1
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
2
|
Wang T, Guo Y. The Host Response to Autogenous, Allogeneic, and Xenogeneic Treated Dentin Matrix/Demineralized Dentin Matrix-Oriented Tissue Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:74-81. [PMID: 37440326 DOI: 10.1089/ten.teb.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Dentin is a bone-like matrix that forms the bulk of the tooth. By fabricating dentin with protocols involving demineralization, sterilization, and preservation, treated dentin matrix (TDM)/demineralized dentin matrix (DDM) could be obtained, which is considered as a useful tool for bone and tooth-tissue regeneration. Non-negligible inflammatory and immune responses are reviewed in this article of autogenous, allogeneic, and xenogeneic TDM/DDM for the first time. Both autogenous and allogeneic TDM/DDM showed good biocompatibility in original and clinical studies, while a few cases reported the observation of inflammatory cells around tissue samples. As for xenogeneic TDM/DDM, multiple immune responses were revealed. Immune cells, including eosinocytes, macrophages, lymphocytes, mutinucleated giant cell, M1/M2 macrophages, and Th1-type CTL responses were involved. To avoid these adverse inflammatory responses caused by TDM/DDM implantation, some of the effective fabricating methods are discussed to reduce host immune responses to TDM/DDM.
Collapse
Affiliation(s)
- Tianyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Lanzhou Stomatological Hospital, Lanzhou, China
| |
Collapse
|
3
|
Sedek EM, Abdelkader S, Fahmy AE, Kamoun EA, Nouh SR, Khalil NM. Histological evaluation of the regenerative potential of a novel photocrosslinkable gelatin-treated dentin matrix hydrogel in direct pulp capping: an animal study. BMC Oral Health 2024; 24:114. [PMID: 38243218 PMCID: PMC10799547 DOI: 10.1186/s12903-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND To assess histologically the success of the pulp capping approach performed in traumatically exposed dogs' teeth using a novel injectable gelatin-treated dentin matrix light cured hydrogel (LCG-TDM) compared with LCG, MTA and TheraCal LC. METHODS Sixty-four dogs' teeth were divided into two groups (each including 32 teeth) based on the post-treatment evaluation period: group I: 2 weeks and group II: 8 weeks. Each group was further subdivided according to the pulp capping material into four subgroups (n = 8), with subgroup A (light-cured gelatin hydrogel) as the control subgroup, subgroup B (LCG-TDM), subgroup C (TheraCal LC), and subgroup D (MTA). Pulps were mechanically exposed in the middle of the cavity floor and capped with different materials. An assessment of periapical response was performed preoperatively and at 8 weeks. After 2 and 8-week intervals, the dogs were sacrificed, and the teeth were stained with hematoxylin-eosin and graded by using a histologic scoring system. Statistical analysis was performed using the chi-square and Kruskal-Wallis tests (p = 0.05). RESULTS All subgroups showed mild inflammation with normal pulp tissue at 2 weeks with no significant differences between subgroups (p ≤ 0.05), except for the TheraCal LC subgroup, which exhibited moderate inflammation (62.5%). Absence of a complete calcified bridge was reported in all subgroups at 2 weeks, while at 8 weeks, the majority of samples in the LCG-TDM and MTA-Angelus subgroups showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between them (p ≤ 0.05). However, the formed dentin in the LCG-TDM group was significantly thicker, with layers of ordered odontoblasts identified to create a homogeneous tubular structure and numerous dentinal tubule lines suggesting a favourable trend towards dentin regeneration. TheraCal LC samples revealed a reasonably thick dentin bridge with moderate inflammation (50%) and LCG showed heavily fibrous tissue infiltrates with areas of degenerated pulp with no signs of hard tissue formation. CONCLUSIONS LCG-TDM, as an extracellular matrix-based material, has the potential to regenerate dentin and preserve pulp vitality, making it a viable natural alternative to silicate-based cements for healing in vivo dentin defects in direct pulp-capping procedures.
Collapse
Affiliation(s)
- Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Sally Abdelkader
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amal E Fahmy
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shreouk City, Cairo, Egypt
| | - Samir R Nouh
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Huang Y, Zhang Z, Bi F, Tang H, Chen J, Huo F, Chen J, Lan T, Qiao X, Sima X, Guo W. Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration. Adv Healthc Mater 2023; 12:e2300625. [PMID: 37523260 DOI: 10.1002/adhm.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Recent advances in 3D printing offer a prospective avenue for producing transplantable human tissues with complex geometries; however, the appropriate 3D-printed scaffolds possessing the biological compatibility for tooth regeneration remain unidentified. This study proposes a personalized scaffold of multiple bioactivities, including induction of stem cell proliferation and differentiation, biomimetic mineralization, and angiogenesis. A brand-new bioink system comprising a biocompatible and biodegradable polymer is developed and reinforced with extracellular matrix generated from dentin tissue (treated dentin matrix, TDM). Adding TDM optimizes physical properties including microstructure, hydrophilicity, and mechanical strength of the scaffolds. Proteomics analysis reveals that the released proteins of the 3D-printed TDM scaffolds relate to multiple biological processes and interact closely with each other. Additionally, 3D-printed TDM scaffolds establish a favorable microenvironment for cell attachment, proliferation, and differentiation in vitro. The 3D-printed TDM scaffolds are proangiogenic and facilitate whole-thickness vascularization of the graft in a subcutaneous model. Notably, the personalized TDM scaffold combined with dental follicle cells mimics the anatomy and physiology of the native tooth root three months after in situ transplantation in beagles. The remarkable in vitro and in vivo outcomes suggest that the 3D-printed TDM scaffolds have multiple bioactivities and immense clinical potential for tooth-loss therapy.
Collapse
Affiliation(s)
- Yibing Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Huilin Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiahao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jie Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangchen Qiao
- Chengdu Guardental Technology Limited Corporation, Chengdu, 610041, P. R. China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Yunnan Key Laboratory of Stomatology, Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, 650000, P. R. China
| |
Collapse
|
5
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
6
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Li Z, Zheng C, Jiang P, Xu X, Tang Y, Dou L. Human digested dentin matrix for dentin regeneration and the applicative potential in vital pulp therapy. J Endod 2023:S0099-2399(23)00238-8. [PMID: 37150293 DOI: 10.1016/j.joen.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Human dentin is a natural acellular matrix with excellent reported biocompatibility. The aim was to fabricate a novel dentin matrix material from human dentin and investigate its applicative potential for vital pulp therapy. METHODS Digested dentin matrix extract (DDME) was fabricated using controlled enzymatic digestion under acidic conditions. The surfaces and biocompatibility of DDME were then investigated, with its effects on the odontogenic differentiation of human dental pulp cells (hDPCs) also studied. The ability of DDME to induce mineralization was assessed in a nude mouse model. The performance of DDME as a pulp capping agent was evaluated in an in-situ rat model. The molecular mechanism was verified by mRNA sequencing. RESULTS A novel type of dentin matrix material with a uniform size of 8 μm was fabricated. DDME had a similar band compared with grinded dentin matrix, with a smaller size and more uneven surface, as detected by Fourier Transform Infrared Spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS). DDME at low concentrations did not affect hDPCs viability or proliferation, but enhanced runt-related transcription factor 2, dentin matrix acidic phosphoprotein 1 and collagen 1A1 expression in hDPCs in vitro. DDME was superior to HA-TCP in dentin-like mineralized tissue formation after subcutaneous transplantation. In the rat model of pulpotomy, DDME showed visible curative effects. The underlying mechanism may be the inhibition of Hippo signaling following DDME treatment. DDME promoted Yes-associated protein (YAP) 1 nuclear influx, thereby enhancing the expression of DMP-1, which was reversed by YAP inhibitor treatment. CONCLUSIONS Human DDME can be used as a biomaterial for dentin regeneration. The combined application of DDME and current pulp capping agents is a potential choice for vital pulp therapy.
Collapse
Affiliation(s)
- Zheng Li
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Chengxiang Zheng
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Peiru Jiang
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Xiaoqi Xu
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Yin Tang
- University of Southern California Herman Ostrow School of Dentistry, Los Angeles, CA, USA; School of Dental Medicine, Western University of Medical Sciences, Pomona, CA, USA
| | - Lei Dou
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
9
|
Holiel AA, Mustafa HM, Sedek EM. Biodegradation of an injectable treated dentin matrix hydrogel as a novel pulp capping agent for dentin regeneration. BMC Oral Health 2023; 23:126. [PMID: 36841767 PMCID: PMC9960635 DOI: 10.1186/s12903-023-02831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND A novel injectable mixture termed treated dentin matrix hydrogel (TDMH) has been introduced for restoring dentin defect in DPC. However, no study evaluated its physiological biodegradation. Therefore, the present study aimed to assess scaffold homogeneity, mechanical properties and biodegradability in vitro and in vivo and the regenerated dentin induced by TDMH as a novel pulp capping agent in human permanent teeth. METHODS Three TDMH discs were weighted, and dry/wet ratios were calculated in four slices from each disc to evaluate homogeneity. Hydrogel discs were also analyzed in triplicate to measure the compressive strength using a universal testing machine. The in vitro degradation behavior of hydrogel in PBS at 37 °C for 2 months was also investigated by monitoring the percent weight change. Moreover, 20 intact fully erupted premolars were included for assessment of TDMH in vivo biodegradation when used as a novel injectable pulp capping agent. The capped teeth were divided into four equal groups according to extraction interval after 2-, 8-, 12- and 16-weeks, stained with hematoxylin-eosin for histological and histomorphometric evaluation. Statistical analysis was performed using F test (ANOVA) and post hoc test (p = 0.05). RESULTS No statistical differences among hydrogel slices were detected with (p = 0.192) according to homogeneity. TDMH compression modulus was (30.45 ± 1.11 kPa). Hydrogel retained its shape well up to 4 weeks and after 8 weeks completely degraded. Histological analysis after 16 weeks showed a significant reduction in TDMH area and a simultaneous significant increase in the new dentin area. The mean values of TDMH were 58.8% ± 5.9 and 9.8% ± 3.3 at 2 and 16 weeks, while the new dentin occupied 9.5% ± 2.8 at 2 weeks and 82.9% ± 3.8 at 16 weeks. CONCLUSIONS TDMH was homogenous and exhibited significant stability and almost completely recovered after excessive compression. TDMH generally maintained their bulk geometry throughout 7 weeks. The in vivo response to TDMH was characterized by extensive degradation of the hydrogel and dentin matrix particles and abundant formation of new dentin. The degradation rate of TDMH matched the rate of new dentin formation. TRIAL REGISTRATION PACTR201901866476410: 30/1/2019.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Hossam M Mustafa
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics 2022; 15:pharmaceutics15010091. [PMID: 36678720 PMCID: PMC9861705 DOI: 10.3390/pharmaceutics15010091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Tissue engineering is a new therapeutic strategy used to repair serious damage caused by trauma, a tumor or other major diseases, either for vital organs or tissues sited in the oral cavity. Scaffold materials are an indispensable part of this. As an extracellular-matrix-based bio-material, treated dentin matrixes have become promising tissue engineering scaffolds due to their unique natural structure, astonishing biological induction activity and benign bio-compatibility. Furthermore, it is important to note that besides its high bio-activity, a treated dentin matrix can also serve as a carrier and release controller for drug molecules and bio-active agents to contribute to tissue regeneration and immunomodulation processes. This paper describes the research advances of treated dentin matrixes in tissue regeneration from the aspects of its vital properties, biologically inductive abilities and application explorations. Furthermore, we present the concerning challenges of signaling mechanisms, source extension, individualized 3D printing and drug delivery system construction during our investigation into the treated dentin matrix. This paper is expected to provide a reference for further research on treated dentin matrixes in tissue regeneration and better promote the development of relevant disease treatment approaches.
Collapse
|
11
|
Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review. Tissue Eng Regen Med 2022; 19:687-701. [PMID: 35429315 PMCID: PMC9294090 DOI: 10.1007/s13770-022-00438-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors. Therefore, demineralized dentin should be considered as an excellent naturally-derived bioactive material to enhance dental and alveolar bone tissues regeneration. Method: The PubMed and Midline databases were searched in October 2021 for the relevant articles on treated dentin matrix (TDM)/demineralized dentin matrix (DDM) and their potential roles in tissue regeneration. Results: Several studies with different study designs evaluating the effect of TDM/DDM on dental and bone tissues regeneration were found. TDM/DDM was obtained from human or animal sources and processed in different forms (particles, liquid extract, hydrogel, and paste) and different shapes (sheets, slices, disc-shaped, root-shaped, and barrier membranes), with variable sizes measured in micrometers or millimeters, demineralized with different protocols regarding the concentration of demineralizing agents and exposure time, and then sterilized and preserved with different techniques. In the act of biomimetic acellular material, TDM/DDM was used for the regeneration of the dentin-pulp complex through direct pulp capping technique, and it was found to possess the ability to activate the odontogenic differentiation of stem cells resident in the pulp tissues and induce reparative dentin formation. TDM/DDM was also considered for alveolar ridge and maxillary sinus floor augmentations, socket preservation, furcation perforation repair, guided bone, and bioroot regenerations as well as bone and cartilage healing. Conclusion: To our knowledge, there are no standard procedures to adopt a specific form for a specific purpose; therefore, future studies are required to come up with a well-characterized TDM/DDM for each specific application. Likely as decellularized dermal matrix and prospectively, if the TDM/DDM is supplied in proper consistency, forms, and in different sizes with good biological properties, it can be used efficiently instead of some widely-used regenerative biomaterials. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00438-4.
Collapse
|
12
|
Wang D, Lyu Y, Yang Y, Zhang S, Chen G, Pan J, Tian W. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater 2022; 140:610-624. [PMID: 34852303 DOI: 10.1016/j.actbio.2021.11.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
The dental pulp is critical for physiological vitality of the tooth, and dental pulp regeneration has great potential for rebuilding live pulp tissue after pulp disease. Schwann cells (SCs) play a critical role in the support, maintenance, and regeneration of nerve fibers in dental pulp. Extracellular vesicles (EVs), which possess cell homing and tissue repair potential, derived from SCs (SC-EVs), can regulate dental mesenchymal stem cells (MSCs) proliferation, multipotency, and self-renewal. However, the role of SC-EVs in dental pulp tissue regeneration remains unclear. To address this question, we treated dental pulp stem cells (DPSCs) and bone marrow stem cells (BMSCs) with SC-EVs, and the results showed an obvious increase in the proliferation, migration, and osteogenic differentiation of both cell types. SC-EVs also promoted neurite outgrowth and neuron migration of rat dorsal root ganglia, as well as vessel formation in vitro. In an in vivo model of subcutaneous, SC-EVs enhanced the recruitment of endogenous vascular endothelioid-like cells and MSCs, and promoted the formation of a pulpo-dentinal complex-like structure. Finally, mass spectrometry analyses and western blot revealed that stromal cell-derived factor 1 (SDF-1, also known as CXCL12) plays a dominant role in SC-EVs. Together, these data suggest that SC-EVs successfully recruit endogenous stem cells to promote dental pulp regeneration. Our results provide a cell-free strategy for pulp regeneration that avoids the risks associated with stem cell transplantation. STATEMENT OF SIGNIFICANCE: Dental pulp is vulnerable to infections resulting from dental care, trauma, and multiple restorations, with such infections resulting in pulpitis and pulp necrosis. The current endodontic treatment of irreversible pulp disease cannot restore the function of dental pulp and tissue engineering strategies using cell-based approaches are limited by several disadvantages, including immune rejection and limited cell sources. In this study, we found that schwann cells-derived EVs facilitated dental pulp regeneration through endogenous stem cells recruitment via SDF-1/CXCR4 axis without exogenous cell transplantation. We believe that our study makes a significant contribution to describe a cell-free strategy to promote dental pulp regeneration.
Collapse
|
13
|
Xiong Y, Shen T, Xie X. Effects of different methods of demineralized dentin matrix preservation on the proliferation and differentiation of human periodontal ligament stem cells. J Dent Sci 2022; 17:1135-1143. [PMID: 35784122 PMCID: PMC9236943 DOI: 10.1016/j.jds.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Indexed: 11/08/2022] Open
Abstract
Background/purpose Demineralized dentin matrix (DDM) is used as a tissue regeneration scaffold. Effective preservation of DDM benefits clinical applications. Cryopreservation and freeze-drying may be effective methods to retain DDM mechanical properties and biological activity. Materials and methods Human periodontal ligament stem cells (hPDLSCs) isolated using enzymatic dissociation were identified by multidirectional differentiation and flow cytometry. DDM was prepared with EDTA and divided into four groups: fresh DDM (fDDM), room temperature-preserved DDM (rtDDM), cryopreserved DDM (cDDM) and freeze-dried DDM (fdDDM). The DDM surface morphology was observed, and microhardness was detected. Transforming growth factor-β1 (TGF-β1), fibroblast growth factor (FGF) and collagen-Ⅰ (COL-Ⅰ) concentrations in DDM liquid extracts were detected by enzyme-linked immunosorbent assay (ELISA). The hPDLSCs were cultured with DDM liquid extracts. The effect of DDM on cells proliferation was examined by CCK-8 assay. The effect of DDM on hPDLSC secreted phosphoprotein-1 (SPP1), periostin (POSTN) and COL-Ⅰ gene expression was examined by real-time qPCR. Results cDDM dentinal tubules were larger than those of the other groups. The three storage conditions had no significant effect on DDM microhardness and COL-Ⅰ concentration. However, TGF-β1 and FGF concentrations decreased after storage, with the greatest change in rtDDM, followed by fdDDM and cDDM. The liquid extracts of fDDM, cDDM and fdDDM slightly inhibited hPDLSCs proliferation, but those of rtDDM had no significant effect. The hPDLSCs cultured with fDDM, cDDM and fdDDM liquid extracts showed increased SPP1, POSTN and COL-Ⅰ gene expression. Conclusion Cryopreservation and freeze-drying better maintain the mechanical properties and biological activity of DDM.
Collapse
|
14
|
Chen Y, Ma Y, Yang X, Chen J, Yang B, Tian W. The Application of Pulp Tissue Derived-Exosomes in Pulp Regeneration: A Novel Cell-Homing Approach. Int J Nanomedicine 2022; 17:465-476. [PMID: 35125868 PMCID: PMC8809678 DOI: 10.2147/ijn.s342685] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose Exosomes derived from stem cells, as an alternative to stem cells themselves, have been employed for dental pulp regeneration. However, it is not known whether exosomes can recruit host cells to the regeneration process. In this study, we built a “cell homing” model to determine whether exosomes derived from dental pulp tissue (DPT-exos) can regenerate dental pulp by recruiting the stem cells from the apical dental papilla (SCAPs). Methods Exosomes were isolated from the dental pulp tissue (DPT-exos) and dental pulp stem cells (DPC-exos) of swine. The effects of the exosomes on SCAPs were compared using CKK-8, Transwell, angiogenesis, and odontogenic induction assays. DPT-exos and DPC-exos were investigated in an in vivo “cell homing” model using swine teeth to compare their roles in pulp regeneration. To build the model, we placed SCAP-containing collagen gel at the root tip and filled the cavity of the treated dental matrix (TDM) with DPT-exos and DPC-exos-laden scaffolds, which would be expected to recruit SCAPs to the pulp cavity. The complex was then implanted subcutaneously into immunodeficient nude mice. After eight weeks, tissue samples were taken and analyzed histologically to determine whether the DPT-exos contributed to pulp regeneration through “cell homing”. Results Exosomes were successfully extracted from dental pulp tissue and confirmed to be exosomes. In vitro tests confirmed that DPT-exos performed better than DPC-exos in promoting the migration, proliferation, and differentiation of SCAPs. Furthermore, DPT-exos recruited SCAPs to regenerate dental pulp-like connective tissue in vivo containing collagen, odontoblasts, and enriched predentin-like tissue. Blood vessel growth was demonstrated by immunofluorescence. Conclusion This study demonstrated the ability of DPT-exos to induce SCAPs to regenerate connective tissue similar to natural dental pulp. This technique has the potential for treating pulp deficiency caused by various pulp diseases.
Collapse
Affiliation(s)
- Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jinlong Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
15
|
Meng H, Hu L, Zhou Y, Ge Z, Wang H, Wu CT, Jin J. A Sandwich Structure of Human Dental Pulp Stem Cell Sheet, Treated Dentin Matrix, and Matrigel for Tooth Root Regeneration. Stem Cells Dev 2021; 29:521-532. [PMID: 32089088 DOI: 10.1089/scd.2019.0162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tooth loss can cause a lot of physiological and psychological suffering. And tooth root engineering is a promising way for tooth loss treatment. Two kinds of seed cells are usually adopted for tooth root regeneration. In this study, a practical sandwich structure for tooth root regeneration was developed, which was constituted by only one kind of seed cell: human dental pulp stem cells (hDPSCs) and three kinds of graft materials: Vitamin C (VC) induced hDPSC sheet, human treated dentin matrix (hTDM), and Matrigel. It was found that VC could induce hDPSCs to form a cell sheet with two or three cell layers and promote their collagen type I (COL1) mRNA expression obviously. hDPSCs could attach and grow on hTDM, and the mRNA expression of osteocalcin (OCN), dentin sialophosphoprotein (DSPP), vascular endothelial growth factor receptor 1 (VEGFR1), and Nestin in hDPSCs was obviously upregulated by hTDM leaching solution. hDPSCs could stretch and proliferate in Matrigel. And when cultured in Matrigel condition medium, they positively expressed CD31, β3-Tubulin, and Nestin proteins, as well as increased the mRNA expression of OCN, ALP, and Nestin. Furthermore, periodontium, dentin, and pulp-like tissues were successfully regenerated after the sandwich structure of hDPSC sheet/TDM/Matrigel was transplanted in nude mice subcutaneously for 3 months. Periodontium-like dense connective tissue was regenerated around the hTDM, and a great mass of predentin was formed on the cavity side of hTDM. Odontoblast-like cells and blood vessel-like structures, even nerve-like fibers, were observed in the pulp cavity. In summary, the above results showed that hDPSCs could be used as seed cells for the whole tooth root regeneration, and the sandwich structure constituted by hDPSC sheet, TDM/hDPSCs, and Matrigel/hDPSCs could be utilized for tooth root regeneration.
Collapse
Affiliation(s)
- Hongfang Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Ying Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhiqiang Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Chu-Tse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jide Jin
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
16
|
Li H, Ma B, Yang H, Qiao J, Tian W, Yu R. Xenogeneic dentin matrix as a scaffold for biomineralization and induced odontogenesis. Biomed Mater 2021; 16. [PMID: 33902010 DOI: 10.1088/1748-605x/abfbbe] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023]
Abstract
Commonly recognized mechanisms of the xenogeneic-extracellular matrix-based regenerative medicine include timely degradation, release of bioactive molecules, induced differentiation of stem cells, and well-controlled inflammation. This process is most feasible for stromal tissue reconstruction, yet unsuitable for non-degradable scaffold and prefabricated-shaped tissue regeneration, like odontogenesis. Treated dentin matrix (TDM) has been identified as a bioactive scaffold for dentin regeneration. This study explored xenogeneic porcine TDM (pTDM) for induced odontogenesis. The biological characteristics of pTDM were compared with human TDM (hTDM). To investigate its bioinductive capacities on allogeneic dental follicle cells (DFCs) in the inflammation microenvironment, pTDM populated with human DFCs were co-cultured with human peripheral blood mononuclear cells (hPBMCs), and pTDM populated with rat DFCs were transplanted into rat subcutaneous model. The results showed pTDM possessed similar mineral phases and bioactive molecules with hTDM. hDFCs, under the induction of pTDM and hTDM, expressed similar col-I, osteopontin and alkaline phosphatase (ALP) (all expressed by odontoblasts). Whereas, the expression of col-I, dentin matrix protein-1 (DMP-1) and bone sialoprotein (BSP) were down-regulated when cocultured with hPBMCs. The xenogeneic implants inevitably initiated Th1 inflammation (up-regulated CD8, TNF-α, IL-1β, etc)in vivo. However, the biomineralization of pre-dentin and cementum were still processed, and collagen fibrils, odontoblast-like cells, fibroblasts contributed to odontogenesis. Although partially absorbed at 3 weeks, the implants were positively expressed odontogenesis-related-proteins like col-I and DMP-1. Taken together, xenogeneic TDM conserved ultrastructure and molecules for introducing allogeneic DFCs to odontogenic differentiation, and promoting odontogenesis and biomineralizationin vivo. Yet effective immunomodulation methods warrant further explorations.
Collapse
Affiliation(s)
- Hui Li
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bo Ma
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hefeng Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jia Qiao
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Riyue Yu
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Louvrier A, Terranova L, Meyer C, Meyer F, Euvrard E, Kroemer M, Rolin G. Which experimental models and explorations to use in regenerative endodontics? A comprehensive review on standard practices. Mol Biol Rep 2021; 48:3799-3812. [PMID: 33761086 DOI: 10.1007/s11033-021-06299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of dental pulp stem cells, a lot of teams have expressed an interest in dental pulp regeneration. Many approaches, experimental models and biological explorations have been developed, each including the use of stem cells and scaffolds with the final goal being clinical application in humans. In this review, the authors' objective was to compare the experimental models and strategies used for the development of biomaterials for tissue engineering of dental pulp with stem cells. Electronic queries were conducted on PubMed using the following terms: pulp regeneration, scaffold, stem cells, tissue engineering and biomaterial. The extracted data included the following information: the strategy envisaged, the type of stem cells, the experimental models, the exploration or analysis methods, the cytotoxicity or viability or proliferation cellular tests, the tests of scaffold antibacterial properties and take into account the vascularization of the regenerated dental pulp. From the 71 selected articles, 59% focused on the "cell-transplantation" strategy, 82% used in vitro experimentation, 58% in vivo animal models and only one described an in vivo in situ human clinical study. 87% used dental pulp stem cells. A majority of the studies reported histology (75%) and immunohistochemistry explorations (66%). 73% mentioned the use of cytotoxicity, proliferation or viability tests. 48% took vascularization into account but only 6% studied the antibacterial properties of the scaffolds. This article gives an overview of the methods used to regenerate dental pulp from stem cells and should help researchers create the best development strategies for research in this field.
Collapse
Affiliation(s)
- A Louvrier
- Chirurgie Maxillo-Faciale, stomatologie et odontologie hospitalière, CHU Besançon, 25000, Besançon, France.
- UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, 25000, Besançon, France.
| | - L Terranova
- UMR_S 1121 Biomatériaux et Bioingénierie, Université de Strasbourg, INSERM, FMTS, Strasbourg, France
| | - C Meyer
- Chirurgie Maxillo-Faciale, stomatologie et odontologie hospitalière, CHU Besançon, 25000, Besançon, France
- Laboratoire Nano Médecine, Imagerie, Thérapeutique, Univ. Bourgogne Franche-Comté, EA 4662, 25000, Besançon, France
| | - F Meyer
- UMR_S 1121 Biomatériaux et Bioingénierie, Université de Strasbourg, INSERM, FMTS, Strasbourg, France
| | - E Euvrard
- Chirurgie Maxillo-Faciale, stomatologie et odontologie hospitalière, CHU Besançon, 25000, Besançon, France
- Laboratoire Nano Médecine, Imagerie, Thérapeutique, Univ. Bourgogne Franche-Comté, EA 4662, 25000, Besançon, France
| | - M Kroemer
- UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, 25000, Besançon, France
- Pharmacie Centrale, CHU Besançon, 25000, Besançon, France
| | - G Rolin
- UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, 25000, Besançon, France
- INSERM CIC-1431, CHU Besançon, 25000, Besançon, France
| |
Collapse
|
18
|
Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig 2020; 25:2101-2112. [PMID: 32815038 DOI: 10.1007/s00784-020-03521-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To produce a novel injectable treated dentin matrix hydrogel (TDMH) to be used as a novel pulp-capping agent for dentin regeneration compared with Biodentine and MTA. MATERIALS AND METHODS Thirty intact fully erupted premolars scheduled to be extracted for orthodontic reasons were included. Pulps were mechanically exposed in the middle of the cavity floor. TDMH was composed of TDM powder (500-μm particle size) and sodium alginate as an injectable scaffold. The capped teeth were divided into three equal groups (n = 10): TDMH, Biodentine, and MTA respectively. Clinical examination and assessment of periapical response were performed. The teeth were extracted after 2-weeks and 2-month intervals, stained with hematoxylin-eosin, and categorized by using a histologic scoring system. Statistical analysis was performed using chi-square and Kruskal-Wallis test (p = 0.05). RESULTS All teeth were vital during observation periods. Histological analysis after 2 months showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between groups. However, the formed dentin was significantly thicker with the TDMH group with layers of well-arranged odontoblasts that were found to form a homogenous tubular structure with numerous dentinal tubule lines showing a positive trend to dentin regeneration. CONCLUSIONS TDMH could achieve dentin regeneration and conservation of pulp vitality and might serve as a feasible natural substitute for silicate-based cements in restoring in vivo dentin defect in direct pulp-capping procedure. TRIAL REGISTRATION PACTR201901866476410.
Collapse
|
19
|
Zhang S, Zhang W, Li Y, Ren L, Deng H, Yin X, Gao X, Pan S, Niu Y. Human Umbilical Cord Mesenchymal Stem Cell Differentiation Into Odontoblast-Like Cells and Endothelial Cells: A Potential Cell Source for Dental Pulp Tissue Engineering. Front Physiol 2020; 11:593. [PMID: 32714196 PMCID: PMC7344301 DOI: 10.3389/fphys.2020.00593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Dental pulp regeneration is considered an ideal approach for treating dental pulp disease. Because pulp is composed of various cells, determining the proper seed cells is critical. We explored the potential of human umbilical cord mesenchymal stem cells (hUCMSCs) as seed cells for dental pulp regeneration. METHODS Liquid extract of human treated dentin matrix (LE-TDM) was acquired to culture hUCMSCs. Odontoblast-specific markers were detected by western blot, qRT-PCR, and immunofluorescence assays. Endothelial differentiation of hUCMSCs was examined according to VEGF induction by western blot, qRT-PCR, and Matrigel assays. hUCMSCs and VEGF-induced hUCMSCs (V-hUCMSCs) were also cocultured in vivo for the Matrigel plug assay and in vitro for RNA-sequencing (RNA-seq). Finally, encapsulated mono-cultured hUCMSCs or cocultured hUCMSCs and V-hUCMSCs in scaffolds were injected into the root segments and transplanted into immunodeficient mice for dental pulp regeneration. RESULTS Under LE-TDM induction, hUCMSCs expressed specific odontoblast markers (DSPP, DMP-1, DSP). Under VEGF induction, hUCMSCs expressed functional endothelial markers (CD31, eNOs, vWF). In vivo, the Matrigel plug assay indicated that cocultured hUCMSCs and V-hUCMSCs formed extensive vessel-like structures. RNA-seq results indicated that cocultured V-hUCMSCs exhibited high Hif-1 signaling pathway activity. Both the hUCMSCs mono-culture and coculture groups showed pulp-like tissue regeneration. The cocultured group showed more extracellular matrix and vascularization than the mono-cultured group in vivo. CONCLUSION hUCMSCs can differentiate into odontoblast-like cells and functional endothelial cells. Cocultured hUCMSCs and V-hUCMSCs formed vessel-like structures and regenerated dental pulp-like tissue. Therefore, hUCMSCs can be used as an alternative seed cell source for angiogenesis and dental pulp regeneration.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Weiwei Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanping Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Liping Ren
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haotian Deng
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiaowei Yin
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Shuang Pan
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Liu YP, Wang J, Tian ZL, Zhai PS, Wang ZQ, Zhou YM, Ni SL. [Effects of scaffold microstructure and mechanical properties on regeneration of tubular dentin]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:314-318. [PMID: 32573141 DOI: 10.7518/hxkq.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubular dentin is of great significance in the process of tooth tissue and tooth regeneration, because it is not only the structural feature of primary dentin, but also can affect the tooth sensory function, affect the differentiation of dental pulp cells and provide strong mechanical support for teeth. Scaffold is one of the three elements of tissue engineering dentin regeneration. Most experiments on dentin regeneration involve the study of the microstructure and mechanical properties of the scaffold. The microstructure and mechanical characteristics of scaffold materials have important effects on the differentiation and adhesion of odontoblast, it can directly affect the tissue structure of regenerated dentin.
Collapse
Affiliation(s)
- Yi-Ping Liu
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Jue Wang
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zi-Lu Tian
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Pei-Song Zhai
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zhan-Qi Wang
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Yan-Min Zhou
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Shi-Lei Ni
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| |
Collapse
|
21
|
Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, Wang S, Wang T, Lyu Y, Chen G, Tian W. Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Am J Cancer Res 2020; 10:5914-5931. [PMID: 32483427 PMCID: PMC7254987 DOI: 10.7150/thno.43156] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing in vitro and in vivo differentiation of DPCs. Methods: ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For in vivo studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers. Results: ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation in vitro. In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an in vivo tooth root slice model. Conclusion: Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.
Collapse
|
22
|
Bakhtiar H, Mazidi A, Mohammadi-Asl S, Hasannia S, Ellini MR, Pezeshki-Modaress M, Ostad SN, Galler K, Azarpazhooh A, Kishen A. Potential of Treated Dentin Matrix Xenograft for Dentin-Pulp Tissue Engineering. J Endod 2020; 46:57-64.e1. [DOI: 10.1016/j.joen.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022]
|
23
|
Tawfik Tadros MS, El-Baz MAES, Khairy MAEK. Dental stem cells in tooth repair: A systematic review. F1000Res 2019; 8:1955. [DOI: 10.12688/f1000research.21058.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Dental stem cells (DSCs) are self-renewable teeth cells, which help maintain or develop oral tissues. These cells can differentiate into odontoblasts, adipocytes, cementoblast-like cells, osteoblasts, or chondroblasts and form dentin/pulp. This systematic review aimed to summarize the current evidence regarding the role of these cells in dental pulp regeneration. Methods: We searched the following databases: PubMed, Cochrane Library, MEDLINE, SCOPUS, ScienceDirect, and Web of Science using relevant keywords. Case reports and non-English studies were excluded. We included all studies using dental stem cells in tooth repair whether in vivo or in vitro studies. Results: Dental pulp stem cell (DPSCs) is the most common type of cell. Most stem cells are incorporated and implanted into the root canals in different scaffold forms. Some experiments combine growth factors such as TDM, BMP, and G-CSF with stem cells to improve the results. The transplant of DPSCs and stem cells from apical papilla (SCAPs) was found to be associated with pulp-like recovery, efficient revascularization, enhanced chondrogenesis, and direct vascular supply of regenerated tissue. Conclusion: The current evidence suggests that DPSCs, stem cells from human exfoliated deciduous teeth, and SCAPs are capable of providing sufficient pulp regeneration and vascularization. For the development of the dental repair field, it is important to screen for more effective stem cells, dentine releasing therapies, good biomimicry scaffolds, and good histological markers.
Collapse
|
24
|
Wang F, Xie C, Ren N, Bai S, Zhao Y. Human Freeze-dried Dentin Matrix as a Biologically Active Scaffold for Tooth Tissue Engineering. J Endod 2019; 45:1321-1331. [DOI: 10.1016/j.joen.2019.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 10/25/2022]
|
25
|
Du Y, Montoya C, Orrego S, Wei X, Ling J, Lelkes PI, Yang M. Topographic cues of a novel bilayered scaffold modulate dental pulp stem cells differentiation by regulating YAP signalling through cytoskeleton adjustments. Cell Prolif 2019; 52:e12676. [PMID: 31424140 PMCID: PMC6869304 DOI: 10.1111/cpr.12676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Topographic cues can modulate morphology and differentiation of mesenchymal stem cells. This study aimed to determine how topographic cues of a novel bilayered poly (lactic‐co‐glycolic acid) (PLGA) scaffold affect osteogenic/odontogenic differentiation of dental pulp stem cells (DPSCs). Methods The surface morphology of the scaffolds was visualized by scanning electron microscope, and the surface roughness was measured by profilometry. DPSCs were cultured on each side of the scaffolds. Cell morphology, expression of Yes‐associated protein (YAP) and osteogenic/odontogenic differentiation were analysed by immunohistochemistry, real‐time polymerase chain reaction, and Alizarin Red S staining. In addition, cytochalasin D (CytoD), an F‐actin disruptor, was used to examine the effects of F‐actin on intracellular YAP localisation. Verteporfin, a YAP transcriptional inhibitor, was used to explore the effects of YAP signalling on osteogenic/odontogenic differentiation of DPSCs. Results The closed side of our scaffold showed smaller pores and less roughness than the open side. On the closed side, DPSCs exhibited enhanced F‐actin stress fibre alignment, larger spreading area, more elongated appearance, predominant nuclear YAP localization and spontaneous osteogenic differentiation. Inhibition of F‐actin alignments was correlated with nuclear YAP exclusion of DPSCs. Verteporfin restricted YAP localisation to the cytoplasm, down‐regulated expression of early osteogenic/odontogenic markers and inhibited mineralization of DPSCs cultures. Conclusions The surface topographic cues changed F‐actin alignment and morphology of DPSCs, which in turn regulated YAP signalling to control osteogenic/odontogenic differentiation.
Collapse
Affiliation(s)
- Yu Du
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Regenerative Health Research Laboratory, Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania.,Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junqi Ling
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peter I Lelkes
- Regenerative Health Research Laboratory, Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania.,Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Maobin Yang
- Regenerative Health Research Laboratory, Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania.,Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Tziafas D. Characterization of Odontoblast-like Cell Phenotype and Reparative Dentin Formation In Vivo: A Comprehensive Literature Review. J Endod 2019; 45:241-249. [PMID: 30803530 DOI: 10.1016/j.joen.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The primary aim was to explore the criteria used in characterization of reparative cells and mineralized matrices formed after treatment of pulp exposures, and the sequence of relative events. The secondary aim was to evaluate whether the reparative events depend on the experimental model species, age, and therapeutic intervention. METHODS A literature search of databases using different combinations of the key words was undertaken. Data analysis was based only on studies having histological or histochemical assessment of the pulp tissue responses. The search yielded 86 studies, 47 capping material-based and 39 bioactive application-based experiments, which provided data on morphological or functional characterization of the mineralized matrices and the associated cells. RESULTS In 64% of capping material-based and 72% of bioactive application-based experiments, a 2-zone mineralized matrix formation (atubular followed by tubular) was detected, whereas characterization of odontoblastic differentiation is provided in only 25.5% and 46.1% of the studies, respectively. In 93.3% of the studies showing odontoblast-like cells, differentiated cells were in association with tubular mineralized matrix formation. Analyses further showed that cell- and matrix-related outcomes do not depend on experimental model species, age, and therapeutic intervention. CONCLUSIONS The evidence of the reviewed scientific literature is that dental pulp cells secrete a dentin-like matrix of tubular morphology in relation to primitive forms of atubular or osteotypic mineralized matrix. Furthermore, data analysis showed that dental pulp cells express in vivo the odontoblastic phenotype, and secrete matrix in a predentin-like pattern, regardless of the model species, age, and therapeutic intervention used.
Collapse
Affiliation(s)
- Dimitrios Tziafas
- Hamdan Bin Mohamed College of Dental Medicine, MBR University of Medicine and Health Sciences, Dubai, UAE.
| |
Collapse
|
27
|
Yang H, Li J, Hu Y, Sun J, Guo W, Li H, Chen J, Huo F, Tian W, Li S. Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration. Dent Mater 2019; 35:1238-1253. [PMID: 31201017 DOI: 10.1016/j.dental.2019.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Periodontal tissue engineering is an attractive approach for restoring periodontal-supporting structures and functions. However, complete periodontal regeneration has not been accomplished. Previous studies demonstrated the feasibility of using cell sheets and treated dentin matrix (TDM) to regenerate bio-roots. METHODS In this study, we regenerated periodontal tissue using cell sheets combined with TDM particles (TDMPs). Human dental follicle cells (hDFCs) were isolated and characterized. Human dental follicle cells sheets (hDFCSs) and human TDMPs (hTDMP) were fabricated and characterized. The osteogenic effect of hTDMP was evaluated on human bone marrow stromal cells (hBMSCs) in vitro and a rat calvarial bone defect in vivo. Real-time PCR, western blotting, radiograph analysis, and histological analysis were performed to evaluate the periodontal induction capacity of hTDMP. One-wall periodontal intrabony defects were prepared to evaluate the periodontal regeneration capacity of TDMP/DFCSs on beagle dogs. RESULTS The results showed that hDFCs were mesenchymal stem cells. hTDMP promoted the proliferation and osteogenic differentiation of hBMSCs. New bone formation was observed in the rat calvarial bone defect zone in both the hTDMP and hydroxyapatite/β-tricalcium phosphate groups. Periodontal-like tissues showed better regeneration in the canine TDMP+DFCS group than in the other groups. SIGNIFICANCE These results demonstrate the potential of using TDMP/DFCSs in periodontal regeneration.
Collapse
Affiliation(s)
- Hefeng Yang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650500, PR China; National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing 401147, PR China
| | - Yu Hu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, PR China
| | - Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jinglong Chen
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Song Li
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
28
|
Li J, Yang H, Lu Q, Chen D, Zhou M, Kuang Y, Ying S, Song J. Proteomics and N‐glycoproteomics analysis of an extracellular matrix‐based scaffold‐human treated dentin matrix. J Tissue Eng Regen Med 2019; 13:1164-1177. [DOI: 10.1002/term.2866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Hefeng Yang
- Department of Dental ResearchThe Affiliated Stomatological Hospital of Kunming Medical University Kunming China
| | - Qi Lu
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Duanjing Chen
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Mengjiao Zhou
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Yunchun Kuang
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Siqi Ying
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Jinlin Song
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| |
Collapse
|
29
|
Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Demineralized dentin matrix (DDM), derived from human teeth, is an excellent scaffold material with exciting bioactive properties to enhance bone and dental tissue engineering efficacy. In this article, first the nano-structure and bioactive components of the dentin matrix were reviewed. Then the preparation methods of DDM and the resulting properties were discussed. Next, the efficacy of DDM as a bone substitute with in vitro and in vivo properties were analyzed. In addition, the applications of DDM in tooth regeneration with promising results were described, and the drawbacks and future research needs were also discussed. With the extraction of growth factors from DDM and the nano-structural properties of DDM, previous studies also broadened the use of DDM as a bioactive carrier for growth factor delivery. In addition, due to its excellent physical and biological properties, DDM was also investigated for incorporation into other biomaterials design and fabrication, yielding great enhancements in hard tissue regeneration efficacy.
Collapse
|
30
|
Zhu T, Guo WH. [Dentin matrix in tissue regeneration: a progress report]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:92-96. [PMID: 30854827 DOI: 10.7518/hxkq.2019.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lesions on tissues and organs critically affect quality of life, due to severe tissue defects that are threatening. Tissue repair and functional reconstruction are concurrent challenges in modern medicine. Tissue engineering brings hope for tissue and organ regeneration. Scaffolds provide a microenvironment for cell growth, proliferation and differentiation. Moreover, scaffolds influence the size and morphology of regenerated tissues. Dentin matrix, which is a natural bioactive and biocompatible scaffold, has become a research hotspot in recent years and has been widely used in tissue engineering. Studies on the use of dentin matrix as scaffolds have made a series of important progress in tooth root, periodontal, dental pulp and bone regeneration. This review demonstrates the biological characteristics of dentin matrix as bioactive scaffolds, describes the application of dentin matrix in tissue regeneration and provides a theoretical basis for the use of a dentin matrix in clinical applications.
Collapse
Affiliation(s)
- Tian Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei-Hua Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 2018; 7:249-268. [PMID: 30267369 PMCID: PMC6304177 DOI: 10.1007/s40204-018-0100-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Infection of the dental pulp will result in inflammation and eventually tissue necrosis which is treated conventionally by pulpectomy and root canal treatment. Advances in regenerative medicine and tissue engineering along with the introduction of new sources of stem cells have led to the possibility of pulp tissue regeneration. This systematic review analyzes animal studies published since 2010 to determine the ability of stem cell therapy to regenerate the dentine-pulp complex (DPC) and the success of clinical protocols. In vitro and human clinical studies are excluded and only the experimental studies on animal models were included. Dental pulp stem cells constitute the most commonly used cell type. The majority of stem cells are incorporated into various types of scaffold and implanted into root canals. Some of the studies combine growth factors with stem cells in an attempt to improve the outcome. Studies of ectopic transplantation using small animal models are simple and non-systematic evaluation techniques. Stem cell concentrations have not been so far reported; therefore, the translational value of such animal studies remains questionable. Though all types of stem cells appear capable of regenerating a dentine-pulp complex, still several factors have been considered in selecting the cell type. Co-administrative factors are essential for inducing the systemic migration of stem cells, and their vascularization and differentiation into odontoblast-like cells. Scaffolds provide a biodegradable structure able to control the release of growth factors. To identify problems and reduce costs, novel strategies should be initially tested in subcutaneous or renal capsule implantation followed by root canal models to confirm results.
Collapse
|
32
|
Gangolli RA, Devlin SM, Gerstenhaber JA, Lelkes PI, Yang M. A Bilayered Poly (Lactic-Co-Glycolic Acid) Scaffold Provides Differential Cues for the Differentiation of Dental Pulp Stem Cells. Tissue Eng Part A 2018; 25:224-233. [PMID: 29984629 DOI: 10.1089/ten.tea.2018.0041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT In this article we used an FDA-approved biodegradable biomaterial, poly (lactic-co-glycolic acid) (PLGA 75:25) to generate a bilayered scaffold with the capacity to induce differential, layer-specific dentinogenic differentiation of dental pulp stem cells (DPSCs) in vitro. We surmise that such a scaffold can be used in conjunction with current regenerative endodontic procedures to help regenerating a physiologic dentin-pulp complex in vivo. We hypothesize that our scaffold in conjunction with DPSCs will advance current regenerative endodontics by restoring dentin and initiating the innervation and revascularization of the pulp.
Collapse
Affiliation(s)
- Riddhi A Gangolli
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Sean M Devlin
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Jonathan A Gerstenhaber
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Peter I Lelkes
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,2 Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Maobin Yang
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,2 Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I. Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:419-442. [PMID: 29724156 DOI: 10.1089/ten.teb.2018.0073] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following the basis of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explores in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules, and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding that permit to recreate a living tissue that mimics the original pulp has been proposed. Perspectives for pulp tissue engineering in the near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
Collapse
Affiliation(s)
- Valérie Orti
- LBN, Université de Montpellier , Montpellier, France
| | | | | | - Orsolya Pall
- LBN, Université de Montpellier , Montpellier, France
| | | | | |
Collapse
|
34
|
Preservation Strategies that Support the Scale-up and Automation of Tissue Biomanufacturing. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0126-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Yang H, Li J, Sun J, Guo W, Li H, Chen J, Hu Y, Tian W, Li S. Cells isolated from cryopreserved dental follicle display similar characteristics to cryopreserved dental follicle cells. Cryobiology 2017; 78:47-55. [DOI: 10.1016/j.cryobiol.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
|
36
|
Sun J, Li J, Li H, Yang H, Chen J, Yang B, Huo F, Guo W, Tian W. tBHQ Suppresses Osteoclastic Resorption in Xenogeneic-Treated Dentin Matrix-Based Scaffolds. Adv Healthc Mater 2017; 6. [PMID: 28696515 DOI: 10.1002/adhm.201700127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/28/2017] [Indexed: 02/05/2023]
Abstract
Extracellularmatrix (ECM)-based scaffolds are important for their potential therapeutic application. Treated dentin matrix (TDM), a kind of ECM, seeded with allogeneic dental follicle stem cells (TDM/aDFC) provides a suitable inductive microenvironment for tooth root regeneration. Considering the limited sources, xenogeneic TDM (xTDM) is a possible alternative to allogeneic TDM; however, xTDM-based scaffold presents severe osteolysis and resorption lacunae causing regenerated tooth root failure. Immune response-induced excessive osteoclastogenesis plays a critical role in xenogeneic scaffold osteolysis and resorption. The impact of antioxidant, tert-butylhydroquinone (tBHQ), on xTDM/aDFCs-induced osteoclastogenesis and osteoclastic resorption in vivo and in vitro are investigated. tBHQ upregulates heme oxygenase-1 release and downregulates high mobility group box 1 mRNA expression. mRNA expression of other osteoclast-related genes including nuclear factor-kappa Bp65, receptor activator of nuclear factor kappa-B, nuclear factor of activated T-cells cytoplasmic 1, cathepsin K, and integrin β3, also decreases significantly. Furthermore, tBHQ-treated xTDM/aDFCs scaffolds implanted into rhesus macaques show reduced osteolysis and osteoclastic resorption by microcomputed tomography and tartrate-resistant acid phosphatase staining. tBHQ-induced suppression of xTDM/aDFC-induced osteoclastogenesis and osteoclastic resorption presents a new strategy for the regeneration of biological tooth root and could be applied to the regeneration of other complex tissues and organs.
Collapse
Affiliation(s)
- Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Jie Li
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences College of Stomatology Chongqing Medical University Chongqing 401147 China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Hefeng Yang
- Department of Dental Research The Affiliated Stomatological Hospital of Kunming Medical University Kunming 650031 China
| | - Jinlong Chen
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Bo Yang
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
- Department of Pediatric Dentistry West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| |
Collapse
|
37
|
Mehrvarzfar P, Abbott PV, Mashhadiabbas F, Vatanpour M, Tour Savadkouhi S. Clinical and histological responses of human dental pulp to MTA and combined MTA/treated dentin matrix in partial pulpotomy. AUST ENDOD J 2017; 44:46-53. [PMID: 28833942 DOI: 10.1111/aej.12217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/05/2023]
Abstract
The aim of this study was to compare the responses of mineral trioxide aggregate (MTA) and combined MTA/treated dentin matrix (TDM) as direct pulp capping material. In this clinical trial study, 33 intact third molars in 11 healthy volunteers (three molars in each) were included. Partial pulpotomies were performed in a split mouth manner in two of the third molars in each patient randomly and the third tooth had used as TDM source. The coronal dentin was chopped to dentine chips and transformed to TDM using different concentrations of ethylene diamine tetraacetic acid (EDTA) solution. Pulps were directly capped by MTA alone or using a combination layering of MTA/TDM. Following 6-week clinical and radiological evaluations, each tooth was extracted and prepared for histological evaluation. There were no significant differences in the clinical and radiographic responses or in the quality of dentin bridges (P > 0.05). However, the dentin bridge was significantly thicker in MTA/TDM group than MTA group (P = 0.003). Using the combination of MTA/TDM as a pulp-dressing agent may form a thicker dentin bridge compared to MTA alone.
Collapse
Affiliation(s)
- Payman Mehrvarzfar
- Department of Endodontics, Dental Branch, Islamic Azad University, Tehran, Iran
| | - Paul V Abbott
- Clinical Dentistry, School of Dentistry, The University of Western Australia, Nedlands, WA, Australia
| | - Fatemeh Mashhadiabbas
- Department of Maxillofacial Pathology, Dental Branch, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Vatanpour
- Department of Endodontics, Dental Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
38
|
Zhang X, Li H, Sun J, Luo X, Yang H, Xie L, Yang B, Guo W, Tian W. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration. Cell Prolif 2017; 50. [PMID: 28741725 DOI: 10.1111/cpr.12361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/19/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. MATERIALS AND METHODS In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. RESULTS AND CONCLUSIONS DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction.
Collapse
Affiliation(s)
- Xuexin Zhang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangyou Luo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hefeng Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Mehrvarzfar P, Abbott PV, Akhavan H, Savadkouhi ST. Modified Revascularization in Human Teeth Using an Intracanal Formation of Treated Dentin Matrix: A Report of Two Cases. J Int Soc Prev Community Dent 2017; 7:218-221. [PMID: 28852640 PMCID: PMC5558258 DOI: 10.4103/jispcd.jispcd_80_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/31/2017] [Indexed: 11/04/2022] Open
Abstract
Ethylenediaminetetraacetic acid (EDTA)-treated dentin matrix (TDM) is an enriched source of bioactive molecules. Therefore, it was hypothesized that fabrication of autogenous TDM on root dentinal walls of necrotic immature permanent teeth may allow more predictable outcome of revascularization treatments. Two young patients with permanent nonvital immature teeth were chosen for revascularization treatment. After appropriate disinfection of root canal system, TDM was fabricated on root dentinal walls using different dilutions of EDTA. Then, bleeding was induced in canals and calcium-enriched mixture (CEM) cement was placed over the blood clots. In all follow-up periods, both cases were asymptomatic and radiographic findings have shown a continued root development. Revascularization is a valuable treatment for nonvital immature teeth, allows continuation of root development. Modification of root regeneration through a TDM protocol may seem more predictable treatment and improve maturogenesis than traditional therapy.
Collapse
Affiliation(s)
- Payman Mehrvarzfar
- Department of Endodontics, Islamic Azad University, Dental Branch, Tehran, Iran
| | - Paul V Abbott
- School of Dentistry, The University of Western Australia, Perth, Australia
| | - Hengameh Akhavan
- Department of Endodontics, Islamic Azad University, Dental Branch, Tehran, Iran
| | | |
Collapse
|
40
|
Haeri M, Sagomonyants K, Mina M, Kuhn LT, Goldberg AJ. Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds in vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017; 3:94-105. [PMID: 29457125 PMCID: PMC5813827 DOI: 10.1007/s40883-017-0033-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 01/07/2023]
Abstract
Dental caries (tooth decay) is the most common chronic disease. Dental tissue engineering is a promising alternative approach to alleviate the shortcomings of the currently available restorative materials. Mimicking the natural extracellular matrix (ECM) could enhance the performance of tissue engineering scaffolds. In this study, we developed microtubular (~20 μm diameter) polymethyl methacrylate (PMMA) scaffolds resembling the tubular (~2.5 μm diameter) structure of dentin, the collagen-based mineralized tissue that forms the major portion of teeth, to study the effect of scaffold architecture on differentiation of mouse dental pulp cells in vitro. Flat (control), plasma-treated solid and microtubular PMMA scaffolds with densities of 240±15, 459±51 and 480±116 tubules/mm2 were first characterized using scanning electron microscopy and contact angle measurements. Dental pulp cells were cultured on the surface of the scaffolds for up to 21 days and examined using various assays. Cell proliferation and mineralization were examined using Alamar Blue and Xylenol Orange (XO) staining assays, respectively. The differentiation of pulp cells into odontoblasts was examined by immunostaining for Nestin and by quantitative PCR analysis for dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp) and osteocalcin (Ocn). Our results showed that the highest tubular density scaffolds significantly (p<0.05) enhanced differentiation of pulp cells into odontoblasts as compared to control flat scaffolds, as evidenced by increased expression of Nestin (5.4x). However, mineralization was suppressed on all surfaces, possibly due to low cell density. These results suggest that the microtubular architecture may be a desirable feature of scaffolds developed for clinical applications. LAY SUMMARY Regenerative engineering of diseased or traumatized tooth structure could avoid the deficiencies of traditional dental restorative (filling) materials. Cells in the dental pulp have the potential to differentiate to dentin-producing odontoblast cells. Furthermore, cell-supporting scaffolds that mimic a natural extracellular matrix (ECM) are known to influence behavior of progenitor cells. Accordingly, we hypothesized that a dentin-like microtubular scaffold would enhance differentiation of dental pulp cells. The hypothesis was proven true and differentiation to odontoblasts increased with increasing density of the microtubules. However, mineralization was suppressed, possibly due to a low density of cells. The results demonstrate the potential benefits of a microtubular scaffold design to promote odontoblast cells for regeneration of dentin.
Collapse
Affiliation(s)
- Morteza Haeri
- Instrumental Evaluation, L'Oreal USA, 30 Terminal Ave., Clark, NJ, 07066
| | - Karen Sagomonyants
- Division of Pediatric Dentistry, UConn Health, 263 Farmington Ave., Farmington, CT, USA, 06030
| | - Mina Mina
- Division of Pediatric Dentistry, UConn Health, 263 Farmington Ave., Farmington, CT, USA, 06030
| | - Liisa T Kuhn
- Center for Biomaterials, UConn Health, 263 Farmington Ave., Farmington, CT, USA, 06030
| | - A Jon Goldberg
- Center for Biomaterials, UConn Health, 263 Farmington Ave., Farmington, CT, USA, 06030
| |
Collapse
|
41
|
Yu TT, Cui FZ, Meng QY, Wang J, Wu DC, Zhang J, Kou XX, Yang RL, Liu Y, Zhang YS, Yang F, Zhou YH. Influence of Surface Chemistry on Adhesion and Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells. ACS Biomater Sci Eng 2017; 3:1119-1128. [PMID: 33429586 DOI: 10.1021/acsbiomaterials.7b00274] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ting-Ting Yu
- Center
for Craniofacial Stem Cell Research and Regeneration, Department of
Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Fu-Zhai Cui
- School
of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qing-Yuan Meng
- School
of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Juan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - De-Cheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Xiao-Xing Kou
- Center
for Craniofacial Stem Cell Research and Regeneration, Department of
Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Rui-Li Yang
- Center
for Craniofacial Stem Cell Research and Regeneration, Department of
Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yan Liu
- Center
for Craniofacial Stem Cell Research and Regeneration, Department of
Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Heng Zhou
- Center
for Craniofacial Stem Cell Research and Regeneration, Department of
Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| |
Collapse
|
42
|
Investigation of Human Dental Pulp Cells on a Potential Injectable Poly(lactic-co-glycolic acid) Microsphere Scaffold. J Endod 2017; 43:745-750. [PMID: 28292602 DOI: 10.1016/j.joen.2016.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Poly(lactic-co-glycolic acid) (PLGA) has been extensively explored in the tissue engineering field with good biocompatibility and biodegradability. PLGA microspheres' injectable potency makes it highly desirable in dentin-pulp complex regeneration. Therefore, we investigated the cell adhesion, proliferation, odontogenic differentiation, and matrix mineralization of human dental pulp cells (HDPCs) on a PLGA microsphere scaffold. We hypothesized that this scaffold might be suitable for dentin-pulp complex regeneration. METHODS PLGA microsphere scaffolds were fabricated using the double-emulsion solvent extraction technique with or without type I collagen surface modification. HDPCs were isolated from freshly extracted premolar or third molar teeth with patients' informed consent and ethical approval. Fourth-passage HDPCs (1 × 105 cells/ml) were seeded onto surface-modified or -unmodified PLGA microspheres and cultured in vitro. Cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different time points. Odontogenic-related gene expression (DMP1, DSPP, COL1, OPN, and OCN) were analyzed using quantitative real-time polymerase chain reaction. After 8 weeks of culture, samples were observed under scanning electron microscopy. RESULTS Surface modification using type I collagen significantly enhanced HDPC attachment to the PLGA microspheres and promoted cell spreading. Alkaline phosphatase activity and odontogenic-related gene expression of HDPCs cultured with PLGA microsphere scaffolds were enhanced significantly compared with HDPCs cultured without PLGA microsphere scaffolds. After 8 weeks of culture, HDPCs combined with PLGA microspheres formed 3-dimensional structures. Partial degradation of the scaffolds and matrix mineralization were also observed. CONCLUSIONS HDPCs can adhere to the PLGA microspheres, proliferate and differentiate into odontoblastlike cells, and form a 3-dimensional complex with matrix mineralization. This study may provide insight into the clinical dentin-pulp complex restoration with HDPCs and PLGA microsphere constructs.
Collapse
|
43
|
Li H, Sun J, Li J, Yang H, Luo X, Chen J, Xie L, Huo F, Zhu T, Guo W, Tian W. Xenogeneic Bio-Root Prompts the Constructive Process Characterized by Macrophage Phenotype Polarization in Rodents and Nonhuman Primates. Adv Healthc Mater 2017; 6. [PMID: 28081294 DOI: 10.1002/adhm.201601112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/24/2016] [Indexed: 02/05/2023]
Abstract
Tissue or organ regeneration using xenogeneic matrices is a promising approach to address the shortage of donor matrices for allotransplantation. Success of such approach has been demonstrated to correlate with macrophage-mediated fibrotic homeostasis and tissue remodeling. The previous studies have demonstrated that treated dentin matrix (TDM) could be a suitable bioactive substrate for allogeneic tooth root regeneration. This study constructed xenogeneic bioengineered tooth root (bio-root) via a combination of porcine TDM (pTDM) with allogeneic dental follicle cells (DFCs). Macrophage phenotypes are used to evaluate the remodeling process of xenogeneic bio-roots in vitro and in vivo. pTDM can facilitate odontoblast differentiation of human derived DFCs. Xenogeneic bio-roots in rat subcutaneous tissue prompt constructive response via M1 macrophage infiltration during early postimplantation stages and increase restorative M2 phenotype at later stages. After implantation of bio-roots into jaws of rhesus monkeys for six months, periodontal ligament-like fibers accompanied by macrophage polarization are observed, which are positive for COL-1, Periostin, βIII-tubulin and display such structures as fibroblasts and blood vessels. The reconstructed bio-root possesses biomechanical properties for the dissipation of masticatory forces. These results support that xenogeneic bio-root could maintain fibrotic homeostasis during remodeling process and highlight the potential application of xenogeneic matrices in regenerative medicine.
Collapse
Affiliation(s)
- Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jie Li
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; College of Stomatology; Chongqing Medical University; Chongqing 401147 China
| | - Hefeng Yang
- Department of Dental Research; The Affiliated Stomatological Hospital of Kunming Medical University; Kunming 650031 China
| | - Xiangyou Luo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jinlong Chen
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Li Xie
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
| | - Tian Zhu
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Pediatric Dentistry; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Pediatric Dentistry; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| |
Collapse
|
44
|
Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers. Arch Oral Biol 2017; 73:121-128. [DOI: 10.1016/j.archoralbio.2016.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
45
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
46
|
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells Int 2016; 2016:9762871. [PMID: 27688777 PMCID: PMC5027319 DOI: 10.1155/2016/9762871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.
Collapse
|
47
|
Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Dent Mater 2016; 32:e159-75. [DOI: 10.1016/j.dental.2016.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/10/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
|
48
|
Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, Tian W. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep 2016; 14:1891-900. [PMID: 27432616 PMCID: PMC4991727 DOI: 10.3892/mmr.2016.5508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/22/2016] [Indexed: 02/05/2023] Open
Abstract
The anterograde intraflagellar transport motor protein, kif3a, regulates the integrity of primary cilia and various cellular functions, however, the role of kif3a in dental mesenchymal stem/precursor cell differentiation remains to be fully elucidated. In the present study, the expression of kif3a was knocked down in human dental follicle cells (hDFCs) and human dental pulp cells (hDPCs) using short hairpin RNA. The results of subsequent immunofluorescence revealed that knocking down kif3a resulted in the loss of primary cilia, which led to impairment of substantial mineralization and expression of the differentiation-associated markers, including alkaline phosphatase, Runt-related transcription factor 2, dentin matrix protein 1 and dentin sialophosphoprotein in the hDFCs and hDPCs. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses showed that the expression levels of Wnt3a-mediated active β-catenin and lymphoid enhancer-binding factor 1 were attenuated, whereas the expression of phosphorylated glycogen synthase kinase 3β was enhanced, in the kif3a-knockdown cells. In addition, exogenous Wnt3a partially rescued osteoblastic differentiation in the hDFCs and hDPCs. These results demonstrated that inhibition of kif3a in the hDFCs and hDPCs disrupted primary cilia formation and/or function, and indicated that kif3a is important in the differentiation of hDFCs and hDPCs through the Wnt pathway. These findings not only enhance current understanding of tooth development and diseases of tooth mineralization, but also indicate possible strategies to regulate mineralization during tooth repair and regeneration.
Collapse
Affiliation(s)
- Sicong Jiang
- School of Life Sciences and Key Laboratory of Bio‑Resources and Eco‑Environment, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lian Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zongting Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinku Bao
- School of Life Sciences and Key Laboratory of Bio‑Resources and Eco‑Environment, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
49
|
|
50
|
Liu G, Xu G, Gao Z, Liu Z, Xu J, Wang J, Zhang C, Wang S. Demineralized Dentin Matrix Induces Odontoblastic Differentiation of Dental Pulp Stem Cells. Cells Tissues Organs 2015; 201:65-76. [DOI: 10.1159/000440952] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the effect of demineralized dentin matrix (DDM) on dental pulp stem cells (DPSCs) and the potential of complexes with DPSCs and DDM for mineralized tissue formation. Stem cells derived from the dental pulp of healthy pigs aged 18 months were isolated and cultured. DPSCs were incubated with alpha-minimum essential medium treated with DDM extract at 1 mg/ml (DDM1) or 10 mg/ml (DDM10). The concentrations of 3 growth factors in DDM extract was measured by enzyme-linked immunosorbent assay. Adhesion of DPSCs on DDM and hydroxyapatite-tricalcium phosphate (HA-TCP) surfaces was observed using scanning electron microscopy. Cell proliferation was evaluated with cell counting kit-8 and migration by Transwell migration assays. Odontoblastic differentiation was assessed by alkaline phosphatase (ALP) and alizarin red staining, ALP activity and real-time polymerase chain reaction analysis of markers of ALP, runt-related transcription factor 2, type I collagen, dentin matrix acidic phosphoprotein-1, osteonectin and dentin sialophosphoprotein (DSPP). Finally, DPSCs were combined with DDM and placed subcutaneously in nude mice for 12 weeks; DPSCs combined with HA-TCP and DDM alone served as controls. DDM could promote DPSC adhesion, migration and odontoblastic differentiation. Mineralized tissue formation was observed with the DPSC and DDM combination and the DPSC and HA-TCP combination. The mineralized tissue of the DPSC + DDM combination stained positive for DSPP, similar to the dentin tissue. These results indicate that DDM induces DPSC odontoblastic differentiation, suggesting applications for dentin regeneration.
Collapse
|