1
|
Heidarnejad K, Nooreddin Faraji S, Mahfoozi S, Ghasemi Z, Sadat Dashti F, Asadi M, Ramezani A. Breast cancer immunotherapy using scFv antibody-based approaches, a systematic review. Hum Immunol 2024; 85:111090. [PMID: 39214066 DOI: 10.1016/j.humimm.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Kamran Heidarnejad
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shirin Mahfoozi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghasemi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Dashti
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Asadi
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Pardhi E, Yadav R, Chaurasiya A, Madan J, Guru SK, Singh SB, Mehra NK. Multifunctional targetable liposomal drug delivery system in the management of leukemia: Potential, opportunities, and emerging strategies. Life Sci 2023; 325:121771. [PMID: 37182551 DOI: 10.1016/j.lfs.2023.121771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The concern impeding the success of chemotherapy in leukemia treatment is descending efficacy of drugs because of multiple drug resistance (MDR). The previous failure of traditional treatment methods is primarily responsible for the present era of innovative agents to treat leukemia effectively. The treatment option is a chemotherapeutic agent in most available treatment strategies, which unfortunately leads to high unavoidable toxicities. As a result of the recent surge in marketed products, theranostic nanoparticles, i.e., multifunctional targetable liposomes (MFTL), have been approved for improved and more successful leukemia treatment that blends therapeutic and diagnostic characteristics. Since they broadly offer the required characteristics to get past the traditional/previous limitations, such as the absence of site-specific anti-cancer therapeutic delivery and ongoing real-time surveillance of the leukemia target sites while administering therapeutic activities. To prepare MFTL, suitable targeting ligands or tumor-specific antibodies are required to attach to the surface of the liposomes. This review exhaustively covered and summarized the liposomal-based formulation in leukemia treatment, emphasizing leukemia types; regulatory considerations, patents, and clinical portfolios to overcome clinical translation hurdles have all been explored.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Akash Chaurasiya
- Department of Pharmaceutics, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, District. RR, Hyderabad, India
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| |
Collapse
|
3
|
Mahajan S, Aalhate M, Guru SK, Singh PK. Nanomedicine as a magic bullet for combating lymphoma. J Control Release 2022; 347:211-236. [PMID: 35533946 DOI: 10.1016/j.jconrel.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Hematological malignancy like lymphoma originates in lymph tissues and has a propensity to spread across other organs. Managing such tumors is challenging as conventional strategies like surgery and local treatment are not plausible options and there are high chances of relapse. The advent of novel targeted therapies and antibody-mediated treatments has proven revolutionary in the management of these tumors. Although these therapies have an added advantage of specificity in comparison to the traditional chemotherapy approach, such treatment alternatives suffer from the occurrence of drug resistance and dose-related toxicities. In past decades, nanomedicine has emerged as an excellent surrogate to increase the bioavailability of therapeutic moieties along with a reduction in toxicities of highly cytotoxic drugs. Nanotherapeutics achieve targeted delivery of the therapeutic agents into the malignant cells and also have the ability to carry genes and therapeutic proteins to the desired sites. Furthermore, nanomedicine has an edge in rendering personalized medicine as one type of lymphoma is pathologically different from others. In this review, we have highlighted various applications of nanotechnology-based delivery systems based on lipidic, polymeric and inorganic nanomaterials that address different targets for effectively tackling lymphomas. Moreover, we have discussed recent advances and therapies available exclusively for managing this malignancy.
Collapse
Affiliation(s)
- Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
4
|
Ye Q, Lin Y, Li R, Wang H, Dong C. Recent advances of nanodrug delivery system in the treatment of hematologic malignancies. Semin Cancer Biol 2022; 86:607-623. [PMID: 35339668 DOI: 10.1016/j.semcancer.2022.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Although the survival rate of hematological malignancies (HM) has increased in recent years, the unnecessary adverse effect to the body is usually generated by the traditional chemotherapy for HM due to the lack of specificity to tumor tissue. Nanodrug delivery systems have exhibited unique advantages in targetability, stability and reducing toxicity, attracting wide concern, which is expected to be the prevalent alternative for the treatment of HM. In this review, we systemically introduced the current therapeutic strategies and the categories of HM. Subsequently, five key factors including circulation, targeting, penetration, internalization and release involving in tailoring nanoparticles were demonstrated, followed by the introduction of the development of nanodrug delivery-traditional synthetic nanomaterilas, biomimetic cell membrane coating nanomaterials, cell-based nanomaterials as well as immunotherapy combined with nanodrug. Afterwards, the recent advances of nanodrug delivery system for the treatment of HM were introduced. Moreover, the challenge and prospect of nanodrug delivery system in treating HM were discussed. The promising drug delivery system will provide new therapeutic avenues for the treatment of HM.
Collapse
Affiliation(s)
- Qianling Ye
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Yun Lin
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Ruihao Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Huaiji Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Chunyan Dong
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Bhan A, Ansari K, Chen MY, Jandial R. Human induced pluripotent stem cell-derived platelets loaded with lapatinib effectively target HER2+ breast cancer metastasis to the brain. Sci Rep 2021; 11:16866. [PMID: 34654856 PMCID: PMC8521584 DOI: 10.1038/s41598-021-96351-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
Prognosis of patients with HER2+ breast-to-brain-metastasis (BBM) is dismal even after current standard-of-care treatments, including surgical resection, whole-brain radiation, and systemic chemotherapy. Radiation and systemic chemotherapies can also induce cytotoxicity, leading to significant side effects. Studies indicate that donor-derived platelets can serve as immune-compatible drug carriers that interact with and deliver drugs to cancer cells with fewer side effects, making them a promising therapeutic option with enhanced antitumor activity. Moreover, human induced pluripotent stem cells (hiPSCs) provide a potentially renewable source of clinical-grade transfusable platelets that can be drug-loaded to complement the supply of donor-derived platelets. Here, we describe methods for ex vivo generation of megakaryocytes (MKs) and functional platelets from hiPSCs (hiPSC-platelets) in a scalable fashion. We then loaded hiPSC-platelets with lapatinib and infused them into BBM tumor-bearing NOD/SCID mouse models. Such treatment significantly increased intracellular lapatinib accumulation in BBMs in vivo, potentially via tumor cell-induced activation/aggregation. Lapatinib-loaded hiPSC-platelets exhibited normal morphology and function and released lapatinib pH-dependently. Importantly, lapatinib delivery to BBM cells via hiPSC-platelets inhibited tumor growth and prolonged survival of tumor-bearing mice. Overall, use of lapatinib-loaded hiPSC-platelets effectively reduced adverse effects of free lapatinib and enhanced its therapeutic efficacy, suggesting that they represent a novel means to deliver chemotherapeutic drugs as treatment for BBM.
Collapse
Affiliation(s)
- Arunoday Bhan
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Khairul Ansari
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
- Celcuity LLC, Minneapolis, MN, 55446, USA
| | - Mike Y Chen
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
6
|
Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release 2021; 337:571-588. [PMID: 34364920 DOI: 10.1016/j.jconrel.2021.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Hematological malignancies (HMs) typically persisting in the blood, lymphoma, and/or bone marrow invalidate surgery and local treatments clinically used for solid tumors. The presence and drug resistance nature of cancer stem cells (CSCs) further lends HMs hard to cure. The development of new treatments like molecular targeted drugs and antibodies has improved the clinical outcomes for HMs but only to a certain extent, due to issues of low bioavailability, moderate response, occurrence of drug resistance, and/or dose-limiting toxicities. In the past years, polymeric nanomedicines targeting HMs including refractory and relapsed lymphoma, leukemia and multiple myeloma have emerged as a promising chemotherapeutic approach that is shown capable of overcoming drug resistance, delivering drugs not only to cancer cells but also CSCs, and increasing therapeutic index by lessening drug-associated adverse effects. In addition, polymeric nanomedicines have shown to potentiate next-generation anticancer modalities such as therapeutic proteins and nucleic acids in effectively treating HMs. In this review, we highlight recent advance in targeted polymeric nanoformulations that are coated with varying ligands (e.g. cancer cell membrane proteins, antibodies, transferrin, hyaluronic acid, aptamer, peptide, and folate) and loaded with different therapeutic agents (e.g. chemotherapeutics, molecular targeted drugs, therapeutic antibodies, nucleic acid drugs, and apoptotic proteins) for directing to distinct targets (e.g. CD19, CD20, CD22, CD30, CD38, CD44, CD64, CXCR, FLT3, VLA-4, and bone marrow microenvironment) in HMs. The advantages and potential challenges of different designs are discussed.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Hirata Y, Tashima R, Mitsuhashi N, Yoneda S, Ozono M, Fukuta T, Majima E, Kogure K. A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes. Int J Pharm 2021; 607:120966. [PMID: 34352337 DOI: 10.1016/j.ijpharm.2021.120966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Modification with antibodies is a useful strategy for the delivery of nanoparticles to target cells. However, the complexity of the required chemical modifications makes them time-consuming and low efficiency, and the orientation of the antibody is challenging to control. To develop a simple, fast, effective, and orientation-controllable technology, we employed staphylococcal protein A, which can bind to the Fc region of antibodies, as a tool for conjugating antibodies to nanoparticles. Specifically, we modified the C-domain dimer of protein A to contain a lysine cluster to create a molecule, DPACK, that would electrostatically bind to anionic liposomes. Using this protein, antibody-modified liposomes can be prepared in 35 min with two steps: (1) interaction of DPACK with liposomes and (2) interaction of an antibody with DPACK-modified liposomes. Binding efficiencies of DPACK with liposomes and IgG with DPACK-modified liposomes were 75% and 72-84%, respectively. Uptake of liposomes modified with anti-epidermal growth factor receptor (EGFR) antibodies via DPACK by EGFR-expressing cancer cells was significantly higher than that of unmodified liposomes, and the liposomes accumulated in tumors and colocalized with EGFR. This simple, fast, effective and orientation-controllable technology for preparing antibody-modified liposomes will be useful for active targeting drug delivery.
Collapse
Affiliation(s)
- Yuma Hirata
- Faculty of Pharmaceutical Science, Tokushima University, Shomachi-1-78-1, Tokushima, Tokushima 770-8505, Japan
| | - Riho Tashima
- Faculty of Pharmaceutical Science, Tokushima University, Shomachi-1-78-1, Tokushima, Tokushima 770-8505, Japan
| | - Naoto Mitsuhashi
- ProteNova Co., Ltd., 1488-1 Nishimura, Higashikagawa, Kagawa 769-2604, Japan
| | - Shintaro Yoneda
- Grasuate School of Biomedical Sciences, Tokushima University, Shomachi-1-78-1, Tokushima, Tokushima 770-8505, Japan
| | - Mizune Ozono
- Grasuate School of Biomedical Sciences, Tokushima University, Shomachi-1-78-1, Tokushima, Tokushima 770-8505, Japan
| | - Tatsuya Fukuta
- Grasuate School of Biomedical Sciences, Tokushima University, Shomachi-1-78-1, Tokushima, Tokushima 770-8505, Japan; Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama-shi, Wakayama 640-8156, Japan
| | - Eiji Majima
- ProteNova Co., Ltd., 1488-1 Nishimura, Higashikagawa, Kagawa 769-2604, Japan
| | - Kentaro Kogure
- Grasuate School of Biomedical Sciences, Tokushima University, Shomachi-1-78-1, Tokushima, Tokushima 770-8505, Japan.
| |
Collapse
|
8
|
Gold Nanopeanuts as Prospective Support for Cisplatin in Glioblastoma Nano-Chemo-Radiotherapy. Int J Mol Sci 2020; 21:ijms21239082. [PMID: 33260340 PMCID: PMC7730046 DOI: 10.3390/ijms21239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Herein, we propose newly designed and synthesized gold nanopeanuts (Au NPes) as supports for cisplatin (cPt) immobilization, dedicated to combined glioblastoma nano-chemo-radiotherapy. Au NPes offer a large active surface, which can be used for drugs immobilization. Transmission electron microscopy (TEM) revealed that the size of the synthesized Au NPes along the longitudinal axis is ~60 nm, while along the transverse axis ~20 nm. Raman, thermogravimetric analysis (TGA) and differential scanning calorimetry (DCS) measurements showed, that the created nanosystem is stable up to a temperature of 110 °C. MTT assay revealed, that the highest cell mortality was observed for cell lines subjected to nano-chemo-radiotherapy (20–55%). Hence, Au NPes with immobilized cPt (cPt@AuNPes) are a promising nanosystem to improve the therapeutic efficiency of combined nano-chemo-radiotherapy.
Collapse
|
9
|
Makwana V, Karanjia J, Haselhorst T, Anoopkumar-Dukie S, Rudrawar S. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int J Pharm 2020; 593:120117. [PMID: 33259901 DOI: 10.1016/j.ijpharm.2020.120117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Liposomal delivery systems have significantly enhanced the efficacy and safety of chemotherapeutic agents compared to free (non-liposomal) formulations. Liposomes are vesicles made up of lipophilic bilayer and a hydrophilic core which provides perfect opportunity for their application as transport vehicle for various therapeutic and diagnostic agents. Doxorubicin is the most exploited chemotherapeutic agent for evaluation of different liposomal applications, as its physicochemical properties permit high drug entrapment and easy remote loading in pre-formulated liposomes. Pegylated liposomal doxorubicin clinically approved and, on the market, Doxil®, exemplifies the benefits offered upon the surface modification of liposome with polyethylene glycol. This unique formulation prolonged the drug residence time in the circulation and increased accumulation of doxorubicin in tumor tissue via passive targeting (enhanced permeability and retention effect). However, there is ample scope for further improvement in the efficiency of targeting tumors by coupling biological active ligands onto the liposome surface to generate intelligent drug delivery systems. Small biomolecules such as peptides, fraction of antibodies and carbohydrates have the potential to target receptors present on the surface of the malignant cells. Hence, active targeting of malignant cells using functionalised nanocarrier (liposomes encapsulated with doxorubicin) have been attempted which is reviewed in this article.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jasmine Karanjia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
10
|
Huang L, Huang J, Huang J, Xue H, Liang Z, Wu J, Chen C. Nanomedicine - a promising therapy for hematological malignancies. Biomater Sci 2020; 8:2376-2393. [PMID: 32314759 DOI: 10.1039/d0bm00129e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematological tumors are a group of diseases defined as the clonal proliferation of blood-forming cells. In recent years, incidences of hematological malignancies have increased. Traditional methods of diagnosing hematological tumors are primarily based on observing morphological features under light microscopy, and molecular diagnostics and immunological indicators are powerful auxiliary diagnostic methods. However, traditional methods cannot efficiently identify tumor markers and limit the efficiency and accuracy of diagnosis. Although treatment methods have been improved continuously, chemotherapy remains a primary technique for the treatment of hematological tumors. Traditional chemotherapy exhibits poor drug selectivity and lacks good biocompatibility and pharmacokinetic properties. The therapeutic effect is not ideal and the risk of toxic side effects is high. The nanosize and surface charge properties of nanodrugs are effective in improving drug delivery efficiency. The high load and rich surface modification methods of nanomaterials provide various possibilities for improving the biocompatibility and pharmacokinetics of drugs, as well as the targeting of drugs. In addition, a nanomedicine loading platform can load multiple drugs simultaneously and design the optimal proportion of combined drug schemes, which can improve the efficacy of drugs and reduce the occurrence of drug resistance. With their unique physical and chemical properties and biological characteristics, the application of nanoparticles in the diagnosis and treatment of hematological tumors has received considerable attention. In this review, we summarize recent advances in the application of various types of nanostructures for the diagnosis and treatment of hematological malignancies, investigate the advantages of nanomedicine compared with the traditional diagnosis and treatment of hematological tumors, and discuss their biological security and application prospects.
Collapse
Affiliation(s)
- Lifen Huang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang X, Wu J, Zhang M. Advances in the treatment and prognosis of anaplastic lymphoma kinase negative anaplastic large cell lymphoma. ACTA ACUST UNITED AC 2019; 24:440-445. [PMID: 31072226 DOI: 10.1080/16078454.2019.1613290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anaplastic lymphoma kinase negative anaplastic large cell lymphoma (ALK- ALCL) is a definite entity in the WHO 2016 Classification that represents 2-3% of non-Hodgkin lymphoma (NHL) and 12% of T-cell NHL cases. ALK- ALCL lacks ALK protein expression, but expresses CD30 and has morphologic features similar to ALK positive anaplastic large cell lymphoma (ALK+ ALCL). Some studies indicate that ALK- ALCL and ALK+ ALCL possess different molecular and genetic characteristics. Besides, ALK- ALCL is worse than ALK+ ALCL in terms of treatment outcome, prognosis, and long-term survival. This review is aimed at summarizing information about ALK- ALCL, especially with respect to the treatment and prognosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- a Department of Oncology , Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , People's Republic of China
| | - Jingjing Wu
- a Department of Oncology , Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , People's Republic of China
| | - Mingzhi Zhang
- a Department of Oncology , Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , People's Republic of China
| |
Collapse
|
12
|
Vinothini K, Rajendran NK, Munusamy MA, Alarfaj AA, Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:676-687. [PMID: 30948104 DOI: 10.1016/j.msec.2019.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 01/17/2023]
Abstract
Cervical cancer is one of the most occurring cancers and the fourth leading occurrence of cancer in women, worldwide. In this study, we planned to synthesis κ-Carrageenan grafted graphene oxide nanocarrier conjugated with biotin (GO-κ-Car-biotin) for targeted cervical cancer. Doxorubicin (DOX) is a well-known anticancer drug for any type of cancer and it is used to entrap over on the graphene oxide surface via π-π stacking interaction. The chemical function and crystalline nature of the synthesized nanocarrier was characterized by Fourier Transformed Infrared Spectroscopy (FT-IR) and X-ray diffraction Analysis (XRD). The surface morphological study was carried out through Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The in-vitro drug release profile of DOX was carried out by UV-Vis spectrometer at the λmax value of 480 nm. The entrapment of DOX on GO-κ-car-biotin has been observed at 94%. The hydrophilic DOX drug has excellent pH-sensitive drug released in an in-vitro study. The anticancer efficiency of the synthesized GO-based nanocarrier was examined using HeLa cell line in-vitro. Cell viability, proliferation, cytotoxicity, and nuclear chromatin condensation was studied by trypan blue assay, triphosphate assay (ATP), lactate dehydrogenase assay (LDH) and Hoechst staining respectively. Finally, biotin leading GO-κ-Car carrier demonstrated is a promising drug delivery system for cervical cancer treatment.
Collapse
Affiliation(s)
- Kandasamy Vinothini
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulla A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
13
|
Decoration of Anti-CD38 on Nanoparticles Carrying a STAT3 Inhibitor Can Improve the Therapeutic Efficacy Against Myeloma. Cancers (Basel) 2019; 11:cancers11020248. [PMID: 30791634 PMCID: PMC6407065 DOI: 10.3390/cancers11020248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023] Open
Abstract
STAT3 is an oncoprotein which has been shown to contribute to drug resistance in multiple myeloma (MM). Nonetheless, the clinical utility of STAT3 inhibitors in treating MM has been limited, partly related to some of their pharmacologic properties. To overcome these challenges, our group had previously packaged STAT3 inhibitors using a novel formulation of nanoparticles (NP) and found encouraging results. In this study, we aimed to further improve the pharmacologic properties of these NP by decorating them with monoclonal anti-CD38 antibodies. NP loaded with S3I-1757 (a STAT3 inhibitor), labeled as S3I-NP, were generated. S3I-NP decorated with anti-CD38 (labeled as CD38-S3I-NP) were found to have a similar nanoparticular size, drug encapsulation, and loading as S3I-NP. The release of S3I-1757 at 24 h was also similar between the two formulations. Using Cy5.5 labeling of the NP, we found that the decoration of anti-CD38 on these NP significantly increased the cellular uptake by two MM cell lines (p < 0.001). Accordingly, CD38-S3I-NP showed a significantly lower inhibitory concentration at 50% (IC50) compared to S3I-NP in two IL6-stimulated MM cell lines (p < 0.001). In a xenograft mouse model, CD38-S3I-NP significantly reduced the tumor size by 4-fold compared to S3I-NP on day 12 after drug administration (p = 0.006). The efficacy of CD38-S3I-NP in suppressing STAT3 phosphorylation in the xenografts was confirmed by using immunocytochemistry and Western blot analysis. In conclusion, our study suggests that the decoration of anti-CD38 on NP loaded with STAT3 inhibitors can further improve their therapeutic effects against MM.
Collapse
|
14
|
Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ. Co-delivery of Doxorubicin and Ceramide in a Liposomal Formulation Enhances Cytotoxicity in Murine B16BL6 Melanoma Cell Lines. AAPS PharmSciTech 2019; 20:99. [PMID: 30719596 DOI: 10.1208/s12249-019-1316-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
This study reports co-delivery of doxorubicin (DOX) and ceramide in a liposomal system in B16BL6 melanoma cell lines for enhanced cytotoxic effects. Different types of ceramides (C6-ceramide, C8-ceramide, and C8-glucosylceramide) and lipids (1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)) were considered in the preparation of liposomes. DOX was encapsulated within liposome, and ceramide was used as the component of the lipid bilayer. The formulations were optimized for size and size distribution, zeta potential, and DOX encapsulation efficiency (EE). Cytotoxic effect on B16BL6 melanoma cell lines was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ceramide based liposome formulations generally provided a mean diameter < 181 nm, a zeta potential, + 35 mV, and EE > 90% DOX EE. Co-delivery of DOX and C8-ceramide with DOTAP liposomes demonstrated significantly higher cytotoxicity as compared to DOX liposomes without ceramide (P < 0.001), and also showed enhanced cellular uptake by B16BL6 cell lines. This study provides basis for developing a co-delivery system of DOX and ceramide for lowering the dose and dose-related side effects of DOX for the treatment of melanoma.
Collapse
|
15
|
Feng Y, Rao H, Lei Y, Huang Y, Wang F, Zhang Y, Xi S, Wu Q, Shao J. CD30 expression in extranodal natural killer/T-cell lymphoma, nasal type among 622 cases of mature T-cell and natural killer-cell lymphoma at a single institution in South China. CHINESE JOURNAL OF CANCER 2017; 36:43. [PMID: 28486951 PMCID: PMC5424426 DOI: 10.1186/s40880-017-0212-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/05/2016] [Indexed: 01/15/2023]
Abstract
Background Mature T-cell and natural killer (NK)-cell lymphomas compose a heterogeneous group of non-Hodgkin lymphomas, and extranodal NK/T-cell lymphoma, nasal type (ENKTL) is an aggressive subtype with sporadic CD30 expression. However, the significance of CD30 expression in ENKTL is controversial. We aimed to classify a large cohort of patients with mature T-cell and NK-cell lymphomas according to the 2016 World Health Organization (WHO) classification guidelines and to study the association between CD30 expression and prognosis of patients with ENKTL. Methods We selected consecutive patients with mature T-cell and NK-cell lymphomas who attended our institution between September 1, 2009 and August 31, 2013. We classified the lymphomas according to the 2016 revision of the WHO classification of lymphoid neoplasms, analyzed the associations between CD30 expression and clinicopathologic features of ENKTL patients, and evaluated the prognostic implications of CD30 expression. Results We identified 622 consecutive patients with mature T-cell and NK-cell lymphomas, including 317 (51.0%) patients with ENKTL. In addition, CD30 expression was detected in 43 (47.3%) of a subset of 91 patients with ENKTL. No clinicopathologic features were associated with CD30 expression, and CD30 positivity showed no prognostic significance in patients with ENKTL. Conclusions ENKTL is the most common type of mature T-cell and NK-cell lymphoma diagnosed at our institution. CD30 is frequently expressed in ENKTL and represents a therapeutic target; however, it may not be a prognostic marker.
Collapse
Affiliation(s)
- Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Huilan Rao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shaoyan Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Qiuliang Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China. .,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| |
Collapse
|
16
|
Patere SN, Pathak PO, Kumar Shukla A, Singh RK, Kumar Dubey V, Mehta MJ, Patil AG, Gota V, Nagarsenker MS. Surface-Modified Liposomal Formulation of Amphotericin B: In vitro Evaluation of Potential Against Visceral Leishmaniasis. AAPS PharmSciTech 2017; 18:710-720. [PMID: 27222025 DOI: 10.1208/s12249-016-0553-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022] Open
Abstract
Surface modification of liposomes with targeting ligands is known to improve the efficacy with reduced untoward effects in treating infective diseases like visceral leishmaniasis (VL). In the present study, modified ligand (ML), designed by modifying polysaccharide with a long chain lipid was incorporated in liposomes with the objective to target amphotericin B (Amp B) to reticuloendothelial system and macrophages. Conventional liposomes (CL) and surface modified liposomes (SML) were characterized for size, shape, and entrapment efficiency (E.E.). Amp B SML with 3% w/w of ML retained the vesicular nature with particle size of ∼205 nm, E.E. of ∼95% and good stability. SML showed increased cellular uptake in RAW 264.7 cells which could be attributed to receptor-mediated endocytosis. Compared to Amp B solution, Amp B liposomes exhibited tenfold increased safety in vitro in RAW 264.7 and J774A.1 cell lines. Pharmacokinetics and biodistribution studies revealed high t 1/2, area under the curve (AUC)0-24, reduced clearance and prolonged retention in liver and spleen with Amp B SML compared to other formulations. In promastigote and amastigote models, Amp B SML showed enhanced performance with low 50% inhibitory concentration (IC50) compared to Amp B solution and Amp B CL. Thus, due to the targeting ability of ML, SML has the potential to achieve enhanced efficacy in treating VL.
Collapse
|
17
|
Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci Rep 2017; 7:42632. [PMID: 28198453 PMCID: PMC5309782 DOI: 10.1038/srep42632] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Chemotherapy is majorly used for the treatment of many cancers, including lymphoma. However, cytotoxic drugs, utilized in chemotherapy, can induce various side effects on normal tissues because of their non-specific distribution in the body. Natural platelets are used as drug carriers because of their biocompatibility and specific targeting to vascular disorders, such as cancer, inflammation, and thrombosis. In this work, doxorubicin (DOX) was loaded in natural platelets for treatment of lymphoma. Results showed that DOX was loaded into platelets with high drug loading and encapsulation efficiency. DOX did not significantly induce morphological and functional changes in platelets. DOX-platelet facilitated intracellular drug accumulation through “tumor cell-induced platelet aggregation” and released DOX into the medium in a pH-controlled manner. This phenomenon reduced the adverse effects and enhanced the therapeutic efficacy. The growth inhibition of lymphoma Raji cells was enhanced, and the cardiotoxicity of DOX was reduced when DOX was loaded in platelets. DOX-platelet improved the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Thus, platelets can serve as potential drug carriers to deliver DOX for clinical treatment of lymphoma.
Collapse
|
18
|
Legomedicine-A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody-Nanoparticle Conjugates. Bioconjug Chem 2017; 28:539-548. [PMID: 28045502 PMCID: PMC5330650 DOI: 10.1021/acs.bioconjchem.6b00638] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Conjugation of llama
single domain antibody fragments (Variable
Heavy chain domains of Heavy chain antibodies, VHHs) to diagnostic
or therapeutic nanoparticles, peptides, proteins, or drugs offers
many opportunities for optimized targeted cancer treatment. Currently,
mostly nonspecific conjugation strategies or genetic fusions are used
that may compromise VHH functionality. In this paper we present a
versatile modular approach for bioorthogonal VHH modification and
conjugation. First, sortase A mediated transPEGylation is used for
introduction of a chemical click moiety. The resulting clickable VHHs
are then used for conjugation to other groups employing the Cu+-independent strain-promoted alkyne–azide cycloadition
(SPAAC) reaction. Using this approach, tail-to-tail bispecific VHHs
and VHH-targeted nanoparticles are generated without affecting VHH
functionality. Furthermore, this approach allows the bioconjugation
of multiple moieties to VHHs for simple and convenient production
of VHH-based theranostics.
Collapse
|
19
|
Novel Water-Borne Polyurethane Nanomicelles for Cancer Chemotherapy: Higher Efficiency of Folate Receptors Than TRAIL Receptors in a Cancerous Balb/C Mouse Model. Pharm Res 2016; 33:1426-39. [PMID: 26908046 DOI: 10.1007/s11095-016-1884-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Since the introduction of nanocarriers, the delivery of chemotherapeutic agents for treatment of patients with cancer has been possible with better effectiveness. The latest findings are also support that further enhancement in therapeutic effectiveness of these nanocarriers can be attained, if surface decoration with proper targeting agents is considered. METHODS This study aimed at treating a variety of 4T1 murine breast cancer cell line, mainly demonstrating high folate and TRAIL receptor expression of cancerous cells. The therapeutic efficacy of paclitaxel loaded Cremophore EL (Taxol®), paclitaxel loaded waterborne polyurethane nanomicelles (PTX-PU) and paclitaxel loaded waterborne polyurethane nanomicelles conjugated with folate (PTX-PU-FA) and TRAIL (PTX-PU-TRAIL) on treating 4T1 cell was also compared. RESULTS The findings that worth noting are: PTX-PU outperformed Taxol® in a Balb/C mouse model, furthermore, tumor growth was adequately curbed by folate and TRAIL-decorated nanomicelles rather than the unconjugated formulation. Tumors of mice treated with PTX-PU-FA and PTX-PU-TRAIL shrank substantially compared to those treated with Taxol®, PTX-PU and PTX-PU-TRAIL (average 573 mm(3) versus 2640, 846, 717 mm(3) respectively), 45 days subsequent to tumor inoculation. The microscopic study of hematoxylin-eosin stained tumors tissue and apoptotic cell fraction substantiated that the most successful therapeutic effects have been observed for the mice treated with PTX-PU-FA (about 90% in PTX-PU-FA versus 75%, 60%, 15% in PTX-PU-TRAIL, PTX-PU, and Taxol® group respectively). CONCLUSIONS Using folate-targeted nanocarriers to treat cancers characterized by a high level of folate ligand expression is well substantiated by the findings of this study.
Collapse
|
20
|
Jadia R, Scandore C, Rai P. Nanoparticles for Effective Combination Therapy of Cancer. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY AND NANOMEDICINE 2016; 1:http://www.opastonline.com/wp-content/uploads/2016/10/nanoparticles-for-effective-combination-therapy-of-cancer-ijnn-16-003.pdf. [PMID: 28540369 PMCID: PMC5439947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cancer continues to remains a major healthcare problem across the world despite strong translational research efforts towards tackling the disease. Surgery, when possible, along with radiation and chemotherapy continue to remain the mainstay of cancer treatment. Novel targeted therapies or biologics and immunotherapies have recently been approved to improve treatment efficacies while reducing collateral damage to normal, non-cancerous tissues. Combination therapies have shown better results than individual monotherapies in the clinic but often the improvements in therapeutic indices remain marginal, at best. Several combinations treatments have been clinically approved for different types of cancer. Nanomedicine, the application of nanotechnology for medicine, has already made some positive impacts on the clinical care in this fight against cancer. Several nano-sized formulations of conventional chemotherapies have been clinically approved. Nanotechnology provides a novel way to deliver combination therapies with spatiotemporal control over drug release. This review explores the recent advances in nanotechnology-mediated combination treatments against cancer. Multifunctional nanomedicines for mechanism-based combination therapies are likely to deliver the right drugs to the right place at the right time for optimal treatment responses with reduced morbidity. No nanomedicine that combines two or more drugs in a single platform has been approved for clinical use yet. This is because several challenges still remain in the development of nano-combinations including but not limited to - the optimal drug ratios in these nanomedicines, control over these drug ratios over multiple batches, large scale, reproducible manufacturing of these nanomedicines and cost of these nano-combinations among others. These challenges need to be addressed soon using a multidisciplinary approach with collaborations between academia, the pharmaceutical industry and the regulatory bodies involved to ensure that nano-combination therapy delivers on its promise of better treatment outcomes while severely reducing morbidity thus improving the quality of life in cancer patients.
Collapse
Affiliation(s)
- Rahul Jadia
- Biomedical Engineering and Biotechnology Program, University of Massachusetts, University Avenue, Lowell, Massachusetts, US
| | - Cody Scandore
- Department of Chemical Engineering, University of Massachusetts, University Avenue, Lowell, Massachusetts, US
| | - Prakash Rai
- Biomedical Engineering and Biotechnology Program, University of Massachusetts, University Avenue, Lowell, Massachusetts, US,Department of Chemical Engineering, University of Massachusetts, University Avenue, Lowell, Massachusetts, US,Corresponding author: Prakash Rai, Department of Chemical Engineering, University of Massachusetts, 1 University Avenue, Lowell, MA 01854, US;
| |
Collapse
|
21
|
Alavizadeh SH, Akhtari J, Badiee A, Golmohammadzadeh S, Jaafari MR. Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opin Drug Deliv 2015; 13:325-36. [PMID: 26578208 DOI: 10.1517/17425247.2016.1121987] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate whether the conjugation of anti-HER2-Affibody to cisplatin PEGylated liposome can efficiently enhance the therapeutic effectiveness of the targeted liposome. METHODS First, Affibody molecules were incubated with Mal-PEG2000-DSPE micelle to afford formation of a maleimide-mediated thioether coupling to the COOH-terminal cysteine of Affibody. Cisplatin-loaded liposomes composed of hydrogenated soy phosphatidylcholine/ cholesterol/mPEG2000-DSPE (56.5:38.5:5 molar ratio) (150 mM) were prepared and characterized by their physicochemical properties. Affibody-conjugated micelles were then transferred into preformed liposomes by means of post insertion. The cytotoxicity and cellular uptake of Affibody-targeted (affisome) and nontargeted liposomes were tested in HER2(+) SK-BR-3, and the in vivo therapeutic activity was evaluated in TUBO breast cancer models. RESULTS Anti-HER2 affisome demonstrated a higher amount of platinum intracellularly, and affected HER2(+)-SK-BR-3 cell death was at lower concentrations compared with its liposome counterparts. Further, cisplatin-affisome showed greater therapeutic efficiency than nontargeted liposome in HER2(+)-TUBO models. Equally promising, the affisome-treated mice did extend the survival of animals by several days and even left one tumor-free survivor. CONCLUSIONS Affibody-targeting endowed cisplatin liposomes with significantly enhanced, albeit modest, therapeutic activity in HER2-overexpressing tumor model; however, further values are yet to be determined to advance clinical translation of these targeted nanoparticulates.
Collapse
Affiliation(s)
- Seyedeh Hoda Alavizadeh
- a Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Javad Akhtari
- b Immunogenetics Research Center, Department of Physiology and Pharmacology, Faculty of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ali Badiee
- c Nanotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Shiva Golmohammadzadeh
- c Nanotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Reza Jaafari
- a Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
22
|
Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release 2015; 220:275-286. [PMID: 26518722 DOI: 10.1016/j.jconrel.2015.10.044] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/03/2015] [Accepted: 10/24/2015] [Indexed: 12/19/2022]
Abstract
Although liposomes improve the safety and pharmacokinetic properties of free drugs, they have not sufficiently enhanced the therapeutic efficacy compared to them. To address this problem, targeted therapy of tumor cells holds great promise to further enhance therapeutic index and decreases off-target effects compared with non-targeted liposomes. In the context of antibody-mediated targeted cancer therapy, we evaluated the anti-tumor activity and therapeutic efficacy of Doxil, and that of Doxil modified with a monoclonal antibody (mAb) against CD44, which is one of the most well-known surface markers associated with Cancer Stem Cells (CSCs). Flow cytometry analyses and confocal laser scanning microscopy results showed significant enhanced cellular uptake of CD44-targeted Doxil (CD44-Doxil) in CD44-positive C-26 cells compared to Doxil. However, CD44-negative NIH-3T3 cells showed a similar uptake and in vitro cytotoxicity with both CD44-Doxil and non-targeted Doxil. In BALB/c mice bearing C-26 murine carcinoma, CD44-Doxil groups exhibited significantly higher doxorubicin concentration (than Doxil) inside the tumor cells, while their circulation time and distribution profile remained comparable. CD44-Doxil at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition and higher inclination to tumor, indicating the potential of anti-CD44 mAb targeting in therapeutic efficacy improvement. This study provides proof-of-principle for actively tumor-targeting concept and merits further investigations.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Carcinoma/drug therapy
- Carcinoma/immunology
- Carcinoma/metabolism
- Carcinoma/pathology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/analogs & derivatives
- Doxorubicin/chemistry
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Compounding
- Female
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Immunoconjugates/administration & dosage
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Mice
- Mice, Inbred BALB C
- NIH 3T3 Cells
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Polyethylene Glycols/administration & dosage
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/pharmacokinetics
- Polyethylene Glycols/pharmacology
- Tissue Distribution
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Leila Arabi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
23
|
Novel drug delivery liposomes targeted with a fully human anti-VEGF165 monoclonal antibody show superior antitumor efficacy in vivo. Biomed Pharmacother 2015. [DOI: 10.1016/j.biopha.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Yang C, Chu L, Zhang Y, Shi Y, Liu J, Liu Q, Fan S, Yang Z, Ding D, Kong D, Liu J. Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2735-2744. [PMID: 25555064 DOI: 10.1021/am507800e] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-assembling peptide nanofibers (including naturally L-amino acid-based and unnaturally D-amino acid-based ones) have been widely utilized in biomedical research. However, there has been no systematic study on their in vivo stability, distribution, and toxicity. Herein we systematically study the in vivo dynamic biostability, biodistribution, and toxicity of supramolecular nanofibers formed by Nap-GFFYGRGD (L-amino acid-based, L-fibers) and Nap-G(D)F(D)F(D)YGRGD (D-amino acid-based, D-fibers), respectively. The D-fibers have better in vitro and in vivo biostabilities than L-fibers. It is found that D-fibers keep a good integrity in plasma during 24 h, while half of l-fibers are digested upon incubation in plasma for 6 h. The biodistributions of L- and D-fibers are also studied using the iodine-125 radiolabeling technique. The results reveal that L-fibers mainly accumulate in stomach, whereas d-fibers preferentially distribute in liver. Successive administrations of both L- and D-fibers with the dose of 30 mg/kg/dose cause no significant inflammation, liver and kidney function damages, immune reaction, and dysfunction of hematopoietic system. This study will provide fundamental guidelines for utilization of self-assembling peptide-based supramolecular nanomaterials in biomedical applications, such as drug delivery, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liang B, Shahbaz M, Wang Y, Gao H, Fang R, Niu Z, Liu S, Wang B, Sun Q, Niu W, Liu E, Wang J, Niu J. Integrinβ6-Targeted Immunoliposomes Mediate Tumor-Specific Drug Delivery and Enhance Therapeutic Efficacy in Colon Carcinoma. Clin Cancer Res 2014; 21:1183-95. [PMID: 25549721 DOI: 10.1158/1078-0432.ccr-14-1194] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Benjia Liang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Muhammad Shahbaz
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yang Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Huijie Gao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Ruliang Fang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Zhengchuan Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Song Liu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Ben Wang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Qi Sun
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China. Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, Shandong, P.R. China
| | - Weibo Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Enyu Liu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jiayong Wang
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
26
|
Figgett WA, Vincent FB, Saulep-Easton D, Mackay F. Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin Immunol 2014; 26:191-202. [PMID: 24996229 DOI: 10.1016/j.smim.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.
Collapse
Affiliation(s)
- William A Figgett
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabien B Vincent
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Damien Saulep-Easton
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabienne Mackay
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
27
|
Wu C, Li H, Zhao H, Zhang W, Chen Y, Yue Z, Lu Q, Wan Y, Tian X, Deng A. Potentiating antilymphoma efficacy of chemotherapy using a liposome for integration of CD20 targeting, ultra-violet irradiation polymerizing, and controlled drug delivery. NANOSCALE RESEARCH LETTERS 2014; 9:447. [PMID: 25221463 PMCID: PMC4151082 DOI: 10.1186/1556-276x-9-447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/23/2014] [Indexed: 05/06/2023]
Abstract
Unlike most malignancies, chemotherapy but not surgery plays the most important role in treating non-Hodgkin lymphoma (NHL). Currently, liposomes have been widely used to encapsulate chemotherapeutic drugs in treating solid tumors. However, higher in vivo stability owns a much more important position for excellent antitumor efficacy in treating hematological malignancies. In this study, we finely fabricated a rituximab Fab fragment-decorated liposome based on 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), which can form intermolecular cross-linking through the diacetylenic group by ultra-violet (UV) irradiation. Our experimental results demonstrated that after the UV irradiation, the liposomes exhibit better serum stability and slower drug release with a decreased mean diameter of approximately 285 nm. The cellular uptake of adriamycin (ADR) by this Fab-navigated liposome was about four times of free drugs. Cytotoxicity assays against CD20(+) lymphoma cells showed that the half maximal (50%) inhibitory concentration (IC50) of ADR-loaded immunoliposome was only one fourth of free ADR at the same condition. In vivo studies were evaluated in lymphoma-bearing SCID mice. With the high serum stability, finely regulated structure, active targeting strategy via antigen-antibody reaction and passive targeting strategy via enhanced permeability and retention (EPR) effect, our liposome exhibits durable and potent antitumor activities both in the disseminated and localized human NHL xeno-transplant models.
Collapse
Affiliation(s)
- Cong Wu
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huafei Li
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- International Joint Cancer Institute, the Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital affiliated to Soochow University, 303 Jingde Road, Suzhou 215000, China
| | - Weiwei Zhang
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Chen
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Zhanyi Yue
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Qiong Lu
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yuxiang Wan
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xiaoyu Tian
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Anmei Deng
- Department of Laboratory Diagnosis, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|