1
|
Liu L, Zhang Y, Li X, Deng J. Microenvironment of pancreatic inflammation: calling for nanotechnology for diagnosis and treatment. J Nanobiotechnology 2023; 21:443. [PMID: 37996911 PMCID: PMC10666376 DOI: 10.1186/s12951-023-02200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Acute pancreatitis (AP) is a common and life-threatening digestive disorder. However, its diagnosis and treatment are still impeded by our limited understanding of its etiology, pathogenesis, and clinical manifestations, as well as by the available detection methods. Fortunately, the progress of microenvironment-targeted nanoplatforms has shown their remarkable potential to change the status quo. The pancreatic inflammatory microenvironment is typically characterized by low pH, abundant reactive oxygen species (ROS) and enzymes, overproduction of inflammatory cells, and hypoxia, which exacerbate the pathological development of AP but also provide potential targeting sites for nanoagents to achieve early diagnosis and treatment. This review elaborates the various potential targets of the inflammatory microenvironment of AP and summarizes in detail the prospects for the development and application of functional nanomaterials for specific targets. Additionally, it presents the challenges and future trends to develop multifunctional targeted nanomaterials for the early diagnosis and effective treatment of AP, providing a valuable reference for future research.
Collapse
Affiliation(s)
- Lu Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yiqing Zhang
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospita, PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Xinghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
| | - Jun Deng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. Int J Nanomedicine 2022; 17:4367-4381. [PMID: 36160469 PMCID: PMC9507452 DOI: 10.2147/ijn.s385590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatitis is an inflammatory reaction of pancreatic tissue digestion, edema, bleeding and even necrosis caused by activation of pancreatin due to various causes. In particular, patients with severe acute pancreatitis (SAP) often suffer from secondary infection, peritonitis and shock, and have a high mortality rate. Chronic pancreatitis (CP) can cause permanent damage to the pancreas. Due to the innate characteristics, structure and location of the pancreas, there is no effective treatment, only relief of symptoms. Especially, AP is an unpredictable and potentially fatal disease, and the timely diagnosis and treatment remains a major challenge. With the rapid development of nanomedicine technology, many potential tools can be used to address this problem. In this review, we have introduced the pathophysiological processes of pancreatitis to understanding its etiology and severity. Most importantly, the current progress in the diagnosis and treatment tools of pancreatitis based on nanomedicine is summarized and prospected.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610000, People's Republic of China
| | - Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400712, People's Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, People's Republic of China
| |
Collapse
|
3
|
Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022; 10:5032-5053. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
4
|
Jin L, Yang C, Wang J, Li J, Xu N. Recent Advances in Nanotheranostic Agents for Tumor Microenvironment–Responsive Magnetic Resonance Imaging. Front Pharmacol 2022; 13:924131. [PMID: 35814250 PMCID: PMC9257028 DOI: 10.3389/fphar.2022.924131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials integrating a variety of excellent properties (such as controllable/suitable size, surface modifier, and multifunctionality) have attracted increasing attention in the biomedical field and have been considered a new generation of magnetic resonance imaging (MRI) contrast agents (CAs). In recent years, stimuli-responsive nanomaterials with specifically responsive ability have been synthesized as MRI CAs, which can significantly improve the diagnostic sensitivity and accuracy depending on their outstanding performance. Furthermore, the inherent tumor microenvironment (TME) of malignant tumor is considered to possess several unique features, such as low extracellular pH, redox condition, hypoxia, and high interstitial pressure, that are significantly different from healthy tissues. Hence, constructing nanomaterials for TME-responsive MRI as an emerging strategy is expected to overcome the current obstacles to precise diagnosis. This review focuses on recent advances of nanomaterials in their application of TME-responsive MRI that trigger the diagnostic function in response to various endogenous stimulations, including pH, redox, enzyme, and hypoxia. Moreover, the future challenges and trends in the development of nanomaterials serving as TME-responsive MRI CAs are discussed.
Collapse
Affiliation(s)
- Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Yang
- Department of Blood Transfusion, Central Hospital of Changchun, Changchun, China
| | - Jianqiu Wang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department ofGeneral Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Jiannan Li, ; Nannan Xu,
| | - Nannan Xu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Jiannan Li, ; Nannan Xu,
| |
Collapse
|
5
|
Jia W, Xu L, Xu W, Yang M, Zhang Y. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. NANOSCALE ADVANCES 2022; 4:1949-1961. [PMID: 36133408 PMCID: PMC9419146 DOI: 10.1039/d2na00020b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Acute pancreatitis (AP) is a common digestive system disease. The severity of AP ranges from mild edema in the pancreas to severe systemic inflammatory responses leading to peripancreatic/pancreatic necrosis, multi-organ failure and death. Improving the sensitivity of AP diagnosis and developing alternatives to traditional methods to treat AP have gained the attention of researchers. With the continuous rise of nanotechnology, it is being widely used in daily life, biomedicine, chemical energy and many other fields. Studies have demonstrated the effectiveness of nanotechnology in the diagnosis and treatment of AP. Nanotechnology has the advantages of simplicity, rapidity and sensitivity in detecting biomarkers of AP, as well as enhancing imaging, which helps in the early diagnosis of AP. On the other hand, nanoparticles (NPs) have oxidative stress inhibiting and anti-inflammatory effects, and can also be loaded with drugs as well as being used in anti-infection therapy, providing a new approach for the treatment of AP. In this article, we elaborate and summarize on the potential of nanoparticles for diagnostic and therapeutic applications in AP from the current reported literature and experimental results to provide useful guidelines for further research on the application of nanotechnology.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - LinFeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - YeWei Zhang
- Medical School, Southeast University Nanjing 210009 China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
6
|
Jiang X, Zheng YW, Bao S, Zhang H, Chen R, Yao Q, Kou L. Drug discovery and formulation development for acute pancreatitis. Drug Deliv 2020; 27:1562-1580. [PMID: 33118404 PMCID: PMC7598990 DOI: 10.1080/10717544.2020.1840665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis is a sudden inflammation and only last for a short time, but might lead to a life-threatening emergency. Traditional drug therapy is an essential supportive method for acute pancreatitis treatment, yet, failed to achieve satisfactory therapeutic outcomes. To date, it is still challenging to develop therapeutic medicine to redress the intricate microenvironment promptly in the inflamed pancreas, and more importantly, avoid multi-organ failure. The understanding of the acute pancreatitis, including the causes, mechanism, and severity judgment, could help the scientists bring up more effective intervention and treatment strategies. New formulation approaches have been investigated to precisely deliver therapeutics to inflammatory lesions in the pancreas, and some even could directly attenuate the pancreatic damages. In this review, we will briefly introduce the involved pathogenesis and underlying mechanisms of acute pancreatitis, as well as the traditional Chinese medicine and the new drug option. Most of all, we will summarize the drug delivery strategies to reduce inflammation and potentially prevent the further development of pancreatitis, with an emphasis on the bifunctional nanoparticles that act as both drug delivery carriers and therapeutics.
Collapse
Affiliation(s)
- Xue Jiang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Long L, Deng L, Wang L, Wen S, Luo L, Liang L, Ding L, Wu J, Ye Z, Deng DYB. P-Selectin-Based Dual-Model Nanoprobe Used for the Specific and Rapid Visualization of Early Detection toward Severe Acute Pancreatitis in Vivo. ACS Biomater Sci Eng 2020; 6:5857-5865. [PMID: 33320563 DOI: 10.1021/acsbiomaterials.0c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identifying severe acute pancreatitis (SAP) as soon as possible is critical for achieving optimal outcomes and saving lives. In this study, a novel P-selectin-targeted, NIR fluorescent dye (Cy 5.5)-labeled dual-modal nanoprobe based on diethylenetriaminepentaacetic chelates (Gd-DTPA-Cy5.5-PsLmAb) was constructed for the bimodal imaging of SAP at the early stage. Gd-DTPA-Cy5.5-PsLmAb was prepared, and its structure was characterized by Fourier transform infrared spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy, and its stability was evaluated. Biocompatibility was evaluated by the hemolysis and cytotoxicity assays. The enzyme-linked immunosorbent assay was used to detect and evaluate the expression of P-selectin in the peripheral blood of 11 patients with acute pancreatitis (AP) and 5 healthy volunteers. The bimodal imaging ability of Gd-DTPA-Cy5.5-PsLmAb nanoprobes was evaluated via near-infrared fluorescence (NIRF) and magnetic resonance imaging (MRI) in AP animal models in vivo. Gd-DTPA-Cy5.5-PsLmAb showed low toxicity to human embryonic kidney cells (293T cells) and good blood compatibility. The P-selectin levels of humans and rats in the mild acute pancreatitis (MAP)/SAP stage were significantly higher than those in the control group and reached the highest level at the SAP stage. Furthermore, Gd-DTPA-Cy5.5-PsLmAb nanoprobes showed clear NIRF imaging of mouse pancreas at the MAP stage and SAP stage by a fluorescence signal at 6.09 × 108 and 1.95 × 109, respectively. Meanwhile, Gd-DTPA-Cy5.5-PsLmAb nanoprobes also successfully showed the T1-weighted MR signal of rat pancreas at the MAP stage, but Gd-DTPA seldom showed any signal increase at the MAP stage; Gd-DTPA-Cy5.5-PsLmAb and Gd-DTPA could show an increasing MR signal of rat pancreas at the SAP stage. Gd-DTPA-Cy5.5-PsLmAb proved to offer a stronger signal than Gd-DTPA.Our findings indicate that Gd-DTPA-Cy5.5-PsLmAb is an effective and specific MR/NIRF dual nanoprobe for bimodal imaging, providing a promising diagnostic approach for early SAP in clinic.
Collapse
Affiliation(s)
- Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lingna Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liqun Liang
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Lu Ding
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518040, China
| | - David Y B Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Preparation and Anti-Mold Properties of Nano-ZnO/Poly( N-isopropylacrylamide) Composite Hydrogels. Molecules 2020; 25:molecules25184135. [PMID: 32927655 PMCID: PMC7570928 DOI: 10.3390/molecules25184135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to overcome drawbacks of the inhomogeneous dispersion and facile agglomeration of nano-ZnO/poly(N-isopropylacrylamide) composite hydrogels (nano-ZnO/PNIPAm composite hydrogels) during synthesis and improve the anti-mold property of the nano-ZnO/PNIPAm composite hydrogels. Here, nano-ZnO/PNIPAm composite hydrogels were prepared by the radical polymerization method. Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), differential scanning calorimeter (DSC), and dynamic light scattering (DLS) were used to characterize the effects of different dispersants on the particle sizes, dispersions, and phase transition characteristics of the nano-ZnO/PNIPAm composite hydrogels. The anti-mold properties of nano-ZnO/PNIPAm composite hydrogels were studied. Results revealed that the nano-ZnO/PNIPAm composite hydrogel prepared by the addition of nano-ZnO dispersion liquid exhibited the smallest particle size, the most homogeneous dispersion, and the highest stability. The addition of the dispersant did not change the phase transition characteristics of nano-ZnO/PNIPAm, and the nano-ZnO/PNIPAm composite hydrogels (Pf) exhibited good anti-mold properties to the bamboo mold.
Collapse
|
9
|
Ellis CM, Pellico J, Davis JJ. Magnetic Nanoparticles Supporting Bio-responsive T1/ T2 Magnetic Resonance Imaging. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4096. [PMID: 31817929 PMCID: PMC6947368 DOI: 10.3390/ma12244096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
: The use of nanoparticulate systems as contrast agents for magnetic resonance imaging (MRI) is well-established and known to facilitate an enhanced image sensitivity within scans of a particular pathological region of interest. Such a capability can enable both a non-invasive diagnosis and the monitoring of disease progression/response to treatment. In this review, magnetic nanoparticles that exhibit a bio-responsive MR relaxivity are discussed, with pH-, enzyme-, biomolecular-, and protein-responsive systems considered. The ability of a contrast agent to respond to a biological stimulus provides not only enriched diagnostic capabilities over corresponding non-responsive analogues, but also an improved longitudinal monitoring of specific physiological conditions.
Collapse
Affiliation(s)
| | | | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK; (C.M.E.); (J.P.)
| |
Collapse
|
10
|
Zhou X, Cao X, Tu H, Zhang ZR, Deng L. Inflammation-Targeted Delivery of Celastrol via Neutrophil Membrane-Coated Nanoparticles in the Management of Acute Pancreatitis. Mol Pharm 2019; 16:1397-1405. [PMID: 30753778 DOI: 10.1021/acs.molpharmaceut.8b01342] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Celastrol (CLT)-loaded PEG-PLGA nanoparticles (NPs/CLT) coated with neutrophil membranes (NNPs/CLT) were explored for the management of acute pancreatitis (AP). PEG-PLGA nanoparticles sized around 150 nm were proven to selectively accumulate in the pancreas in rats with AP. NNPs were found to overcome the blood-pancreas barrier and specifically distributed to the pancreatic tissues. Moreover, NNPs showed more selective accumulation in the pancreas than nanoparticles without any membrane coating in AP rats. Compared to CLT solution and the NPs/CLT group, NNPs/CLT significantly downregulated the levels of serum amylase and pancreatic myeloperoxidase in AP rats. Also, using NNPs as the delivery vehicle significantly reduced the systemic toxicity of CLT in AP rats. Together, these results suggest that NNPs/CLT represent a highly promising delivery vehicle for the targeted therapy of AP.
Collapse
Affiliation(s)
- Xu Zhou
- Sichuan Provincial Orthopedic Hospital , Chengdu 610041 , China.,Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Xi Cao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - He Tu
- Sichuan Provincial Orthopedic Hospital , Chengdu 610041 , China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Li Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
11
|
Mortezazadeh T, Gholibegloo E, Alam NR, Dehghani S, Haghgoo S, Ghanaati H, Khoobi M. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:487-500. [PMID: 30730021 DOI: 10.1007/s10334-019-00738-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/22/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES In this study, a novel targeted MRI contrast agent was developed by coating gadolinium oxide nanoparticles (Gd2O3 NPs) with β-cyclodextrin (CD)-based polyester and targeted by folic acid (FA). MATERIALS AND METHODS The developed Gd2O3@PCD-FA MRI contrast agent was characterized and evaluated in relaxivity, in vitro cell targeting, cell toxicity, blood compatibility and in vivo tumor MR contrast enhancement. RESULTS In vitro cytotoxicity and hemolysis assays revealed that Gd2O3@PCD-FA NPs have no significant cytotoxicity after 24 and 48 h against normal human breast cell line (MCF-10A) at concentration of up to 50 µg Gd+3/mL and have high blood compatibility at concentration of up to 500 µg Gd+3/mL. In vitro MR imaging experiments showed that Gd2O3@PCD-FA NPs enable targeted contrast T1- and T2-weighted MR imaging of M109 as overexpressing folate receptor cells. Besides, the in vivo analysis indicated that the maximum contrast-to-noise ratio (CNR) of tumor in mice increased after injection of Gd2O3@PCD-FA up to 5.89 ± 1.3 within 1 h under T1-weighted imaging mode and reduced to 1.45 ± 0.44 after 12 h. While CNR increased up to maximum value of 1.98 ± 0.28 after injection of Gd2O3@PCD within 6 h and reduced to 1.12 ± 0.13 within 12 h. CONCLUSION The results indicate the potential of Gd2O3@PCD-FA to serve as a novel targeted nano-contrast agent in MRI.
Collapse
Affiliation(s)
- Tohid Mortezazadeh
- Department of Medical Physic, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Gholibegloo
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Nader Riyahi Alam
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Haghgoo
- Pharmaceutical Department, Food and Drug Laboratory Research Center, Food and Drug Organization (FDO), Ministry of Health, Imam St., Valiasr Cross, Tehran, 1113615911, Iran
| | - Hossein Ghanaati
- Pharmaceutical Department, Food and Drug Laboratory Research Center, Food and Drug Organization (FDO), Ministry of Health, Imam St., Valiasr Cross, Tehran, 1113615911, Iran
- Medical Imaging Center, Imam Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz Blvd, Tehran, 1419733141, Iran
| | - Mehdi Khoobi
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran.
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Luo Y, Kim EH, Flask CA, Clark HA. Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging. ACS NANO 2018; 12:5761-5773. [PMID: 29851460 PMCID: PMC6281809 DOI: 10.1021/acsnano.8b01640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A suite of imaging tools for detecting specific chemicals in the central nervous system could accelerate the understanding of neural signaling events critical to brain function and disease. Here, we introduce a class of nanoparticle sensors for the highly specific detection of acetylcholine in the living brain using magnetic resonance imaging. The nanosensor is composed of acetylcholine-catalyzing enzymes and pH-sensitive gadolinium contrast agents co-localized onto the surface of polymer nanoparticles, which leads to changes in T1 relaxation rate (1/ T1). The mechanism of the sensor involves the enzymatic hydrolysis of acetylcholine leading to a localized decrease in pH which is detected by the pH-sensitive gadolinium chelate. The concomitant change in 1/ T1 in vitro measured a 20% increase from 0 to 10 μM acetylcholine concentration. The applicability of the nanosensors in vivo was demonstrated in the rat medial prefrontal cortex showing distinct changes in 1/ T1 induced by pharmacological stimuli. The highly specific acetylcholine nanosensor we present here offers a promising strategy for detection of cholinergic neurotransmission and will facilitate our understanding of brain function through chemical imaging.
Collapse
Affiliation(s)
- Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eric H. Kim
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chris A. Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
13
|
Yin T, Liu Y, Peeters R, Feng Y, Ni Y. Pancreatic imaging: Current status of clinical practices and small animal studies. World J Methodol 2017; 7:101-107. [PMID: 29026690 PMCID: PMC5618143 DOI: 10.5662/wjm.v7.i3.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Different causative factors acting on the pancreas can result in diseases such as pancreatitis, diabetes and pancreatic tumors. The high incidence and mortality of pancreatic diseases have placed diagnostic imaging in a crucial position in daily clinical practice. In this mini-review article different pancreatic imaging techniques are discussed, from the standard clinical imaging modalities and state of the art clinical magnetic resonance imaging techniques to current situations in pre-clinical pancreatic imaging studies. In particular, the challenges of pre-clinical rodent pancreatic imaging are addressed, with both the image acquisition techniques and the post-processing methods for rodent pancreatic imaging elaborated.
Collapse
Affiliation(s)
- Ting Yin
- Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Yewei Liu
- Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Ronald Peeters
- Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Yuanbo Feng
- Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Yicheng Ni
- Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
- Department of Radiology, University Hospitals, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury. Oncotarget 2017; 8:58985-58999. [PMID: 28938612 PMCID: PMC5601708 DOI: 10.18632/oncotarget.19775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
The transplantation of bone marrow mesenchymal stem cells (BMSCs) to repair spinal cord injury (SCI) has become a promising therapy. However, there is still a lack of visual evidence directly implicating the transplanted cells as the source of the improvement of spinal cord function. In this study, BMSCs were labeled with NF-200 promoter and lipase-activated gadolinium-containing nanoparticles (Gd-DTPA-FA). Double labeled BMSCs were implanted into spinal cord transaction injury in rat models in situ, the function recovery was evaluated on 1st, 7th, 14th, 28 th days by MRI, Diffusion Tensor Imaing, CT imaging and post-processing, and histological observations. BBB scores were used for assessing function recovery. After transplantation of BMSCs, the hypersignal emerged in spinal cord in T1WI starting at day 7 that was focused at the injection site, which then increased and extended until day 14. Subsequently, the increased signal intensity area rapidly spread from the injection site to entire injured segment lasting four weeks. The diffusion tensor tractography and histological analysis both showed the nerve fibre from dividing to connecting partly. Immunofluorescence showed higher expression of NF-200 in Repaired group than Injury group. Electron microscopy showed detachment and loose of myelin lamellar getting better in Repaired group compared with the Injury group. BBB scores in Repaired group were significantly higher than those of injury animals. Our study suggests that the migration and distribution of Gd-DTPA-FA labeled BMSCs can be tracked using MRI. Transplantation of BMSCs represents a promising potential strategy for the repair of SCI.
Collapse
|
15
|
Tian B, Liu R, Chen S, Chen L, Liu F, Jia G, Dong Y, Li J, Chen H, Lu J. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis. Int J Nanomedicine 2017; 12:1127-1141. [PMID: 28260882 PMCID: PMC5325132 DOI: 10.2147/ijn.s123290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. The symptoms, treatment, and prognosis of mild and severe AP are different, and severe AP is a potentially life-threatening disease with a high incidence of complications and high mortality rate. Thus, it is urgent to develop an effective approach to reliably discriminate between mild and severe AP. Methods We have developed novel gadolinium-diethylenetriaminepentaacetic (Gd-DTPA)-loaded mannosylated liposomes (named thereafter M-Gd-NL) that preferably target macrophages in AP. The targeting ability of M-Gd-NL toward macrophages in AP and its ability to discriminate between mild and severe AP were evaluated. Results The liposomes were of desired particle size (~100 nm), Gd-DTPA encapsulation efficiency (~85%), and stability. M-Gd-NL and non-targeted Gd-DTPA-loaded liposomes (Gd-NL) exhibited increased relaxivity compared with Gd-DTPA. Compared with Gd-NL and Gd-DTPA, M-Gd-NL showed increased uptake in macrophages, resulting in increased T1 imaging ability both in vitro (macrophage cell line) and in vivo (severe AP model). Importantly, M-Gd-NL had the ability to discriminate between mild and severe AP, as reflected by a significantly higher T1 magnetic resonance imaging signal in severe AP than in mild AP. M-Gd-NL did not show severe organ toxicity in rats. Conclusion Our data suggest that M-Gd-NL had enhanced magnetic resonance imaging ability by targeting macrophages in AP and good ability to discriminate between mild and severe AP. We believe that M-Gd-NL could shed new light on the diagnosis of AP in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huaiwen Chen
- Center of Clinical and Translational Medicine, Shanghai Changhai Hospital, The Second Military Medical University; Sunlipo Biotech Research Center for Nanomedicine, Shanghai, People's Republic of China
| | | |
Collapse
|
16
|
Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics 2017; 7:538-558. [PMID: 28255348 PMCID: PMC5327631 DOI: 10.7150/thno.16684] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.
Collapse
Affiliation(s)
- Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| |
Collapse
|
17
|
Abstract
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Stanford University , 3155 Porter Drive, #1214, Palo Alto, California 94304-5483, United States
| | - Sanjiv Sam Gambhir
- The James H. Clark Center , 318 Campus Drive, First Floor, E-150A, Stanford, California 94305-5427, United States
| |
Collapse
|
18
|
Gharpure KM, Wu SY, Li C, Lopez-Berestein G, Sood AK. Nanotechnology: Future of Oncotherapy. Clin Cancer Res 2016; 21:3121-30. [PMID: 26180057 DOI: 10.1158/1078-0432.ccr-14-1189] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise.
Collapse
Affiliation(s)
- Kshipra M Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chun Li
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
19
|
Yang M, Wang T, Wang Y, Jiang C, Chen J, Zhao Y, Wang H, Jiang Y, Sun G, Liu J. Ultra-small and size tunable PVP-NaGdF4:Dy nanoparticles with high biocompatibility for multimodal tumor imaging. RSC Adv 2016. [DOI: 10.1039/c6ra18780c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ultra-small PVP-NaGdF4:Dy nanoprobes were prepared and they could induce obvious signal enhancement in T1/T2-weighted MRI and CT imaging.
Collapse
|
20
|
Walia S, Sharma S, Markand Kulurkar P, Patial V, Acharya A. A bimodal molecular imaging probe based on chitosan encapsulated magneto-fluorescent nanocomposite offers biocompatibility, visualization of specific cancer cells in vitro and lung tissues in vivo. Int J Pharm 2015; 498:110-8. [PMID: 26680315 DOI: 10.1016/j.ijpharm.2015.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/27/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
Abstract
Multifunctional hybrid nanocomposite material, consists of chitosan encapsulated iron oxide (as MRI contrasting agent), CdS (as fluorescent probe) nanoparticles and podophyllotoxin (as anticancer drug) was synthesized and characterized. The TEM studies suggested the size of the NPs to be in the range of 80-100 nm. These nanocomposites were treated with different cancer cell lines viz., KB, C6 and A549 cells. Fluorescence imaging and Perl's Prussian blue staining confirmed the presence of these nanocomposites inside both KB and C6 cells but not in A549 cells. Cytotoxicity experiments revealed that these biopolymer coated nanocomposites showed minimal toxicity towards cancerous cells. Further the intraperitoneal administration of one of the nanoformulations to Wistar rats suggested deposition of these nanocomposites in the lungs. The hematological, biochemical and histopathological analysis confirmed that these nanocomposites are safe to use as a novel dual mode imaging material.
Collapse
Affiliation(s)
- Shanka Walia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Supriya Sharma
- Pharmacology and Toxicology Laboratory, Food Nutraceutical and Quality Control Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Pankaj Markand Kulurkar
- Pharmacology and Toxicology Laboratory, Food Nutraceutical and Quality Control Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food Nutraceutical and Quality Control Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
21
|
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:271-99. [PMID: 26314803 DOI: 10.1002/wnan.1364] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.
Collapse
Affiliation(s)
- Brittany L Banik
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Pouria Fattahi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
22
|
Silva SR, Duarte ÉC, Ramos GS, Kock FVC, Andrade FD, Frézard F, Colnago LA, Demicheli C. Gadolinium(III) Complexes with N-Alkyl-N-methylglucamine Surfactants Incorporated into Liposomes as Potential MRI Contrast Agents. Bioinorg Chem Appl 2015; 2015:942147. [PMID: 26347596 PMCID: PMC4546952 DOI: 10.1155/2015/942147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Complexes of gadolinium(III) with N-octanoyl-N-methylglucamine (L8) and N-decanoyl-N-methylglucamine (L10) with 1 : 2 stoichiometry were synthesized and characterized by elemental analysis, electrospray ionization-tandem mass spectrometry (ESI-MS), infrared (IR) spectroscopy, and molar conductivity measurements. The transverse (r 2) and longitudinal (r 1) relaxivity protons were measured at 20 MHz and compared with those of the commercial contrasts. These complexes were incorporated in liposomes, resulting in the increase of the vesicle zeta potential. Both the free and liposome-incorporated gadolinium complexes showed high relaxation effectiveness, compared to commercial contrast agent gadopentetate dimeglumine (Magnevist). The high relaxivity of these complexes was attributed to the molecular rotation that occurs more slowly, because of the elevated molecular weight and incorporation in liposomes. The results establish that these paramagnetic complexes are highly potent contrast agents, making them excellent candidates for various applications in molecular MR imaging.
Collapse
Affiliation(s)
- Simone Rodrigues Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Érica Correia Duarte
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Guilherme Santos Ramos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Fabiana Diuk Andrade
- Embrapa Instrumentação, Empresa Brasileira de Pesquisa Agropecuária, 13560-970 São Carlos, SP, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Luiz Alberto Colnago
- Embrapa Instrumentação, Empresa Brasileira de Pesquisa Agropecuária, 13560-970 São Carlos, SP, Brazil
| | - Cynthia Demicheli
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
23
|
Ye Z, Zhou Z, Ayat N, Wu X, Jin E, Shi X, Lu ZR. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent. CONTRAST MEDIA & MOLECULAR IMAGING 2015. [PMID: 26218648 DOI: 10.1002/cmmi.1655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Zhuxian Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xueming Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Erlei Jin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoyue Shi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
24
|
Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005-2014. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:245-65. [PMID: 25355685 PMCID: PMC4414668 DOI: 10.1002/cmmi.1629] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including ones that employ nuclei other than (1) H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Chemistry and Biochemistry, University of Arizona, USA
| | - Adam S Bernstein
- Department of Biomedical Engineering, University of Arizona, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, USA
- Department of Biomedical Engineering, University of Arizona, USA
- Department of Medical Imaging, University of Arizona, USA
- University of Arizona Cancer Center, University of Arizona, USA
| |
Collapse
|
25
|
Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. NANOSCALE 2015; 7:4291-305. [PMID: 25680099 DOI: 10.1039/c4nr07682f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanotechnology is a growing science that has applications in various areas of medicine. The composition of nanocarriers for drug delivery is critical to guarantee high therapeutic performance when targeting specific host sites. Applications of nanotechnology are prevalent in the diagnosis and treatment of infectious and inflammatory diseases. This review summarizes recent advancements in the application of nanotechnology to the therapy of infectious and inflammatory diseases. The major focus is on the design and fabrication of various nanomaterials, characteristics and physicochemical properties of drug-loaded nanocarriers, and the use of these nanoscale drug delivery systems in treating infectious and inflammatory diseases, such as AIDS, hepatitis, tuberculosis, melanoma, and representative inflammatory diseases. Clinical trials and future perspective of the use of nanocarriers are also discussed in detail. We hope that such a review will be valuable to researchers who are exploring nanoscale drug delivery systems for the treatment of specific infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Ufuoma Ikoba
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Liu Q, Chen S, Chen J, Du J. An Asymmetrical Polymer Vesicle Strategy for Significantly Improving T1 MRI Sensitivity and Cancer-Targeted Drug Delivery. Macromolecules 2015. [DOI: 10.1021/ma502255s] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiuming Liu
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shuai Chen
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jing Chen
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
27
|
Li Y, Duong HTT, Laurent S, MacMillan A, Whan RM, Elst LV, Muller RN, Hu J, Lowe A, Boyer C, Davis TP. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity. Adv Healthc Mater 2015; 4:148-56. [PMID: 24985790 DOI: 10.1002/adhm.201400164] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/27/2014] [Indexed: 12/12/2022]
Abstract
Dual-functional star polymers (diameters 15 nm) are synthesized producing nanoparticles with excellent colloidal stability in both water and serum. The nanoparticles are built with aldehyde groups in the core and activated esters in the arms. The different reactivity of the two functional groups to sequentially react with different amino compounds is exploited; doxorubicin (DOX) and 1-(5-amino-3-aza-2-oxypentyl)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO3A-tBu-NH2 )-a chelating agent effective for the complexation of Gadolinium ions (Gd). The activated ester group is employed to attach the DO3A chelating agent, while the aldehyde groups are exploited for DOX conjugation, providing a controlled release mechanism for DOX in acidic environments. DOX/Gd-loaded nanoparticles are rapidly taken up by MCF-7 breast cancer cells, subsequently releasing DOX as demonstrated using in vitro fluorescence lifetime imaging microscopy (FLIM). Endosomal, DOX release is observed, using a phasor plot representation of the fluorescence lifetime data, showing an increase of native DOX with time. The MRI properties of the stars are assessed and the relaxivity of Gd loaded in stars is three times higher than conventional organic Gd/DO3A complexes. The DOX/Gd-conjugated nanoparticles yield a similar IC50 to native DOX for breast cancer cell lines, confirming that DOX integrity is conserved during nanoparticle attachment and release.
Collapse
Affiliation(s)
- Yang Li
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Hien T. T. Duong
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
| | - Alexandre MacMillan
- Biomedical Imaging Facility; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Renee Megan Whan
- Biomedical Imaging Facility; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Luce Vander Elst
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
| | - Robert N. Muller
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
- CMMI - Center of Microscopy and Molecular Imaging; Rue Adrienne Bolland, 8 B-6041 Gosselies Belgium
| | - Jinming Hu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Andrew Lowe
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| |
Collapse
|
28
|
Liu T, Liu X, Yao Y, Zhou J, Zhu J, Sun G, He D. One-step synthesis of surface passivated carbon microspheres for enhanced photoluminescence and their application in multifunctional magnetic-fluorescent imaging. RSC Adv 2015. [DOI: 10.1039/c5ra01120e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A carbon@Gd-DTPA microspheres bifunctional contrast agent was prepared and applied for MR imaging and luminescent imaging. The primary Na3cit molecules have been used as an intermedium to conjugate Gd-DTPA and surface passivation agents to improve photoluminescence.
Collapse
Affiliation(s)
- Tian Liu
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xunwei Liu
- Department of Medical Imaging
- Jinan Military General Hospital
- Jinan
- P. R. China
| | - Yanjie Yao
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Juan Zhou
- National Engineering Research Center for Nanotechnology
- Shanghai 200241
- P. R. China
| | - Jun Zhu
- National Engineering Research Center for Nanotechnology
- Shanghai 200241
- P. R. China
| | - Gang Sun
- Department of Medical Imaging
- Jinan Military General Hospital
- Jinan
- P. R. China
| | - Dannong He
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
- National Engineering Research Center for Nanotechnology
| |
Collapse
|
29
|
Wang J, Ren L, Li J, Huang J, Cheng D, Shuai X. Effective siRNA therapy of hepatoma mediated by a nonviral vector with MRI-visibility and biodegradability. RSC Adv 2015. [DOI: 10.1039/c4ra16870d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A biodegradable nanocarrier, PLI-SPION, was used to simultaneously deliver survivin-specific siRNA and MRI contrast agent SPIO.
Collapse
Affiliation(s)
- Jin Wang
- Department of Radiology
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou 510630
- China
| | - Linglan Ren
- Department of Radiology
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou 510630
- China
- PCFM Lab of Ministry of Education
| | - Jingguo Li
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jinsheng Huang
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Du Cheng
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
30
|
Affiliation(s)
- Chun Li
- Department of Cancer Systems Imaging—Unit 59, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, Tel: 713-792-5182,
| |
Collapse
|
31
|
Yin Q, Jin X, Yang G, Jiang C, Song Z, Sun G. Biocompatible folate-modified Gd3+/Yb3+-doped ZnO nanoparticles for dualmodal MRI/CT imaging. RSC Adv 2014. [DOI: 10.1039/c4ra08100e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate-modified ZnO:Gd,Yb nanoprobes with good stability and biocompatibility can efficiently induce positive contrast enhancement in T1-weighted MRI and CT imaging.
Collapse
Affiliation(s)
- Qi Yin
- Chemistry and Life Science School
- Changchun University of Technology
- Changchun, P. R. China
| | - Xiaoying Jin
- Chemistry and Life Science School
- Changchun University of Technology
- Changchun, P. R. China
- Advanced Institute of Materials Science
- Changchun University of Technology
| | - Guocheng Yang
- Chemistry and Life Science School
- Changchun University of Technology
- Changchun, P. R. China
- Advanced Institute of Materials Science
- Changchun University of Technology
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, P. R. China
| | - Zhongkai Song
- Chemistry and Life Science School
- Changchun University of Technology
- Changchun, P. R. China
| | - Guoying Sun
- Chemistry and Life Science School
- Changchun University of Technology
- Changchun, P. R. China
- Advanced Institute of Materials Science
- Changchun University of Technology
| |
Collapse
|