1
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Cao G, Ren L, Ma D. Recent Advances in Cell Sheet-Based Tissue Engineering for Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:97-127. [PMID: 37639357 DOI: 10.1089/ten.teb.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In conventional bone tissue engineering, cells are seeded onto scaffolds to create three-dimensional (3D) tissues, but the cells on the scaffolds are unable to effectively perform their physiological functions due to their low density and viability. Cell sheet (CS) engineering is expected to be free from this limitation. CS engineering uses the principles of self-assembly and self-organization of endothelial and mesenchymal stem cells to prepare CSs as building blocks for engineering bone grafts. This process recapitulates the native tissue development, thus attracting significant attention in the field of bone regeneration. However, the method is still in the prebasic experimental stage in bone defect repair. To make the method clinically applicable and valuable in personalized and precision medicine, current research is focused on the preparation of multifunctionalized building blocks using CS technologies, such as 3D layered CSs containing microvascular structures. Considering the great potential of CS engineering in repairing bone defects, in this review, the types of cell technologies are first outlined. We then summarize the various types of CSs as building blocks for engineering bone grafts. Furthermore, the specific applications of CSs in bone repair are discussed. Finally, we present specific suggestions for accelerating the application of CS engineering in the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Guoding Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Department of Orthopaedics, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Liling Ren
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
3
|
Wang X, Wang Q, Meng L, Tian R, Guo H, Tan Z, Tan Y. Biodistribution-based Administration of cGMP-compliant Human Umbilical Cord Mesenchymal Stem Cells Affects the Therapeutic Effect of Wound Healing. Stem Cell Rev Rep 2024; 20:329-346. [PMID: 37889447 DOI: 10.1007/s12015-023-10644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) are used as therapeutic agents for skin injury therapy, few studies have reported the effects of dosing duration and delivery frequency on wound healing. In addition, before the clinical application of MSCs, it is important to assess whether their usage might influence tumor occurrence. METHODS We described the metabolic patterns of subcutaneous injection of hUC-MSCs using fluorescence tracing and qPCR methods and applied them to the development of drug delivery strategies for promoting wound healing. RESULTS (i) We developed cGMP-compliant hUC-MSC products with critical quality control points for wound healing; (ii) The products did not possess any tumorigenic or tumor-promoting/inhibiting ability in vivo; (iii) Fluorescence tracing and qPCR analyses showed that the subcutaneous application of hUC-MSCs did not result in safety-relevant biodistribution or ectopic migration; (iv) Reinjecting hUC-MSCs after significant consumption significantly improved reepithelialization and dermal regeneration. CONCLUSIONS Our findings provided a reference for controlling the quality of MSC products used for wound healing and highlighted the importance of delivery time and frequency for designing in vivo therapeutic studies.
Collapse
Affiliation(s)
- Xin Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Qiuhong Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Lingjiao Meng
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Ruifeng Tian
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Huizhen Guo
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Zengqi Tan
- School of Medicine, Northwest University, Xi'an, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China.
- Shandong Yinfeng Life Science Research Institute, Ji'nan, People's Republic of China.
| |
Collapse
|
4
|
Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, Zhai G, Bay BH, Yang F, Gu N, Guo Y, Fan H. Biocompatible Iron Oxide Nanoring-Labeled Mesenchymal Stem Cells: An Innovative Magnetothermal Approach for Cell Tracking and Targeted Stroke Therapy. ACS NANO 2022; 16:18806-18821. [PMID: 36278899 DOI: 10.1021/acsnano.2c07581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Labeling stem cells with magnetic nanoparticles is a promising technique for in vivo tracking and magnetic targeting of transplanted stem cells, which is critical for improving the therapeutic efficacy of cell therapy. However, conventional endocytic labeling with relatively poor labeling efficiency and a short labeling lifetime has hindered the implementation of these innovative enhancements in stem-cell-mediated regenerative medicine. Herein, we describe an advanced magnetothermal approach to label mesenchymal stem cells (MSCs) efficiently by local induction of heat-enhanced membrane permeability for magnetic resonance imaging (MRI) tracking and targeted therapy of stroke, where biocompatible γ-phase, ferrimagnetic vortex-domain iron oxide nanorings (γ-FVIOs) with superior magnetoresponsive properties were used as a tracer. This approach facilitates a safe and efficient labeling of γ-FVIOs as high as 150 pg of Fe per cell without affecting the MSCs proliferation and differentiation, which is 3.44-fold higher than that by endocytosis labeling. Such a high labeling efficiency not only enables the ultrasensitive magnetic resonance imaging (MRI) detection of sub-10 cells and long-term tracking of transplanted MSCs over 10 weeks but also endows transplanted MSCs with a magnetic manipulation ability in vivo. A proof-of-concept study using a rat stroke model showed that the labeled MSCs facilitated MRI tracking and magnetic targeting for efficient replacement therapy with a significantly reduced dosage of 5 × 104 transplanted cells. The findings in this study have demonstrated the great potential of the magnetothermal approach as an efficient labeling technique for future clinical usage.
Collapse
Affiliation(s)
- Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Galong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| | - Yu Cheng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai200092, China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, 117594, Singapore
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Yingkun Guo
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| |
Collapse
|
5
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
6
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Huang M, Li D, Chen J, Ji Y, Su T, Chen Y, Zhang Y, Wang Y, Li F, Chen S, Dong Y, Li Q, Wu L, Feng Z, Wu J, Zhang L, Li Z, Cai G, Chen X. Comparison of the treatment efficacy of umbilical mesenchymal stem cell transplantation via renal subcapsular and parenchymal routes in AKI-CKD mice. Stem Cell Res Ther 2022; 13:128. [PMID: 35337372 PMCID: PMC8953025 DOI: 10.1186/s13287-022-02805-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for acute kidney injury (AKI). However, the optimal route of MSC transplantation remains controversial, and there have been no comparisons of the therapeutic benefits of MSC administration through different delivery routes. Methods In this study, we encapsulated MSCs into a collagen matrix to help achieve local MSC retention in the kidney and assessed the survival of MSCs in vitro and in vivo. After transplanting collagen matrix-encapsulated-MSCs (Col-MSCs) under the renal capsule or into the parenchyma using the same cell dose and suspension volume in an ischemia/reperfusion injury model, we evaluated the treatment efficacy of two local transplantation routes at different stages of AKI. Results We found that Col-MSCs could be retained in the kidney for at least 14 days. Both local MSC therapies could reduce tubular injury, promote the proliferation of renal tubular epithelial cells on Day 3 and alleviate renal fibrosis on Day 14 and 28. MSC transplantation via the subcapsular route exerts better therapeutic effects for renal functional and structural recovery after AKI than MSC administration via the parenchymal route. Conclusions Subcapsular MSC transplantation may be an ideal route of MSC delivery for AKI treatment, and collagen I can provide a superior microenvironment for cell–cell and cell–matrix interactions to stabilize the retention rate of MSCs in the kidney. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02805-3.
Collapse
Affiliation(s)
- Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Jianwen Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yuwei Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Tingyu Su
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Yuanda Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Fei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China.,School of Medicine, Nankai University, Weijin 20 Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Weijin 20 Road, Tianjin, 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Yu Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China
| | - Zongjin Li
- School of Medicine, Nankai University, Weijin 20 Road, Tianjin, 300071, China. .,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China.
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
8
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13060913. [PMID: 34205513 PMCID: PMC8235299 DOI: 10.3390/pharmaceutics13060913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their "tumor homing" and "immune privilege" characteristics, the use of mesenchymal stem cells (MSCs) has been proposed as a novel tool against cancer. MSCs are genetically engineered in vitro and then utilized to deliver tumoricidal agents, including prodrugs and bioactive molecules, to tumors. The genetic modification of MSCs can be achieved by various vectors, and in most cases viral vectors are used; however, viruses may be associated with carcinogenesis and immunogenicity, restricting their clinical translational potential. As such, nonviral vectors have emerged as a potential solution to address these limitations and have gradually attracted increasing attention. In this review, we briefly revisit the current knowledge about MSC-based cancer gene therapy. Then, we summarize the advantages and challenges of nonviral vectors for MSC transfection. Finally, we discuss recent advances in the development of new nonviral vectors, which have provided promising strategies to overcome obstacles in the gene modulation of MSCs.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yingsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Wanlu You
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhengwei Mao
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- MOE Key Laboratory, Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| |
Collapse
|
10
|
Bi Q, Song X, Hu A, Luo T, Jin R, Ai H, Nie Y. Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Li L, Wang C, Nie Y, Yao B, Hu H. Nanofabrication enabled lab-on-a-chip technology for the manipulation and detection of bacteria. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Cai M, Li B, Lin L, Huang J, An Y, Huang W, Zhou Z, Wang Y, Shuai X, Zhu K. A reduction and pH dual-sensitive nanodrug for targeted theranostics in hepatocellular carcinoma. Biomater Sci 2020; 8:3485-3499. [PMID: 32432234 DOI: 10.1039/d0bm00295j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sorafenib (SF) is the first drug demonstrated to improve the survival of patients diagnosed with advanced-stage hepatocellular carcinoma (HCC). However, its clinical application is limited by the poor oral bioavailability and severe side effects. In this study, a multifunctional micellar nanodrug was developed for simultaneous HCC-targeted delivery of SF and tumor detection with magnetic resonance imaging (MRI). The micellar nanodrug incorporating SF and superparamagnetic iron oxide nanoparticles (SPIONs) was prepared from a diblock copolymer of monomethoxyl poly(ethylene glycol) and poly(N-(2-aminoethanethiol-co-2-aminoethyldiisopropylamine) aspartamide) and then decorated with anti-glypican-3 antibody (AbGPC3). Owing to the small size, weak positive charge and AbGPC3-mediated active targeting to HCC cells, the nanodrug exhibited an easy cellular uptake and enhanced tumor accumulation. The prominent reduction and pH dual-sensitivity allowed the nanodrug to rapidly release SF inside cancer cells via responding to the cytoplasmic glutathione and lysosomal acidity. The nanodrug not only significantly improved the anticancer effects of SF in hepatoma treatment but also facilitated a noninvasive tumor detection and monitoring of in vivo drug delivery by MRI, which revealed its great potential as a promising theranostic system.
Collapse
Affiliation(s)
- Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Weng Y, Huang Q, Li C, Yang Y, Wang X, Yu J, Huang Y, Liang XJ. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:581-601. [PMID: 31927331 PMCID: PMC6957827 DOI: 10.1016/j.omtn.2019.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Due to a series of systemic and intracellular obstacles in nucleic acid (NA) therapy, including fast degradation in blood, renal clearance, poor cellular uptake, and inefficient endosomal escape, NAs may need delivery methods to transport to the cell nucleus or cytosol to be effective. Advanced nanoscale biotechnology-associated strategies, such as controlling the particle size, charge, drug loading, response to environmental signals, or other physical/chemical properties of delivery carriers, have provided great help for the in vivo and in vitro delivery of NA therapeutics. In this review, we introduce the characteristics of different NA modalities and illustrate how advanced nanoscale biotechnology assists NA therapy. The specific features and challenges of various nanocarriers in clinical and preclinical studies are summarized and discussed. With the help of advanced nanoscale biotechnology, some of the major barriers to the development of NA therapy will eventually be overcome in the near future.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Qianqian Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yongfeng Yang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China.
| |
Collapse
|
14
|
Li L, Gokduman K, Gokaltun A, Yarmush ML, Usta OB. A microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles. Nanomedicine (Lond) 2019; 14:2209-2226. [PMID: 31179822 DOI: 10.2217/nnm-2019-0086] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To develop a practical microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles using proof of concept studies providing first results of the potential hepatotoxicity of superparamagnetic iron oxide nanoparticles (SPION) under microfluidic conditions. Methods: A microfluidic 3D hepatocyte chip with three material layers, which contains primary rat hepatocytes, has been fabricated and tested using different concentrations (50, 100 and 200 μg/ml) of SPION in 3-day (short-term) and 1-week (long-term) cultures. Results: Compared with standard well plates, the hepatocyte chip with flow provided comparable viability and significantly higher liver-specific functions, up to 1 week. In addition, the chip recapitulates the key physiological responses in the hepatotoxicity of SPION. Conclusion: Thus, the developed 3D hepatocyte chip is a robust and highly sensitive platform for investigating hepatotoxicity profiles of nanoparticles.
Collapse
Affiliation(s)
- Lei Li
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA.,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
| | - Kurtulus Gokduman
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| | - Aslihan Gokaltun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA.,Department of Chemical Engineering, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA.,Rutgers State University, Department of Biomedical Engineering, Piscataway, NJ 08854, USA
| | - Osman Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| |
Collapse
|
15
|
Huang Y, Zhou B, Luo H, Mao J, Huang Y, Zhang K, Mei C, Yan Y, Jin H, Gao J, Su Z, Pang P, Li D, Shan H. ZnAs@SiO 2 nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics 2019; 9:4391-4408. [PMID: 31285768 PMCID: PMC6599649 DOI: 10.7150/thno.32462] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Rationale: Current therapies for hepatocellular carcinoma (HCC) are hampered by treatment failure and recurrence due to the remaining treatment-resistant liver cancer stem cells (CSCs). Stemness and epithelial-mesenchymal transition (EMT) are regarded as two fundamental characteristics of liver CSCs necessary for cancer progression; thus, drugs that simultaneously target both characteristics should prove effective in eliminating HCC and impeding recurrence. In this study, we developed new arsenic trioxide (ATO)-based nanoparticles (NPs), which are expected to be more effective than the current HCC therapy, and explored their potential mechanism. Methods: A “one-pot” reverse emulsification approach was employed to prepare the ZnAs@SiO2 NPs. HCC cell lines, MHCC97L and Hep3b, were used to analyze the antitumor activity of ZnAs@SiO2 NPs in vitro and in vivo by quantifying cell growth and metastasis as well as to study the effect on stemness and EMT. SHP-1 siRNA was used to validate the role of the SHP-1/JAK2/STAT3 signaling pathway in mediating inhibition of stemness and EMT by ZnAs@SiO2. Results: Compared with the current ATO treatment, ZnAs@SiO2 NPs promoted apoptosis and significantly inhibited proliferation, migration, and invasion of both MHCC97L and Hep3b cells. In the in vivo assay, ZnAs@SiO2 NPs inhibited tumor growth by 2.2-fold and metastasis by 3.5-fold as compared to ATO. The ZnAs@SiO2 NPs also inhibited tumor spheroid formation in vitro and tumor initiation in vivo and induced significant changes in the expression of stemness markers (CD133, Sox-2, and Oct-4) and EMT markers (E-cadherin, Vimentin, and Slug) both in vitro and in vivo. These effects of ZnAs@SiO2 that correlated with prognosis of HCC were mediated by the SHP-1/JAK2/STAT3 signaling. Conclusions: ZnAs@SiO2 NPs can effectively suppress tumor initiation, growth, metastasis, and inhibit stemness and EMT through regulation of SHP-1/JAK2/STAT3 signaling pathway in liver cancer cells in vitro and in vivo. Thus, ZnAs@SiO2 NPs have immense potential for HCC treatment in the future.
Collapse
|
16
|
Zhang T, Li F, Xu Q, Wang Q, Jiang X, Liang Z, Liao H, Kong X, Liu J, Wu H, Zhang D, An C, Dong L, Lu Y, Cao H, Kim D, Sun J, Hyeon T, Gao J, Ling D. Ferrimagnetic Nanochains‐Based Mesenchymal Stem Cell Engineering for Highly Efficient Post‐Stroke Recovery. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201900603] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 03/10/2025]
Abstract
AbstractUnsatisfactory post‐stroke recovery has long been a negative factor in the prognosis of ischemic stroke due to the lack of pharmacological treatments. Mesenchymal stem cells (MSCs)‐based therapy has recently emerged as a promising strategy redefining stroke treatment; however, its effectiveness has been largely restricted by insufficient therapeutic gene expression and inadequate cell numbers in the ischemic cerebrum. Herein, a non‐viral and magnetic field‐independent gene transfection approach is reported, using magnetosome‐like ferrimagnetic iron oxide nanochains (MFIONs), to genetically engineer MSCs for highly efficient post‐stroke recovery. The 1D MFIONs show efficient cellular uptake by MSCs, which results in highly efficient genetic engineering of MSCs to overexpress brain‐derived neurotrophic factor for treating ischemic cerebrum. Moreover, the internalized MFIONs promote the homing of MSCs to the ischemic cerebrum by upregulating CXCR4. Consequently, a pronounced recovery from ischemic stroke is achieved using MFION‐engineered MSCs in a mouse model.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Fangyuan Li
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qianhao Xu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qiyue Wang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xinchi Jiang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Zeyu Liang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Hongwei Liao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xianglei Kong
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Jianan Liu
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Honghui Wu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Danping Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Changhua An
- School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Liang Dong
- Division of Nanomaterials and Chemistry Hefei National Research Centre for Physical Sciences at the Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yang Lu
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases the First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310003 China
| | - Dokyoon Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jihong Sun
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jianqing Gao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Daishun Ling
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou 310027 China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310012 China
| |
Collapse
|
17
|
Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:1-15. [PMID: 31236426 PMCID: PMC6581775 DOI: 10.1016/j.omtm.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application. Beginning with evidence of MSC biodistribution and highlighting PK and PD factors, a new PK-PD model is also proposed. According to this theory, MSCs and their released factors are key players in PK, and the efficacy biomarkers are considered relevant for PD in more predictive preclinical investigations. Accounting for the PK-PD relationship in MSC translational research and proposing new models combined with better biodistribution studies could allow realization of the promise of more robust MSC clinical translation.
Collapse
|
18
|
Li B, Cai M, Lin L, Sun W, Zhou Z, Wang S, Wang Y, Zhu K, Shuai X. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater Sci 2019; 7:1529-1542. [DOI: 10.1039/c8bm01501e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel pH-sensitive micelle was constructed to efficiently co-deliver SPIONs and doxorubicin for cancer theranostic application.
Collapse
Affiliation(s)
- Bo Li
- Laboratory of Interventional Radiology
- Department of Minimally Invasive Interventional Radiology
- and Department of Radiology
- the Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
| | - Mingyue Cai
- Laboratory of Interventional Radiology
- Department of Minimally Invasive Interventional Radiology
- and Department of Radiology
- the Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
| | - Liteng Lin
- Laboratory of Interventional Radiology
- Department of Minimally Invasive Interventional Radiology
- and Department of Radiology
- the Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
| | - Weitong Sun
- Pharmaceutical college of Jiamusi University
- Jiamusi University
- Jiamusi
- China
| | - Zhimei Zhou
- Laboratory of Interventional Radiology
- Department of Minimally Invasive Interventional Radiology
- and Department of Radiology
- the Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
| | - Shiyin Wang
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Yong Wang
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology
- Department of Minimally Invasive Interventional Radiology
- and Department of Radiology
- the Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
19
|
Zhou K, Ding Y, Vuletic I, Tian Y, Li J, Liu J, Huang Y, Sun H, Li C, Ren Q, Lu Y. In vivo long-term investigation of tumor bearing mKate2 by an in-house fluorescence molecular imaging system. Biomed Eng Online 2018; 17:187. [PMID: 30594200 PMCID: PMC6310933 DOI: 10.1186/s12938-018-0615-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Optical imaging is one of the most common, low-cost imaging tools used for investigating the tumor biological behavior in vivo. This study explores the feasibility and sensitivity of a near infrared fluorescent protein mKate2 for a long-term non-invasive tumor imaging in BALB/c nude mice, by using a low-power optical imaging system. Methods In this study, breast cancer cell line MDA-MB-435s expressing mKate2 and MDA-MB-231 expressing a dual reporter gene firefly luciferase (fLuc)-GFP were used as cell models. Tumor cells were implanted in different animal body compartments including subcutaneous, abdominal and deep tissue area and closely monitored in real-time. A simple and low-power optical imaging system was set up to image both fluorescence and bioluminescence in live animals. Results The presence of malignant tissue was further confirmed by histopathological assay. Considering its lower exposure time and no need of substrate injection, mKate2 is considered a superior choice for subcutaneous imaging compared with fLuc. On the contrary, fLuc has shown to be a better option when monitoring the tumor in a diffusive area such as abdominal cavity. Furthermore, both reporter genes have shown good stability and sensitivity for deep tissue imaging, i.e. tumor within the liver. In addition, fLuc has shown to be an excellent method for detecting tumor cells in the lung. Conclusions The combination of mKate2 and fLuc offers a superior choice for long-term non-invasive real-time investigation of tumor biological behavior in vivo.
Collapse
Affiliation(s)
- Kedi Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yichen Ding
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Ivan Vuletic
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yonglu Tian
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Jun Li
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Jinghao Liu
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yixing Huang
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yanye Lu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
20
|
Wang F, Tang H, Zhu J, Zhang JH. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant 2018; 27:1825-1834. [PMID: 30251564 PMCID: PMC6300770 DOI: 10.1177/0963689718795424] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stroke is a major disease that leads to high mortality and morbidity. Given the ageing population and the potential risk factors, the prevalence of stroke and socioeconomic burden associated with stroke are expected to increase. During the past decade, both prophylactic and therapeutic strategies for stroke have made significant progress. However, current therapies still cannot adequately improve the outcomes of stroke and may not apply to all patients. One of the significant advances in modern medicine is cell-derived neurovascular regeneration and neuronal repair. Progress in stem cell biology has greatly contributed to ameliorating stroke-related brain injuries in preclinical studies and demonstrated clinical potential in stroke treatment. Mesenchymal stem cells (MSCs) have the differentiating potential of chondrocytes, adipocytes, and osteoblasts, and they have the ability to transdifferentiate into endothelial cells, glial cells, and neurons. Due to their great plasticity, MSCs have drawn much attention from the scientific community. This review will focus on MSCs, stem cells widely utilized in current medical research, and evaluate their effect and potential of improving outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Fan Wang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,2 Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hailiang Tang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - John H Zhang
- 3 Center for Neuroscience Research, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|
21
|
Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, He Y, Yao H, Ding J. Bilayered PLGA/PLGA-HAp Composite Scaffold for Osteochondral Tissue Engineering and Tissue Regeneration. ACS Biomater Sci Eng 2018; 4:3506-3521. [PMID: 33465902 DOI: 10.1021/acsbiomaterials.8b00552] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Pingguo Duan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runsheng Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaofeng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haoqun Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
22
|
Gokduman K, Bestepe F, Li L, Yarmush ML, Usta OB. Dose-, treatment- and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine (Lond) 2018; 13:1267-1284. [PMID: 29949471 PMCID: PMC6219434 DOI: 10.2217/nnm-2017-0387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
AIM As a first study in literature, to investigate concentration-dependent (0-400 μg/ml) and exposure-dependent (single dosing vs cumulative dosing) effects of superparamagnetic iron oxide nanoparticles (d = 10 nm) on primary rat hepatocytes in a time-dependent manner. MATERIALS & METHODS Sandwich-cultured hepatocyte model was used to evaluate viability, hepatocyte specific functions and reactive oxygen species level. RESULTS In terms of all parameters, generally statistically more significant effects were observed in a concentration- and time-dependent manner. In terms of hepatocyte-specific functions, cumulative dosing caused significantly (p < 0.05) more deleterious effects at 48th hour. CONCLUSION A combination of various biomarkers should be employed for the evaluation of the effect of superparamagnetic iron oxide nanoparticles on liver, and each biomarker should be analyzed in a time- and exposure-dependent manner.
Collapse
Affiliation(s)
- Kurtulus Gokduman
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| | - Furkan Bestepe
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- School of Medicine, Ankara University, Ankara 06100, Turkey
| | - Lei Li
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- Key Laboratory of Cryogenics, Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers State University, Piscataway, NJ 08854, USA
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| |
Collapse
|
23
|
Muñoz MF, Argüelles S, Guzman-Chozas M, Guillén-Sanz R, Franco JM, Pintor-Toro JA, Cano M, Ayala A. Cell tracking, survival, and differentiation capacity of adipose-derived stem cells after engraftment in rat tissue. J Cell Physiol 2018; 233:6317-6328. [PMID: 29319169 DOI: 10.1002/jcp.26439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/05/2018] [Indexed: 12/30/2022]
Abstract
Adipose tissue is an important source of adipose derived stem cells (ADSCs). These cells have the potential of being used for certain therapies, in which the main objective is to recover the function of a tissue/organ affected by a disease. In order to contribute to repair of the tissue, these cells should be able to survive and carry out their functions in unfavorable conditions after being transplanted. This process requires a better understanding of the biology involved: such as the time cells remain in the implant site, how long they stay there, and whether or not they differentiate into host tissue cells. This report focuses on these questions. ADSC were injected into three different tissues (substantia nigra, ventricle, liver) and they were tracked in vivo with a dual GFP-Luc reporter system. The results show that ADSCs were able to survive up to 4 months after the engraftment and some of them started showing resident cell tissue phenotype. These results demonstrate their long-term capacity of survival and differentiation when injected in vivo.
Collapse
Affiliation(s)
- Mario F Muñoz
- Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Sandro Argüelles
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | - Matias Guzman-Chozas
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, . Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Remedios Guillén-Sanz
- Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal, . Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Jaime M Franco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Departamento de Señalización Celular, Universidad de Sevilla, Sevilla, Spain
| | - José A Pintor-Toro
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Departamento de Señalización Celular, Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Cano
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Ayala
- Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
24
|
Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury. Int J Mol Med 2018. [PMID: 29532861 PMCID: PMC5846645 DOI: 10.3892/ijmm.2018.3491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was topreliminarily visualize the distribution of humanumbilical cord-derived-mesenchymal stem cells (hUC-MSCs) in treating acute lung injury (ALI) using a targeted fluorescent technique. Anovel fluorescent molecule probe was first synthesized via the specific binding of antigen and antibody in vitro to label the hUC-MSCs. Two groups of mice, comprising a normal saline (NS)+MSC group and lipopolysaccharide (LPS)+MSC group, were subjected to optical imaging. At 4 h following ALI mouse model construction, the labeled hUC-MSCs were transplanted into the mice in the NS+MSC group and LPS+MSC group by tail vein injection. The mice were sacrificed 30 min, 1 day, 3 days and 7 days following injection of the labeled hUC-MSCs, and the lungs, heart, spleen, kidneys and liver were removed. The excised lungs, heart, spleen, kidneys and liver were then detected on asmall animal fluorescent imager. The fluorescent results showed that the signal intensity in the lungs of the LPS+MSC group was significantly higher, compared with that of the NS+MSC group at 30 min (3.53±0.06×10−4, vs. 1.95±0.05×10−4 scaled counts/sec), 1 day (36.20±0.77×10−4, vs. 23.45±0.43×10−4 scaled counts/sec), 3 days (11.83±0.26×10−4, vs. 5.39±0.10×10−4 scaled counts/sec), and 7 days (3.14±0.04×10−4, vs. 0.00±0.00×10−4 scaled counts/sec; all P<0.05). The fluorescence intensity in the liver of the LPS+MSC group, vs. NS+MSC group was measured at 30 min (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec); 1 day (5.53±0.08×10−4, vs. 5.44±0.16×10−4 scaled counts/sec); 3 days (0.00±0.00×10−4, vs. 8.67±0.05×10−4 scaled counts/sec); 7 days (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec). The signal intensity of the heart, spleen and kidneys was minimal. In conclusion, the novel targeted fluorescence molecular probe was suitable for tracking the distribution processes of hUC-MSCs in treating ALI.
Collapse
Affiliation(s)
- Genglong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuling An
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
25
|
Sun YX, Zhu JY, Qiu WX, Lei Q, Chen S, Zhang XZ. Versatile Supermolecular Inclusion Complex Based on Host-Guest Interaction for Targeted Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42622-42632. [PMID: 29148707 DOI: 10.1021/acsami.7b14963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A facile and targeted gene delivery system was prepared by conjugating β-cyclodextrin modified polyethylenimine (PEI-CD) and adamantyl peptide (AdGRGDS) based on host-guest interaction. With the rational design between PEI-CD and AdGRGDS, the PEI-CD/AdGRGDS gene delivery system showed excellent DNA binding capability and exhibited good ability to compact DNA into uniform spherical nanoparticles. In vitro luciferase assay showed that gene expression transfected by PEI-CD/AdGRGDS was stronger than that by PEI-CD in HeLa cells, whereas gene expression transfected by PEI-CD/AdGRGDS and PEI-CD was similar to each other in COS7 cells. Internalization of complexes was qualitatively studied using a confocal laser scanning microscope (CLSM) and quantitatively analyzed by flow cytometry, respectively, and targeting specificity was also evaluated by CLSM. Results of CLSM and flow cytometry indicated that PEI-CD/AdGRGDS had good targeting specificity to tumor cells with integrin αvβ3 overexpression. To further evaluate the targeting specificity and transfection efficiency in vivo, a rat model with murine hepatic carcinoma cell line H22 was used. PEI-CD/AdGRGDS showed stronger gene expression efficiency than PEI-CD via in vivo transfection of pORF-LacZ and pGL-3 plasmids after subcutaneous injection. Interestingly, PEI-CD/AdGRGDS also showed high targeting specificity and transfection distribution to tumor xenograft after tail-vein injection. In vitro and in vivo assays highlighted the importance of GRGDS targeting specificity to tumor cells with integrin αvβ3 overexpression and demonstrated that the PEI-CD/AdGRGDS gene delivery system would have great potential for targeted tumor therapy.
Collapse
Affiliation(s)
- Yun-Xia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Si Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
26
|
Jiang Z, Wang H, Yu K, Feng Y, Wang Y, Huang T, Lai K, Xi Y, Yang G. Light-Controlled BMSC Sheet-Implant Complexes with Improved Osteogenesis via an LRP5/β-Catenin/Runx2 Regulatory Loop. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34674-34686. [PMID: 28879758 DOI: 10.1021/acsami.7b10184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of bone marrow mesenchymal stem cell (BMSC) sheets and titanium implants (BMSC sheet-implant complexes) can accelerate osseointegration. However, methods of fabricating BMSC sheet-implant complexes are quite limited, and the survival of BMSC sheet-implant complexes is one of the key barriers. Here, we show that a light-controlled fabricating system can generate less injured BMSC sheet-implant complexes with improved viability and osteogenesis and that noninvasive monitoring of the viability of BMSC sheet-implant complexes using a lentiviral delivery system is feasible. Enhanced green fluorescent protein- and luciferase-expressing BMSC sheets were used to track the viability of BMSC sheet-implant complexes in vivo. The experiments of micro-computed tomography analysis and hard tissue slices were performed to evaluate the osteogenic ability of BMSC sheet-implant complexes in vivo. The results showed that BMSC sheet-implant complexes survived for almost 1 month after implantation. Notably, BMSC sheet-implant complexes fabricated by the light-controlled fabricating system had upregulating expression levels of low-density lipoprotein-receptor-related protein 5 (LRP5), β-catenin, and runt-related transcription factor 2 (Runx2) compared to the complexes fabricated by mechanical scraping. Furthermore, we found that Runx2 directly bound to the rat LRP5 promoter and the LRP5/β-catenin/Runx2 regulatory loop contributed to the enhancement of the osseointegrating potentials. In this study, we successfully fabricated BMSC sheet-implant complexes with improved viability and osteogenesis and established a feasible, noninvasive, and continuous method for tracking BMSC sheet-implant complexes in vivo. Our findings lay the foundation for the application of BMSC sheet-implant complexes in vivo and open new avenues for engineered BMSC sheet-implant complexes.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Huiming Wang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Ke Yu
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Yuting Feng
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Ying Wang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Kaichen Lai
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| |
Collapse
|
27
|
Design of magnetic gene complexes as effective and serum resistant gene delivery systems for mesenchymal stem cells. Int J Pharm 2017; 520:1-13. [DOI: 10.1016/j.ijpharm.2017.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 01/04/2023]
|
28
|
Qin X, Hu X, Wu C, Cai M, Li Z, Zhang L, Lin L, Huang W, Zhu K. Hepatocellular Carcinoma Cells Carrying a Multimodality Reporter Gene for Fluorescence, Bioluminescence, and Magnetic Resonance Imaging In Vitro and In Vivo. Acad Radiol 2016; 23:1422-1430. [PMID: 27641103 DOI: 10.1016/j.acra.2016.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022]
Abstract
RATIONALE AND OBJECTIVES The study aimed to evaluate the feasibility of imaging or tracking hepatocellular carcinoma cells by modifying these cells to carry a multimodality reporter gene, enabling fluorescence, bioluminescence, and magnetic resonance imaging (MRI) in vitro and in vivo. MATERIALS AND METHODS HepG2 cells were labeled with the enhanced green fluorescent protein (EGFP)/luciferase2/ferritin-the multimodality reporter gene (labeled HepG2 cells). The labeled and unlabeled HepG2 cells were cultured in vitro and then injected subcutaneously into mice as a hepatoma model in vivo. The expressions of EGFP, luciferase2, and ferritin in HepG2 cell suspensions and hepatoma model were investigated using fluorescence, bioluminescence, and MRI. RESULTS Individual HepG2 cells expressing EGFP were identified under blue laser excitation. The linear coefficient between the optical signal intensity of luciferase2 and the number of labeled cells was 0.993. MRI was used to distinguish the T2* signal of 2 × 107 cells/mL between the labeled (6.67 ± 1.88 ms) and unlabeled cells (10.66 ± 2.22 ms) (P = 0.034). In vivo, individual HepG2 cells expressing EGFP in frozen sections were observed. Labeled cells expressing luciferase2 have been detected since the second day after injection, and the bioluminescence increased with the tumor size. The T2* signal was significantly different between the labeled (6.04 ± 1.60 ms) and unlabeled cells (17.06 ± 2.17 ms) (P <0.001). CONCLUSIONS A multimodality reporter gene consisting of EGFP, luciferase2, and ferritin was successfully integrated into the HepG2 cell genome via a lentiviral vector and was highly expressed in the daughter cells. These cells could be detected by fluorescence, bioluminescence, and MRI in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, China; Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaojun Hu
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chun Wu
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Mingyue Cai
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhengran Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lina Zhang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liteng Lin
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wensou Huang
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou 510260, Guangdong Province, China.
| |
Collapse
|
29
|
Das J, Choi YJ, Yasuda H, Han JW, Park C, Song H, Bae H, Kim JH. Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Sci Rep 2016; 6:33784. [PMID: 27677463 PMCID: PMC5039411 DOI: 10.1038/srep33784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/02/2016] [Indexed: 01/04/2023] Open
Abstract
The controlled differentiation of stem cells via the delivery of specific genes encoding appropriate differentiation factors may provide useful models for regenerative medicine and aid in developing therapies for human patients. However, the majority of non-viral vectors are not efficient enough to manipulate difficult-to-transfect adult human stem cells in vitro. Herein, we report the first use of 25 kDa branched polyethylenimine-entrapped gold nanoparticles (AuPEINPs) and covalently bound polyethylenimine-gold nanoparticles (AuMUAPEINPs) as carriers for efficient gene delivery into human mesenchymal stem cells (hMSCs). We determined a functional application of these nanoparticles by transfecting hMSCs with the C/EBP beta gene, fused to EGFP, to induce adipogenic differentiation. Transfection efficacy with AuPEINPs and AuMUAPEINPs was 52.3% and 40.7%, respectively, which was 2.48 and 1.93 times higher than that by using Lipofectamine 2000. Luciferase assay results also demonstrated improved gene transfection efficiency of AuPEINPs/AuMUAPEINPs over Lipofectamine 2000 and polyethylenimine. Overexpression of exogenous C/EBP beta significantly enhanced adipogenesis in hMSCs as indicated by both of Oil Red O staining and mRNA expression analyses. Nanoparticle/DNA complexes exhibited favorable cytocompatibility in hMSCs. Taken together, AuPEINPs and AuMUAPEINPs potentially represent safe and highly efficient vehicles for gene delivery to control hMSC differentiation and for therapeutic gene delivery applications.
Collapse
Affiliation(s)
- Joydeep Das
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hideyo Yasuda
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hojae Bae
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Dept. of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
30
|
Liao N, Wu M, Pan F, Lin J, Li Z, Zhang D, Wang Y, Zheng Y, Peng J, Liu X, Liu J. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Sci Rep 2016; 6:18746. [PMID: 26728448 PMCID: PMC4700528 DOI: 10.1038/srep18746] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.
Collapse
Affiliation(s)
- Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, Fuzong Clinical College, Fujian Medical University, Fuzhou 350001, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P.R. China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P.R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P.R. China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, P.R. China
| |
Collapse
|
31
|
Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B 2016; 4:7793-7812. [DOI: 10.1039/c6tb02019d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo imaging of biomedical hydrogels enables real-time and non-invasive visualization of the status of structure and function of hydrogels.
Collapse
Affiliation(s)
- Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
32
|
Li Z, Hu X, Mao J, Liu X, Zhang L, Liu J, Li D, Shan H. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging. Mol Imaging Biol 2015; 17:185-94. [PMID: 25273323 DOI: 10.1007/s11307-014-0792-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Both experimental and initial clinical studies have shown the therapeutic potential of mesenchymal stem cells (MSCs) in liver disease. Noninvasive tracking of MSCs could facilitate its clinical translation. The purpose of this study was to optimize MSCs delivery dose and route in mice with acute liver injury using bioluminescence imaging (BLI) to track the cells. PROCEDURES MSCs were labeled with the Luc2-mKate2 dual-fusion reporter gene (MSCs-R). The fate of MSCs-R was tracked through in vivo BLI after administration of different doses or delivery through different routes. RESULTS When delivered via the superior mesenteric vein (SMV), the high-dose (1.0 × 10(6) and 5.0 × 10(5)) group mice demonstrated high liver BLI signal but also had lethal portal vein embolization (PVE). By contrast, no PVE and its related death occurred in the low-dose (2.5 × 10(5)) group mice. Thus, 2.5 × 10(5) is the optimal delivery dose. Three delivery routes, i.e., inferior vena cava (IVC), SMV, and intrahepatic (IH) injection, were also systematically compared. After IVC infusion, MSCs-R were quickly trapped inside the lungs, and no detectable homing to the liver and other organs was observed. By IH injection, lung entrapment was bypassed, but MSCs-R distribution was only localized in the injection region of the liver. By contrast, after SMV infusion, MSCs-R were dispersedly distributed and stayed as long as 7-day posttransplantation in the liver. The in vivo imaging results were further validated by ex vivo imaging, digital subtraction angiography (DSA), and tissue analysis. Therefore, SMV is the optimal MSCs delivery route for liver disease. CONCLUSIONS Collectively, BLI, which could dynamically and quantitatively track cellular location and survival, is useful in determining MSCs transplantation parameters.
Collapse
Affiliation(s)
- Zhengran Li
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol 2015; 99:9907-22. [DOI: 10.1007/s00253-015-6965-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023]
|
34
|
Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep 2015; 5:9621. [PMID: 25858671 PMCID: PMC4392363 DOI: 10.1038/srep09621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
Galectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells. Transient cerebral ischemia was induced in mice by middle cerebral artery occlusion for 60 minutes and s-NSCs were injected into the striatum and cortex within 2 hours post-ischemia. Brain infarct volume and neurological performance were assessed up to 28 days post-ischemia. s-NSC transplantation reduced infarct volume, improved sensorimotor and cognitive functions, and provided more robust neuroprotection than non-engineered NSCs or gal-1-overexpressing (but non-secreting) NSCs. White matter injury was also ameliorated in s-NSC-treated stroke mice. Gal-1 modulated microglial function in vitro, by attenuating secretion of pro-inflammatory cytokines (TNF-α and nitric oxide) in response to LPS stimulation and enhancing production of anti-inflammatory cytokines (IL-10 and TGF-β). Gal-1 also shifted microglia/macrophage polarization toward the beneficial M2 phenotype in vivo by reducing CD16 expression and increasing CD206 expression. In sum, s-NSC transplantation confers robust neuroprotection against cerebral ischemia, probably by alleviating white matter injury and modulating microglial/macrophage function.
Collapse
|
35
|
Proffen BL, Vavken P, Haslauer CM, Fleming BC, Harris CE, Machan JT, Murray MM. Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med 2015; 43:320-30. [PMID: 25549633 PMCID: PMC4511104 DOI: 10.1177/0363546514559826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. HYPOTHESIS The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. STUDY DESIGN Controlled laboratory study. METHODS Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. RESULTS After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. CONCLUSION These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. CLINICAL RELEVANCE Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered.
Collapse
Affiliation(s)
- Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Vavken
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, University Hospital Basel, Switzerland
| | - Carla M. Haslauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Chad E. Harris
- Department of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jason T. Machan
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
- Biostatistics, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Qiu K, Yu B, Huang H, Zhang P, Ji L, Chao H. Tetranuclear ruthenium(ii) complexes with oligo-oxyethylene linkers as one- and two-photon luminescent tracking non-viral gene vectors. Dalton Trans 2015; 44:7058-65. [DOI: 10.1039/c5dt00117j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four tetranuclear ruthenium(ii) complexes Ru1–Ru4 based on oligo-oxyethylene and polybenzimidazole have been developed as one- and two-photon luminescent tracking non-viral gene vectors.
Collapse
Affiliation(s)
- Kangqiang Qiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Bole Yu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Huaiyi Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Pingyu Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|