1
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
3
|
Wang G, Zhang M, Lai W, Gao Y, Liao S, Ning Q, Tang S. Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release. Mol Pharm 2024; 21:4217-4237. [PMID: 39056442 DOI: 10.1021/acs.molpharmaceut.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Weiwei Lai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Gao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shengsong Tang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
5
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
6
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
7
|
Sil M, Mukherjee D, Goswami A, Nag M, Lahiri D, Bhattacharya D. Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3617-3633. [PMID: 38051365 DOI: 10.1007/s00210-023-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
In pharmaceutical industries, various chemical carriers are present which are used for drug delivery to the correct target sites. The most popular and upcoming drug delivery carriers are mesoporous silica nanoparticles (MSN). The main reason for its popularity is its ability to be specific and optimize the drug delivery process in a controlled manner. Nowadays, MSNs are widely used to eradicate various microbial infections, especially the ones related to biofilms. Biofilms are sessile groups of cells that live by forming a consortium and exhibit antibacterial resistance (AMR). They exhibit AMR by extracellular polymeric substances (EPS) and various quorum sensing (QS) signaling molecules. Usually, bacterial and fungal cells are capable of forming biofilms. These biofilms are pathogenic. In the majority of the cases, biofilms cause nosocomial diseases. This review will focus on the antibiofilm activities of MSN, its mechanism of target-specific drug delivery, and its ability to disrupt the bacterial biofilms inhibiting the infection. The review will also discuss various mechanisms for the delivery of pharmaceutical molecules by the MSNs to inhibit the bacterial biofilms, and lastly, we will talk about the different types of MSNs and their antibiofilm activities.
Collapse
Affiliation(s)
- Moumita Sil
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Dipro Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Arunava Goswami
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India.
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, Salt Lake, University of Engineering and Management, Kolkata, India
| |
Collapse
|
8
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
10
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
11
|
Wang P, Yang Y, Wen H, Li D, Zhang H, Wang Y. Progress in construction and release of natural polysaccharide-platinum nanomedicines: A review. Int J Biol Macromol 2023; 250:126143. [PMID: 37544564 DOI: 10.1016/j.ijbiomac.2023.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.
Collapse
Affiliation(s)
- Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 211816, China
| | - Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Haoyu Wen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Dongqing Li
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
12
|
Zhou T, Chen Y, Luo T, Song J, Qu J. FRET-Modulated Fluorescence Lifetime-Traceable Nanocarriers for Multidrug Release Monitoring and Synergistic Therapy. ACS APPLIED BIO MATERIALS 2023; 6:3823-3831. [PMID: 37653719 DOI: 10.1021/acsabm.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In situ monitoring multidrug release in complex cellular microenvironments is significant, and currently, it is still a great challenge. In this work, a smart nanocarrier with the capability of codelivery of small molecules and gene materials as well as with Förster resonance energy transfer (FRET)-modulated fluorescence lifetime is fabricated by integrating gold nanoparticles (the acceptor) into dual-mesoporous silica loaded with multiple drugs (the donor). Once internalized into tumor cells, in weakly acidic environments, the conformation switch of the polymer grafted on nanocarriers causes its shedding from the mesopores, triggering the release of drugs. Simultaneously, based on the strong overlap between the emission spectrum of donors and the absorption spectrum of the acceptors, any slight fluctuation of the dissociation of the drugs from nanocarriers can result in a change in the FRET-modulated lifetime signal due to the extraordinarily sensitive FRET signal to the separation distance between donors and acceptors. All these implied the potential applications of this nanoplatform in various biomedical fields that require the codelivery and real-time monitoring of multidrug-based synergistic therapy.
Collapse
Affiliation(s)
- Ting Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen 518060, China
| | - Yu Chen
- Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Teng Luo
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen 518060, China
| |
Collapse
|
13
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Wang Y, Wei Y, Chen L, Yang Y, Jia F, Yu W, Zhou S, Yu S. Research progress of siVEGF complex and their application in antiangiogenic therapy. Int J Pharm 2023; 643:123251. [PMID: 37481098 DOI: 10.1016/j.ijpharm.2023.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.
Collapse
Affiliation(s)
- Yan Wang
- Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Wei
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Jia
- Shanxi Medical University, Taiyuan 030001, China
| | - Weiran Yu
- The Affiliated High School of Shanxi University, Taiyuan 030006, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| |
Collapse
|
15
|
Song P, Wang B, Pan Q, Jiang T, Chen X, Zhang M, Tao J, Zhao X. GE11-modified carboxymethyl chitosan micelles to deliver DOX·PD-L1 siRNA complex for combination of ICD and immune escape inhibition against tumor. Carbohydr Polym 2023; 312:120837. [PMID: 37059562 DOI: 10.1016/j.carbpol.2023.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Programmed cell death-ligand 1 (PD-L1) small interfering RNA (siRNA) achieves tumor immunotherapy by restoring the immune response of T cells, but the efficacy of PD-1/PD-L1 monotherapy is relatively low. While immunogenic cell death (ICD) can improve the response of most tumors to anti-PD-L1 and enhance tumor immunotherapy. Herein, a targeting peptide GE11-functionalized dual-responsive carboxymethyl chitosan (CMCS) micelle (G-CMssOA) is developed for simultaneous delivery of PD-L1 siRNA and doxorubicin (DOX) in a complex form of DOX·PD-L1 siRNA (D&P). The complex-loaded micelles (G-CMssOA/D&P) have good physiological stability and pH/reduction responsiveness, and improve the intratumoral infiltration of CD4+ and CD8+ T cells, reduce Tregs (TGF-β), and increase the secretion of immune-stimulatory cytokine (TNF-α). The combination of DOX-induced ICD and PD-L1 siRNA-mediated immune escape inhibition significantly improves anti-tumor immune response and inhibits tumor growth. This complex delivery strategy provides a new approach for effectively delivering siRNA and enhancing anti-tumor immunotherapy.
Collapse
|
16
|
Khaliq NU, Lee J, Kim J, Kim Y, Yu S, Kim J, Kim S, Sung D, Kim H. Mesoporous Silica Nanoparticles as a Gene Delivery Platform for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051432. [PMID: 37242674 DOI: 10.3390/pharmaceutics15051432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains a major global health challenge. Traditional chemotherapy often results in side effects and drug resistance, necessitating the development of alternative treatment strategies such as gene therapy. Mesoporous silica nanoparticles (MSNs) offer many advantages as a gene delivery carrier, including high loading capacity, controlled drug release, and easy surface functionalization. MSNs are biodegradable and biocompatible, making them promising candidates for drug delivery applications. Recent studies demonstrating the use of MSNs for the delivery of therapeutic nucleic acids to cancer cells have been reviewed, along with their potential as a tool for cancer therapy. The major challenges and future interventions of MSNs as gene delivery carriers for cancer therapy are discussed.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Joohyeon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Yejin Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sohyeon Yu
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jisu Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
17
|
Vitória Pupo Silvestrini A, Garcia Praça F, Nani Leite M, Carvalho de Abreu Fantini M, Andrey Cipriani Frade M, Vitória Lopes Badra Bentley M. Liquid crystalline nanoparticles enable a multifunctional approach for topical psoriasis therapy by co-delivering triptolide and siRNAs. Int J Pharm 2023; 640:123019. [PMID: 37149114 DOI: 10.1016/j.ijpharm.2023.123019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Liquid crystalline nanoparticles (LCNs) are an attractive drugs topical delivery system due to the great internal ordering, wide interfacial area and structural similarities with the skin. In this work, LCNs were designed to encapsulate triptolide (TP) and to complex on its surface small interfering RNAs (siRNA) targeting TNF-α and IL-6, aiming at topical co-delivery and regulating multi-targets in psoriasis. These multifunctional LCNs showed appropriate physicochemical properties for topical application, such as a mean size of 150 nm, low polydispersion, TP encapsulation greater than 90% and efficient complexation with siRNA. The internal reverse hexagonal mesostructure of LCNs was confirmed by SAXS while their morphology was assessed by cryo-TEM. In vitro permeation studies revealed an increase of more than 20-fold in the distribution of TP through the porcine epidermis/dermis was achieved after the application of LCN-TP or LCN TP in hydrogel. In cell culture, LCNs showed good compatibility and rapid internalization, which was attributed to macropinocytosis and caveolin-mediated endocytosis. Anti-inflammatory potential of multifunctional LCNs was assessed by reducing of TNF-α, IL-6, IL-1β and TGF-β1 levels in LPS-stimulated macrophages. These results support the hypothesis that the co-delivery of TP and siRNAs by LCNs may be a new strategy for psoriasis topical therapy.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Marcel Nani Leite
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
18
|
Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023; 26:106279. [PMID: 36936787 PMCID: PMC10014307 DOI: 10.1016/j.isci.2023.106279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Stimuli-responsive nanomaterials have attracted substantial interest in cancer therapy, as they hold promise to deliver anticancer agents to tumor sites in a precise and on-demand manner. Interestingly, supramolecular chemistry is a burgeoning discipline that entails the reversible bonding between components at the molecular and nanoscale levels, and the recent advances in this area offer the possibility to design nanotherapeutics with improved controllability and functionality for cancer therapy. Herein, we provide a comprehensive summary of typical non-covalent interaction modes, which primarily include hydrophobic interaction, hydrogel bonding, host-guest interaction, π-π stacking, and electrostatic interaction. Special emphasis is placed on the implications of these interaction modes to design novel stimuli-responsive drug delivery principles and concepts, aiming to enhance the spatial, temporal, and dosage precision of drug delivery to cancer cells. Finally, future perspectives are discussed to highlight current challenges and future opportunities in self-assembly-based stimuli-responsive drug delivery nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yunyun Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
19
|
Yu B, Shi R, Liu C, Liu Z, Shen P, Hu J, Shi F. pH-responsive gelatin polymer-coated silica-based mesoporous composites for the sustained-release of indomethacin. Heliyon 2023; 9:e13705. [PMID: 36873513 PMCID: PMC9976327 DOI: 10.1016/j.heliyon.2023.e13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
This paper prepared drug-loaded mesoporous silica composites with a pH-responsive type. These composites were prepared by using three-dimensional caged silica (SBA-16) as the carrier, 3-aminopropyl trimethoxysilane (APTMS) as the silane coupling agent, and indomethacin (IMC) as the loaded drug, respectively. The drug-loaded precursor NH2-SBA-16@IMC was prepared by solution diffusion adsorption. Finally, the pH-responsive drug-loaded composites NH2-SBA-16@IMC@GA were synthesized by wrapping the NH2-SBA-16@IMC with a condensation polymer of gelatin and glutaraldehyde. The composition and structure of the drug-loaded composites were characterized by FT-IR, XRD, TG, SEM, TEM, and N2 adsorption-desorption. The in vitro simulated release performance of the drug-loaded composites was investigated at 37 °C under three pH conditions. The results show that the NH2-SBA-16@IMC@GA can be released in response to specific pH environment, which can effectively control the release speed of the indomethacin.
Collapse
Affiliation(s)
- Bo Yu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.,College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ruiping Shi
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Chunlai Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zelong Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Peihang Shen
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jianglei Hu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Fengwei Shi
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
20
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
21
|
Song P, Lu Z, Jiang T, Han W, Chen X, Zhao X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int J Biol Macromol 2022; 222:1078-1091. [DOI: 10.1016/j.ijbiomac.2022.09.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
22
|
Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022; 307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
Recent advances in emerging nanocarriers and stimuli-responsive (SR) delivery systems have brought about a revolution in the food and pharmaceutical industries. SR carriers are able to release the encapsulated bioactive compounds (bioactives) upon an external trigger. The potential of releasing the loaded bioactives in site-specific is of great importance for the pharmaceutical industry and medicine that can deliver the cargo in an appropriate condition. For the food industry, release of encapsulated bioactives is considerably important in processing or storage of food products and can be used in their formulation or packaging. There are various stimuli to control the favorite release of bioactives. In this review, we will shed light on the effect of different stimuli such as temperature, humidity, pH, light, enzymatic hydrolysis, redox, and also multiple stimuli on the release of encapsulated cargo and their potential applications in the food and pharmaceutical industries. An overview of cargo release mechanisms is also discussed. Furthermore, various alternatives to manipulate the controlled release of bioactives from carriers and the perspective of more progress in these SR carriers are highlighted.
Collapse
Affiliation(s)
- Atefe Rezaei
- Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Fatemeh Rafieian
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
23
|
Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol 2022; 13:909408. [PMID: 35712701 PMCID: PMC9195145 DOI: 10.3389/fphar.2022.909408] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
Targeted delivery by either systemic or local targeting of therapeutics to the bone is an attractive treatment for various bone metabolism diseases such as osteoporosis, osteoarthritis, osteosarcoma, osteomyelitis, etc. To overcome the limitations of direct drug delivery, the combination of bone-targeted agents with nanotechnology has the opportunity to provide a more effective therapeutic approach, where engineered nanoparticles cause the drug to accumulate in the bone, thereby improving efficacy and minimizing side effects. Here, we summarize the current advances in systemic or local bone-targeting approaches and nanosystem applications in bone diseases, which may provide new insights into nanocarrier-delivered drugs for the targeted treatment of bone diseases. We envision that novel drug delivery carriers developed based on nanotechnology will be a potential vehicle for the treatment of currently incurable bone diseases and are expected to be translated into clinical applications.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianmin Wu
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
24
|
Dai X, Li X, Liu Y, Yan F. Recent advances in nanoparticles-based photothermal therapy synergizing with immune checkpoint blockade therapy. MATERIALS & DESIGN 2022; 217:110656. [DOI: 10.1016/j.matdes.2022.110656] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
25
|
Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104843. [PMID: 35224893 PMCID: PMC9069201 DOI: 10.1002/advs.202104843] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Infections are regarded as the most severe complication associated with human health, which are urgent to be solved. Stimuli-responsive materials are appealing therapeutic platforms for antibacterial treatments, which provide great potential for accurate theranostics. In this review, the advantages, the response mechanisms, and the key design principles of stimuli-responsive antibacterial materials are highlighted. The biomedical applications, the current challenges, and future directions of stimuli-responsive antibacterial materials are also discussed. First, the categories of stimuli-responsive antibacterial materials are comprehensively itemized based on different sources of stimuli, including external physical environmental stimuli (e.g., temperature, light, electricity, salt, etc.) and bacterial metabolites stimuli (e.g., acid, enzyme, redox, etc.). Second, structural characteristics, design principles, and biomedical applications of the responsive materials are discussed, and the underlying interrelationships are revealed. The molecular structures and design principles are closely related to the sources of stimuli. Finally, the challenging issues of stimuli-responsive materials are proposed. This review will provide scientific guidance to promote the clinical applications of stimuli-responsive antibacterial materials.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Mengyao Shan
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Shike Zhang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xin Chen
- College of Food Science and EngineeringNational Engineering Research Center for Wheat & Corn Further ProcessingHenan University of TechnologyZhengzhou450001China
| | - Wentao Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Jinzhou Chen
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xuying Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
26
|
Xiao J, Lu Y, Lu D, Chen W, Hu W, Zhao Y, Chen S. Co‐delivery of paclitaxel and
CXCL1 shRNA
via cationic polymeric micelles for synergistic therapy against ovarian cancer. POLYM INT 2022. [DOI: 10.1002/pi.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Xiao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yingying Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Deng Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai 200433 PR China
| | - Weiguo Hu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yuqing Zhao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Shouzhen Chen
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| |
Collapse
|
27
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
28
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Lu HH, Liu HW, Dinh TK, Huang CH, Huang HC, Tseng YC, Ku MH, Wang FS, Chen Y, Peng CH. pH-Responsive, Two-in-One Doxorubicin and Bcl-2 siRNA-Loaded Micelleplexes for Triple-Negative Breast Cancer Therapy. Polym Chem 2022. [DOI: 10.1039/d2py00246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of chemotherapy and gene therapy is a versatile strategy for treating multi-drug-resistant cancer. Accordingly, we developed a pH-responsive triblock copolymeric carrier for delivering chemotherapeutic and genetic drugs simultaneously....
Collapse
|
30
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
31
|
Lin ZT, Gong CH, Tang L, Cao BL, Kong FS, Wang Z, Bi YG. Study on preparation and in vitro anti-tumor activity of chitosan-modified mesoporous silica hybrids by GPTMS cross-linking agent. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021; 13:1686. [PMID: 34683979 PMCID: PMC8540112 DOI: 10.3390/pharmaceutics13101686] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications.
Collapse
Affiliation(s)
| | | | | | | | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada; (N.A.); (R.R.); (P.P.); (G.C.)
| |
Collapse
|
33
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
34
|
Zhang B, Zhang L, Duan E, Zhang R, Liu J, Shi P, Mei Y, Li R, Zhang L. pH and charge reversal-driven nanoplatform for efficient delivery of therapeutics. Colloids Surf B Biointerfaces 2021; 208:112106. [PMID: 34534915 DOI: 10.1016/j.colsurfb.2021.112106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/24/2021] [Accepted: 09/04/2021] [Indexed: 01/25/2023]
Abstract
Nanomedicine which delivers therapeutics to tumours holds great potential for cancer treatment. However, endosomal trapping and uncontrollable release usually limit the efficiency of nanomedicine. Herein, a smart mesoporous silica based nanoplatform was constructed, in which mesoporous silica nanoparticles (MSNs) serve as the core, capped with pH-induced charge-reversal polymer -PAH-cit- and cationic polyelectrolyte polyethyleneimine (PEI). The oppositely charged polymer can not only act as a gatekeeper for controlled release, but also mediated efficient endosomal escape of the therapeutics. Under the acidic endosomal environment, the hydrolysis of acid-cleavable bonds in PAH-Cit would trigger the charge reversal and endosomal escape of the nanoplatform for efficient drug release. Furthermore, the prepared nanoplatform demonstrated a higher tumor cell proliferation inhibition rate than free theruputics in vitro assays and significantly inhibited tumour growth in the 4T1 tumour model in mice. Therefore, our strategy offers a simple and general nanoplatform to delivery therapeutics to tumours with efficient endosomal escape and controlled release.
Collapse
Affiliation(s)
- Beibei Zhang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Zhengzhou City, China; Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou City, China; College of Bioengineering, Henan University of Technology, Zhengzhou City, China
| | - Lan Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou City, China
| | - Erzhen Duan
- College of Bioengineering, Henan University of Technology, Zhengzhou City, China
| | - Ruirui Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou City, China
| | - Jun Liu
- Institute of Grain and Oil Standardization, Henan University of Technology, Zhengzhou City, China
| | - Peipei Shi
- College of Bioengineering, Henan University of Technology, Zhengzhou City, China
| | - Yuying Mei
- College of Bioengineering, Henan University of Technology, Zhengzhou City, China
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou City, China.
| | - Lianzhong Zhang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Zhengzhou City, China; Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou City, China.
| |
Collapse
|
35
|
Correction to: DNA Nanotechnology for Multimodal Synergistic Theranostics. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
|
37
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Aldhaher A, Makvandi P, Dinarvand R, Jouyandeh M, Saeb MR, Mozafari M, Shokouhimehr M, Hamblin MR, Varma RS. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS APPLIED BIO MATERIALS 2021; 4:5336-5351. [PMID: 35007014 DOI: 10.1021/acsabm.1c00447] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hybrid bioactive inorganic-organic carbon-based nanocomposites of reduced graphene oxide (rGO) nanosheets enlarged with multi-walled carbon nanotubes (MWCNTs) were decorated to provide a suitable space for in situ growth of CoNi2S4 and green-synthesized ZnO nanoparticles. The ensuing nanocarrier supplied π-π interactions between the DOX drug and a stabilizing agent derived from leaf extracts on the surface of ZnO nanoparticles and hydrogen bonds; gene delivery of (p)CRISPR was also facilitated by chitosan and alginate renewable macromolecules. Also, these polymers can inhibit the potential interactions between the inorganic parts and cellular membranes to reduce the potential cytotoxicity. Nanocomposite/nanocarrier analyses and sustained DOX delivery (cytotoxicity analyses on HEK-293, PC12, HepG2, and HeLa cell lines after 24, 48, and 72 h) were indicative of an acceptable cell viability of up to 91.4 and 78.8% after 48 at low and high concentrations of 0.1 and 10 μg/mL, respectively. The MTT results indicate that by addition of DOX to the nanostructures, the relative cell viability increased after 72 h of treatment; since the inorganic compartments, specifically CoNi2S4, are toxic, this is a promising route to increase the bioavailability of the nanocarrier before reaching the targeted cells. Nanosystems were tagged with (p)CRISPR for co-transfer of the drug/genes, where confocal laser scanning microscopy (CLSM) pictures of the 4',6-diamidino-2-phenylindole (DAPI) were indicative of appropriate localization of DOX into the nanostructure with effective cell and drug delivery at varied pH. Also, the intrinsic toxicity of CoNi2S4 does not affect the morphology of the cells, which is a breakthrough. Furthermore, the CLSM images of the HEK-293 and HeLa cell displayed effective transport of (p)CRISPR into the cells with an enhanced green fluorescent protein (EGFP) of up to 8.3% for the HEK-293 cell line and 21.4% for the HeLa cell line, a record. Additionally, the specific morphology of the nanosystems before and after the drug/gene transport events, via images by TEM and FESEM, revealed an intact morphology for these biopolymers and their complete degradation after long-time usage.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran.,Universal Scientific Education and Research Network (USERN), Tehran 15875-4413, Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran
| | | | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto ON M5S, Canada
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Johannesburg 2028, South Africa
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
38
|
Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021; 13:853. [PMID: 34201333 PMCID: PMC8227511 DOI: 10.3390/pharmaceutics13060853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.
Collapse
Affiliation(s)
| | | | | | - Gabriela Romero Uribe
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| | - Liang Tang
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| |
Collapse
|
39
|
|
40
|
Xu X, Duan J, Liu Y, Kuang Y, Duan J, Liao T, Xu Z, Jiang B, Li C. Multi-stimuli responsive hollow MnO 2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater 2021; 126:445-462. [PMID: 33785453 DOI: 10.1016/j.actbio.2021.03.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The exploration and application of hollow manganese dioxide nanoparticle (HMDN) for biosensing and biomedicine has gained significant research attention in the past decade. In this study, a type of biodegradable HMDN is prepared for multi-stimuli responsive tumor-targeted drug delivery, which was successfully loaded with doxorubicin hydrochloride (DOX). Then, the drug-loaded HMDN is functionalized with polyethyleneimine (PEI) as a gatekeeper followed by citraconic anhydride (cit) functionalized poly-L-lysine (PLL(cit)) as a charge reversal moiety successively to yield the resultant DOX@HMDN-PEI-PLL(cit) nanoparticles. In vitro study showed that DOX@HMDN-PEI-PLL(cit) exhibited a ''stealthy'' property under physiological conditions and enhanced cellular uptake activity in response to the mild acidic tumor microenvironment due to the departure of cit. In vitro release profiles proved that the decomposition of HMDN to Mn2+ under acidic condition/high glutathione (GSH) concentration triggered the release of DOX and Fenton-like reaction for improved therapeutic effect. And Mn2+ could also act as a T1-weighted magnetic resonance imaging (MRI) contrast agent. In vivo studies further proved with both the charge reversal and combined therapy properties, DOX@HMDN-PEI-PLL(cit) showed a good tumor enrichment ability and therapeutic effect with few side effects to the mice. These results demonstrate that DOX@HMDN-PEI-PLL(cit) nanoparticles are promising drug delivery systems for targeted cancer therapy. STATEMENT OF SIGNIFICANCE: Traditional chemotherapy based on anticancer drugs such as doxorubicin hydrochloride (DOX) shows limited efficacy with serious side effects. We employed hollow manganese dioxide nanoparticle (HMDN) to loaded DOX and coated it with polyethyleneimine and then citraconic anhydride functionalized poly-L-lysine to endow it with a charge reversal property to obtain a multi-stimuli responsive drug delivery system named DOX@HMDN-PEI-PLL(cit). It was ''stealthy'' with low cellular uptake capability by normal cells, but could be "acid-activated" in tumors for endocytosis by cancer cells to reduce side effects. HMDN could be decomposed to Mn2+ under acidic conditions/high glutathione concentration to release DOX intracellular. DOX and Mn2+ catalyzed Fenton-like reaction could achieve a combined chemo-chemodynamic therapy. And Mn2+ could be used for T1-weighted magnetic resonance imaging.
Collapse
Affiliation(s)
- Xiangyu Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Junlin Duan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China.
| | - Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jingling Duan
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Bingbing Jiang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
41
|
Li D, Gao C, Kuang M, Xu M, Wang B, Luo Y, Teng L, Xie J. Nanoparticles as Drug Delivery Systems of RNAi in Cancer Therapy. Molecules 2021; 26:2380. [PMID: 33921892 PMCID: PMC8073355 DOI: 10.3390/molecules26082380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) can mediate gene-silencing by knocking down the expression of a target gene via cellular machinery with much higher efficiency in contrast to other antisense-based approaches which represents an emerging therapeutic strategy for combating cancer. Distinct characters of nanoparticles, such as distinctive size, are fundamental for the efficient delivery of RNAi therapeutics, allowing for higher targeting and safety. In this review, we present the mechanism of RNAi and briefly describe the hurdles and concerns of RNAi as a cancer treatment approach in systemic delivery. Furthermore, the current nanovectors for effective tumor delivery of RNAi therapeutics are classified, and the characteristics of different nanocarriers are summarized.
Collapse
Affiliation(s)
- Diedie Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Chengzhi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Meiyan Kuang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Ben Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Yi Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| |
Collapse
|
42
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
45
|
Bi X, Bian P, Li Z. Synaptic Acid Encapsulated with Selenium-Mesoporous Silica Nanocomposite: A Potential Drug in Treating Cardiovascular Disease. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Li H, Peng Q, Yang L, Lin Y, Chen S, Qin Y, Li S, Yu X, Zhang L. High-Performance Dual Combination Therapy for Cancer Treatment with Hybrid Membrane-Camouflaged Mesoporous Silica Gold Nanorods. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57732-57745. [PMID: 33326211 DOI: 10.1021/acsami.0c18287] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy usually induces significant side effects due to its inability to discriminate between cancer and normal cells. Moreover, the efficacy of cancer elimination is still unsatisfied. Here, we fabricated a nanocomposite enabling high-performance dual combination therapy (chemo/photothermal therapy). This style of novel nanocomposites was constructed with doxorubicin (DOX)-loaded mesoporous silica gold (MSG) nanorods, which were further camouflaged with hybrid membranes derived from HeLa cells and red blood cells (HRMSGD). The hybrid membrane-camouflaged structure showed enhanced circulation lifetime and cell line-specific delivery of chemotherapeutics both in vitro and in vivo. The dual combination therapy by HRMSGD showed an unattainable therapeutic effect, compared with a single treatment, and inhibited tumor growth significantly. Furthermore, the nanoplatforms were photoacoustic-responsive, which showed real-time and noninvasive tracking capability. The present study established nanoplatforms with hybrid cell membrane-camouflaged multifunctional gold nanorods, which realized the combination of homotypic targeting, noninvasive tracking, chemotherapy, and photothermal therapy. To the best of our knowledge, this is the first study to use a natural membrane to camouflage mesoporous silica-modified gold nanorods, which opened a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingsheng Peng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Langyu Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yinshan Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Sheng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yuyan Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Songpei Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
47
|
Dual Redox/pH-Sensitive Micelles Self-Assembled From Star-Like Amphiphilic Copolymers Based On Sucrose For Controlled Doxorubicin Delivery. J Pharm Sci 2020; 110:2196-2209. [PMID: 33373606 DOI: 10.1016/j.xphs.2020.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
Novel dual redox/pH-sensitive star-like amphiphilic sucrose-oligo(butyl fumarate) (thioglycolic acid conjugate)-SS-poly(ethylene glycol) (Suc-OBF(TGA)-SS-PEG) copolymers and their self-assembled micelles were prepared and utilized for intracellular doxorubicin delivery. Importance of changing the hydrophobic chain length on micelles properties was investigated. Results showed that the micelles with longer hydrophobic chain exhibited smaller size and were more stable in aqueous solution. The redox and pH sensitivity of the micelles was confirmed by the change of micelle diameter/diameter distribution measured by dynamic light scattering and the change of micellar morphology observed by scanning electron microscope. The micelles display a decent doxorubicin loading capacity. In vitro release studies showed that only 14.3% doxorubicin was released from doxorubicin-loaded micelles under physiological conditions in 30 h. The release of doxorubicin was accelerated at pH 5.5 or in the presence of 10 mM glutathione at pH 7.4 (46.9% and 76.9% of doxorubicin was released, respectively, in 30 h). The doxorubicin release was further expedited under pH 5.5 and 10 mM GSH conditions (91.4%). Suc-OBF(TGA)-SS-PEG micelles displayed no cytotoxicity toward HDF cells. MTT assays indicated that doxorubicin-loaded micelles had good cytotoxicity against MCF-7 cells. This work suggested that star-like amphiphilic Suc-OBF(TGA)-SS-PEG copolymer micelles may provide a promising platform for delivering doxorubicin and other hydrophobic anticancer drugs.
Collapse
|
48
|
Pontón I, Martí del Rio A, Gómez Gómez M, Sánchez-García D. Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2466. [PMID: 33317099 PMCID: PMC7763534 DOI: 10.3390/nano10122466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Combination therapies rely on the administration of more than one drug, with independent mechanisms of action, aiming to enhance the efficiency of the treatment. For an optimal performance, the implementation of such therapies requires the delivery of the correct combination of drugs to a specific cellular target. In this context, the use of nanoparticles (NP) as platforms for the co-delivery of multiple drugs is considered a highly promising strategy. In particular, mesoporous silica nanoparticles (MSN) have emerged as versatile building blocks to devise complex drug delivery systems (DDS). This review describes the design, synthesis, and application of MSNs to the delivery of multiple drugs including nucleic acids for combination therapies.
Collapse
Affiliation(s)
| | | | | | - David Sánchez-García
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta, 390, 08017 Barcelona, Spain; (I.P.); (A.M.d.R.); (M.G.G.)
| |
Collapse
|
49
|
Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J Control Release 2020; 330:1220-1228. [PMID: 33248708 DOI: 10.1016/j.jconrel.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Biological barriers hamper the efficient delivery of drugs and genes to targeted sites. Cell penetrating peptides (CPP) have the ability to rapidly internalize across biological membranes. CPP have been effective for delivery of various chemotherapeutic agents used to combat cancer. CPP can enhance delivery of drugs to a targeted site when combined with tumor targeting peptides. CPP can be linked with various cargos like nanoparticles, micelles and liposomes to deliver drugs and genes to the cancer cell. Here, we focus on CPP mediated delivery of drugs to the tumor sites, delivery of genes (siRNA,pDNA) and co-delivery of drugs and genes to combat drug resistance.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Departments of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
50
|
Martinelli C, Biglietti M. Nanotechnological approaches for counteracting multidrug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:1003-1020. [PMID: 35582219 PMCID: PMC8992571 DOI: 10.20517/cdr.2020.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
Every year, cancer accounts for a vast portion of deaths worldwide. Established clinical protocols are based on chemotherapy, which, however, is not tumor-selective and produces a series of unbearable side effects in healthy tissues. As a consequence, multidrug resistance (MDR) can arise causing metastatic progression and disease relapse. Combination therapy has demonstrated limited responses in the treatment of MDR, mainly due to the different pharmacokinetic properties of administered drugs and to tumor heterogeneity, challenges that still need to be solved in a significant percentage of cancer patients. In this perspective, we briefly discuss the most relevant MDR mechanisms leading to therapy failure and we report the most advanced strategies adopted in the nanomedicine field for the design and evaluation of ad hoc nanocarriers. We present some emerging classes of nanocarriers developed to reverse MDR and discuss recent progress evidencing their limits and promises.
Collapse
|