1
|
Ho HT, Phan TNT, Bonnevide M, Malicki N, Couty M, Jestin J, Gigmes D. Photolabile Well-Defined Polystyrene Grafted on Silica Nanoparticle via Nitroxide-Mediated Polymerization (NMP). Macromol Rapid Commun 2021; 42:e2100181. [PMID: 34142733 DOI: 10.1002/marc.202100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Herein, the synthesis of a novel nitroxide-mediated polymerization (NMP) initiator bearing a photolabile ortho-nitrobenzyl (oNB) group allowing surface-initiated NMP preparation of well-defined photoresponsive polystyrene grafted on silica nanoparticles is described. The photocleavable and photoresponsive properties of the prepared materials are demonstrated using small angle X-ray scattering (SAXS) characterization.
Collapse
Affiliation(s)
- Hien The Ho
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, Avenue Escadrille Normandie Niemen, Marseille, France.,Laboratoire Léon Brillouin, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Trang N T Phan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, Avenue Escadrille Normandie Niemen, Marseille, France
| | - Marine Bonnevide
- Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Clermont Ferrand Cedex 9, F-63 040, France
| | - Nicolas Malicki
- Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Clermont Ferrand Cedex 9, F-63 040, France
| | - Marc Couty
- Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, Clermont Ferrand Cedex 9, F-63 040, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, Avenue Escadrille Normandie Niemen, Marseille, France
| |
Collapse
|
2
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Jiang C, Chen J, Li Z, Wang Z, Zhang W, Liu J. Recent advances in the development of polyethylenimine-based gene vectors for safe and efficient gene delivery. Expert Opin Drug Deliv 2019; 16:363-376. [DOI: 10.1080/17425247.2019.1604681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Jiatong Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Zhuoting Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Zitong Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
4
|
Li Y, Chakraborty A, Chen J, Xu Q. Combinatorial Library of Light-Cleavable Lipidoid Nanoparticles for Intracellular Drug Delivery. ACS Biomater Sci Eng 2019; 5:2391-2398. [DOI: 10.1021/acsbiomaterials.9b00445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Anirban Chakraborty
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Paolini MS, Fenton OS, Bhattacharya C, Andresen JL, Langer R. Polymers for extended-release administration. Biomed Microdevices 2019; 21:45. [DOI: 10.1007/s10544-019-0386-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Jiang C, Qi Z, Jia H, Huang Y, Wang Y, Zhang W, Wu Z, Yang H, Liu J. ATP-Responsive Low-Molecular-Weight Polyethylenimine-Based Supramolecular Assembly via Host-Guest Interaction for Gene Delivery. Biomacromolecules 2018; 20:478-489. [PMID: 30516950 DOI: 10.1021/acs.biomac.8b01395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we report on an ATP-responsive low-molecular-weight polyethylenimine (LMW-PEI)-based supramolecular assembly. It formed via host-guest interaction between PEI (MW = 1.8 kDa)-α-cyclodextrin (α-CD) conjugates and PEI1.8k-phenylboronic acid (PBA) conjugates. The host-guest interaction between PEI1.8k-α-CD and PEI1.8k-PBA was confirmed by the 2D-NOESY chromatogram experiment and competition test. The ATP-responsive property of the supramolecular assembly was evaluated by a series of ATP-triggered degradation and siRNA release studies in terms of fluorescence resonance energy transfer, agarose gel electrophoresis assay, and the time course monitoring of the particle size and morphology. Confocal laser scanning microscopy confirmed the intracellular disassembly of the supramolecular polymer and the release of siRNA. The supramolecular assembly showed high buffering capability and was capable of protecting siRNA from RNase degradation. It had high cytocompatibility according to in vitro cytotoxicity and hemolysis assays. LMW-PEI-based supramolecular assembly facilitated cellular entry of siRNA via energy-dependent endocytosis. Moreover, the assembly/SR-A siRNA polyplexes at N/P ratio of 30 was most effective in knocking down SR-A mRNA and inhibiting uptake of modified LDL. Taken together, this work shows that ATP-responsive LMW-PEI-based supramolecular assembly is a promising gene vector and has potential application in treating atherosclerosis.
Collapse
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Zitong Qi
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Hengbo Jia
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Yilei Huang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Yunbo Wang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Wenli Zhang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Zimei Wu
- School of Pharmacy , University of Auckland , Private Bag 92019, Auckland , New Zealand
| | - Hu Yang
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23219 , United States.,Department of Pharmaceutics , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Jianping Liu
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| |
Collapse
|
7
|
Somasundaram S. Silane coatings of metallic biomaterials for biomedical implants: A preliminary review. J Biomed Mater Res B Appl Biomater 2018; 106:2901-2918. [PMID: 30091505 DOI: 10.1002/jbm.b.34151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
In response to increased attention in literature, this work provides a qualitative review surrounding the application of silane-based coatings of metallic biomaterials for biomedical implants. Included herein is both a brief summary of existing knowledge and concepts regarding silane-based thin films, along with an analysis of recent peer-reviewed publications and advances towards their practical application for biomedical coatings. Specifically, the review identifies innovative silane-based coatings according to their molecular identity and film structure and analyses their impact on the biocorrosion resistance, protein adsorption, cell viability, and antimicrobial properties of the overall coated implant. It is shown that a range of common silanes clearly exhibit promising properties for biomedical implant coatings, but further work is needed, particularly on mechanisms of physiological interaction and characteristic effects of silane functional groups, before seeing clinical use. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2901-2918, 2018.
Collapse
Affiliation(s)
- Sahadev Somasundaram
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
8
|
|
9
|
Jo SD, Lee J, Joo MK, Pizzuti VJ, Sherck NJ, Choi S, Lee BS, Yeom SH, Kim SY, Kim SH, Kwon IC, Won YY. PEG–PLA-Coated and Uncoated Radio-Luminescent CaWO4 Micro- and Nanoparticles for Concomitant Radiation and UV-A/Radio-Enhancement Cancer Treatments. ACS Biomater Sci Eng 2018; 4:1445-1462. [DOI: 10.1021/acsbiomaterials.8b00119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sung Duk Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - Jaewon Lee
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Min Kyung Joo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - Vincenzo J. Pizzuti
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Nicholas J. Sherck
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Slgi Choi
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Beom Suk Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - Sung Ho Yeom
- Department of Biochemical Engineering, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do 25457, South Korea
| | - Sang Yoon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - You-Yeon Won
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, 201 South University Street, West Lafayette, Indiana 47907, Unites States
| |
Collapse
|
10
|
Venault A, Huang YC, Lo JW, Chou CJ, Chinnathambi A, Higuchi A, Chen WS, Chen WY, Chang Y. Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: in vitro and in vivo gene delivery. J Mater Chem B 2017; 5:4732-4744. [PMID: 32264316 DOI: 10.1039/c7tb01046j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although PEGylated polyplexes for gene delivery are widespread, there is a need for an in-depth investigation of the role of the PEGylation degree on the delivery efficiency of the systems. For this, a low-toxicity series of polymers for gene delivery were designed via Michael addition of poly(ethylene glycol)methyl ether methacrylate (PEGMA) onto branched polyethylenimine PEI. The goal was to finely tune the PEGylation degree in order to determine the system offering the best compromise between low cytotoxicity and high transfection efficiency under both in vitro and in vivo conditions. From dynamic light scattering tests, zeta potential measurements and gel retardation assay, it was found that nanoparticle assembly of PEI-g-PEGMA and DNA exhibited stable complex formation when the PEGylation degree was below 2.9%. In addition, complexes formed from polymers with a PEGylation degree of at least 1.67% (from PEI-g-PEGMA-6 to PEI-g-PEGMA-18) all showed very low hemolysis activity. Transfection efficiencies of the prepared complexes were determined using the pEGFP-C3 vector and β-galactosidase. Complexes made of PEI-g-PEGMA-6 and PEI-g-PEGMA-10 at a polymer nitrogen/DNA phosphorus weight ratio (Wn/Wp) of 5 led to the best transfection efficiencies. Moreover, PEGylation ensured low cytotoxicity of the complexes in particular at high Wn/Wp ratios. In vivo tests in a mouse model confirmed the in vitro results obtained for PEI-g-PEGMA-6-based complexes, at all Wn/Wp ratios tested, but also showed that a high PEGylation degree (5.2% for PEI-g-PEGMA-18), though inefficient in vitro could still lead to successful delivery in vivo, due to a prolonged contact time between the complex and the cells, and to the change in the biological environment. Overall, provided a fine tuning of the grafting density of PEGMA onto PEI and the polymer nitrogen/DNA phosphorus weight ratio, our results prove that PEI-g-PEGMA polymers constitute an efficient platform for successful in vitro and in vivo gene delivery, and ensure low cytotoxicity and prolonged cell viability.
Collapse
Affiliation(s)
- A Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Karimi M, Zangabad PS, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017; 139:4584-4610. [PMID: 28192672 PMCID: PMC5475407 DOI: 10.1021/jacs.6b08313] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Soodeh Baghaee-Ravari
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehdi Ghazadeh
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Hamid Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Greco CT, Muir VG, Epps TH, Sullivan MO. Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling. Acta Biomater 2017; 50:407-416. [PMID: 28063990 PMCID: PMC5317101 DOI: 10.1016/j.actbio.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
Two of the most prominent challenges that limit the clinical success of siRNA therapies are a lack of control over cargo release from the delivery vehicle and an incomplete understanding of the link between gene silencing dynamics and siRNA dosing. Herein, we address these challenges through the formulation of siRNA polyplexes containing light-responsive polymer mixtures, whose varied compositions and triggered release behavior provide enhanced gene silencing and controlled dose responses that can be predicted by simple kinetic models. Through the straightforward mixing of two block copolymers, the level of gene knockdown was easily optimized to achieve the maximum level of GAPDH protein silencing in NIH/3T3 cells (~70%) using a single siRNA dose. The kinetic model was used to describe the dynamic changes in mRNA and protein concentrations in response to siRNA treatment. These predictions enabled the application of a second dose of siRNA to maximally suppress gene expression over multiple days, leading to a further 50% reduction in protein levels relative to those measured following a single dose. Furthermore, polyplexes remained dormant in cells until exposed to the photo-stimulus, demonstrating the complete control over siRNA activity as well as the stability of the nanocarriers. Thus, this work demonstrates that pairing advances in biomaterials design with simple kinetic modeling provides new insight into gene silencing dynamics and presents a powerful strategy to control gene expression through siRNA delivery. STATEMENT OF SIGNIFICANCE Our manuscript describes two noteworthy impacts: (1) we designed mixed polymer formulations to enhance gene silencing, and (2) we simultaneously developed a simple kinetic model for determining optimal siRNA dose responses to maintain silencing over several days. These advances address critical challenges in siRNA delivery and provide new opportunities in therapeutics development. The structure-function relationships prevalent in these formulations were established to enable tuning and forecasting of nanocarrier efficiency a priori, leading to siRNA dosing regimens able to maximally suppress gene expression. Our advances are significant because the mixed polymer formulations provide a straightforward and scalable approach to tailor siRNA delivery regimens. Moreover, the implementation of accurate dosing frameworks addresses a major knowledge gap that has hindered clinical implementation of siRNA.
Collapse
Affiliation(s)
- Chad T Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Victoria G Muir
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
14
|
Greco CT, Epps TH, Sullivan MO. Mechanistic Design of Polymer Nanocarriers to Spatiotemporally Control Gene Silencing. ACS Biomater Sci Eng 2016; 2:1582-1594. [DOI: 10.1021/acsbiomaterials.6b00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chad T. Greco
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering and ‡Department of Materials Science
and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Bae S, Park S, Kim J, Choi JS, Kim KH, Kwon D, Jin E, Park I, Kim DH, Seo TS. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27554-61. [PMID: 26584003 DOI: 10.1021/acsami.5b09964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation.
Collapse
Affiliation(s)
- Sunwoong Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seunghye Park
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University , Seoul 133-791, Republic of Korea
| | - Jung Kim
- School of Mechanical, Aerospace and Systems Engineering, Division of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jong Seob Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Kyung Hoon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Donguk Kwon
- School of Mechanical, Aerospace and Systems Engineering, Division of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University , Seoul 133-791, Republic of Korea
| | - Inkyu Park
- School of Mechanical, Aerospace and Systems Engineering, Division of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Do Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
16
|
|
17
|
Olejniczak J, Carling CJ, Almutairi A. Photocontrolled release using one-photon absorption of visible or NIR light. J Control Release 2015; 219:18-30. [PMID: 26394063 DOI: 10.1016/j.jconrel.2015.09.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022]
Abstract
Light is an excellent means to externally control the properties of materials and small molecules for many applications. Light's ability to initiate chemistries largely independent of a material's local environment makes it particularly useful as a bio-orthogonal and on-demand trigger in living systems. Materials responsive to UV light are widely reported in the literature; however, UV light has substantial limitations for in vitro and in vivo applications. Many biological molecules absorb these energetic wavelengths directly, not only preventing substantial tissue penetration but also causing detrimental photochemical reactions. The more innocuous nature of long-wavelength light (>400nm) and its ability at longer wavelengths (600-950nm) to effectively penetrate tissues is ideal for biological applications. Multi-photon processes (e.g. two-photon excitation and upconversion) using longer wavelength light, often in the near-infrared (NIR) range, have been proposed as a means of avoiding the negative characteristics of UV light. However, high-power focused laser light and long irradiation times are often required to initiate photorelease using these inefficient non-linear optical methods, limiting their in vivo use in mammalian tissues where NIR light is readily scattered. The development of materials that efficiently convert a single photon of long-wavelength light to chemical change is a viable solution to achieve in vivo photorelease. However, to date only a few such materials have been reported. Here we review current technologies for photo-regulated release using photoactive organic materials that directly absorb visible and NIR light.
Collapse
Affiliation(s)
- Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Carl-Johan Carling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Materials Science and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Liu X, He J, Niu Y, Li Y, Hu D, Xia X, Lu Y, Xu W. Photo-responsive amphiphilic poly(α
-hydroxy acids) with pendent o
-nitrobenzyl ester constructed via copper-catalyzed azide-alkyne cycloaddition reaction. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangyu Liu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Jingwen He
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yile Niu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yefei Li
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Ding Hu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| |
Collapse
|
19
|
McIntosh JT, Nazemi A, Bonduelle CV, Lecommandoux S, Gillies ER. Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of stimuli-responsive materials is of significant interest for many applications including drug delivery, medical imaging, sensors, and microfluidic devices. Among the available stimuli, light is particularly attractive as it can be applied with high spatial and temporal resolution. We describe here the synthesis of amphiphilic triblock copolymers composed of poly(ethylene glycol) and a hydrophobic block containing o-nitrobenzyl esters throughout the backbone using copper-catalyzed azide–alkyne cycloaddition chemistry. These materials were designed to have a high weight fraction of the hydrophobic block to favour nonmicellar aggregates. The self-assembly in water was studied using nanoprecipitation and the resulting assemblies were characterized by dynamic light scattering and transmission electron microscopy. Under optimized conditions, it was possible to prepare polymer vesicles, commonly referred to as polymersomes, with diameters of approximately 100 nm. The degradation of these materials in response to UV light was studied by spectroscopy, light scattering, and electron microscopy, demonstrating that the vesicles were broken down. These results suggest the potential of these materials for applications such as encapsulation and release.
Collapse
Affiliation(s)
- J. Trevor McIntosh
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
| | - Ali Nazemi
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
| | - Colin V. Bonduelle
- CNRS, Laboratoire de Chimie des Polymeres Organiques, UMR5629, Pessac, France
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | - Sebastien Lecommandoux
- CNRS, Laboratoire de Chimie des Polymeres Organiques, UMR5629, Pessac, France
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, ON N6G 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
20
|
Liu B, Han SM, Tang XY, Han L, Li CZ. Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine. Asian Pac J Cancer Prev 2014; 15:4915-8. [DOI: 10.7314/apjcp.2014.15.12.4915] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Green MD, Foster AA, Greco CT, Roy R, Lehr RM, Epps TH, Sullivan MO. Catch and Release: Photocleavable Cationic Diblock Copolymers as a Potential Platform for Nucleic Acid Delivery. Polym Chem 2014; 5:10.1039/C4PY00638K. [PMID: 25090637 PMCID: PMC4115287 DOI: 10.1039/c4py00638k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Binding interactions between DNA and cationic carriers must be sufficiently strong to prevent nuclease-mediated degradation, yet weak enough to permit transcription. We demonstrate cationic diblock copolymers containing PEG and o-nitrobenzyl moieties that facilitated tailorable DNA complexation and light-activated release. This design unlocks a new approach to advance non-viral gene packaging.
Collapse
Affiliation(s)
- Matthew D. Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| | - Abbygail A. Foster
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| | - Chad T. Greco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| | - Raghunath Roy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| | - Rachel M. Lehr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA. Fax: +1 302 831 1048; Tel: +1 302 831 8072
| |
Collapse
|
22
|
Hu X, Li Y, Liu T, Zhang G, Liu S. Photodegradable Neutral-Cationic Brush Block Copolymers for Nonviral Gene Delivery. Chem Asian J 2014; 9:2148-55. [DOI: 10.1002/asia.201402171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/09/2022]
|
23
|
Bansal R, Singh M, Gupta KC, Kumar P. Oligoamine-tethered low generation polyamidoamine dendrimers as potential nucleic acid carriers. Biomater Sci 2014; 2:1275-1286. [DOI: 10.1039/c4bm00115j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Oligoamine-tethered low generation PAMAM dendrimers (mG2–mG4) have been synthesized, which showed significantly higher transfection efficiency with minimal cytotoxicity in vitro.
Collapse
Affiliation(s)
- Ruby Bansal
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
- Academy of Scientific and Innovative Research
- New Delhi, India
| | - Manju Singh
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
| | - Kailash Chand Gupta
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
| |
Collapse
|