leonard JN, Shea LD. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype. Biotechnol Bioeng 2014; 111:1210-21. [PMID: 24375008 DOI: 10.1002/bit.25175] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 02/03/2023]
Abstract
Gene delivery from biomaterials can create an environment that promotes and guides tissue formation. However, the immune response induced upon biomaterial implantation can be detrimental to tissue regeneration. Macrophages play a central role in mediating early phases of this response, and functional "polarization" of macrophages towards M1 (inflammatory) or M2 (anti-inflammatory) phenotypes may bias the local immune state at the implant site. Since gene delivery from biomaterial scaffolds can confer transgene expression in macrophages in vivo, we investigated whether transduction of macrophages with an IL-10 encoding lentivirus can (1) induce macrophage polarization toward an M2 phenotype even in an pro-inflammatory environment, and (2) prevent a shift in polarization from M2 to M1 following exposure to pro-inflammatory stimuli. IL-10 lentivirus delivery to pre-polarized M1 macrophages reduced TNF-α production 1.5-fold when compared to cells treated with either a control virus or a bolus delivery of recombinant IL-10 protein. IL-10 lentivirus delivery to naïve macrophages reduced the amount of TNF-α produced following an inflammatory challenge by 2.5-fold compared to cells treated with both the control virus and recombinant IL-10. At a mechanistic level, IL-10 lentivirus delivery mediated sustained reduction in NF-κB activation and, accordingly, reduced transcription of TNF-α. In sum, lentiviral delivery of IL-10 to macrophages represents a promising strategy for directing and sustaining macrophage polarization towards an M2 phenotype in order to promote local immune responses that facilitate tissue engineering.
Collapse
Affiliation(s)
- R M Boehler
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gower RM, Boehler RM, Azarin SM, Ricci CF, Leonard JN, Shea LD. Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials 2013; 35:2024-31. [PMID: 24309498 DOI: 10.1016/j.biomaterials.2013.11.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
Abstract
Biomaterial scaffolds are central to many tissue engineering strategies as they create a space for tissue growth and provide a support for cell adhesion and migration. However, biomaterial implantation results in unavoidable injury resulting in an inflammatory response, which can impair integration with the host and tissue regeneration. Toward the goal of reducing inflammation, we investigated the hypothesis that a lentiviral gene therapy-based approach to localized and sustained IL-10 expression at a scaffold could modulate the number, relative proportions, and cytokine production of infiltrating leukocyte populations. Flow cytometry was used to quantify infiltration of six leukocyte populations for 21 days following implantation of PLG scaffolds into intraperitoneal fat. Leukocytes with innate immune functions (i.e., macrophages, dendritic cells, neutrophils) were most prevalent at early time points, while T lymphocytes became prevalent by day 14. Reporter gene delivery indicated that transgene expression persisted at the scaffold for up to 28 days and macrophages were the most common leukocyte transduced, while transduced dendritic cells expressed the greatest levels of transgene. IL-10 delivery decreased leukocyte infiltration by 50% relative to controls, increased macrophage IL-10 expression, and decreased macrophage, dendritic cell, and CD4 T cell IFN-γ expression. Thus, IL-10 gene delivery significantly decreased inflammation following scaffold implant into the intraperitoneal fat, in part by modulating cytokine expression of infiltrating leukocytes.
Collapse
Affiliation(s)
- R Michael Gower
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Ryan M Boehler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Samira M Azarin
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Christine F Ricci
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA.
| |
Collapse
|