1
|
Munekane M, Ozaki M, Mitani Y, Sakaida N, Sano K, Yamasaki T, Mukai T, Mishiro K, Fuchigami T, Ogawa K. Development of Radiolabeled Probes with Improved Imaging Contrast by Releasing Urinary Excretable Radiolabeled Compounds from Thermosensitive Liposomes in the Blood. Mol Pharm 2024. [PMID: 39445871 DOI: 10.1021/acs.molpharmaceut.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this study, thermosensitive liposomes (TSLs) encapsulating urinary excretable radiolabeled compounds were developed. We considered that the release of the radiolabeled compounds from the TSLs in the blood by heating the blood in peripheral tissues can achieve rapid clearance of radioactivity, resulting in improved imaging contrast. To demonstrate the hypothesis, classical TSLs mainly composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with a phase transition temperature of 41 °C were used. The optimal composition of TSLs was determined by an in vitro release test using [111In]In-diethylenetriaminepentaacetic acid (DTPA)-encapsulated liposomes, which showed that the cholesterol content drastically changed the release characteristics of classical TSLs. In the biodistribution experiments, [111In]In-DTPA was significantly released from the TSLs in the blood when the tails of mice were heated at 43 °C. The tumor-to-blood ratio of the heated group was three times higher than that of the nonheated group, and accumulation in normal tissues of the heated group was lower than that of the nonheated group. These results demonstrate the usefulness of the method using TSLs to encapsulate urinary excretable radiolabeled compounds for improving imaging contrast.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Miki Ozaki
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuri Mitani
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Natsuki Sakaida
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Sun R, Chen H, Wang M, Yoshitomi T, Takeguchi M, Kawazoe N, Yang Y, Chen G. Smart composite scaffold to synchronize magnetic hyperthermia and chemotherapy for efficient breast cancer therapy. Biomaterials 2024; 307:122511. [PMID: 38401482 DOI: 10.1016/j.biomaterials.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Combination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic Fe3O4 nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers. Irradiation of alternating magnetic field (AMF) could not only increase the scaffold temperature for magnetic hyperthermia but also trigger the release of Dox for chemotherapy. The two functions of magnetic hyperthermia and chemotherapy were synchronized by switching AMF on and off. The synergistic anticancer effects of the composite scaffold were confirmed by in vitro cell culture and in vivo animal experiments. The composite scaffold could efficiently eliminate breast cancer cells under AMF irradiation. Moreover, the scaffold could support proliferation and adipogenic differentiation of mesenchymal stem cells for adipose tissue reconstruction after anticancer treatment. In vivo regeneration experiments showed that the composite scaffolds could effectively maintain their structural integrity and facilitate the infiltration and proliferation of normal cells within the scaffolds. The composite scaffold possesses multi-functions and is attractive as a novel platform for efficient breast cancer therapy.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Masaki Takeguchi
- Center for Basic Research on Materials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
3
|
Chen K, Zhou A, Zhou X, He J, Xu Y, Ning X. Cellular Trojan Horse initiates bimetallic Fe-Cu MOF-mediated synergistic cuproptosis and ferroptosis against malignancies. SCIENCE ADVANCES 2024; 10:eadk3201. [PMID: 38598629 PMCID: PMC11006215 DOI: 10.1126/sciadv.adk3201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Disruptions in metal balance can trigger a synergistic interplay of cuproptosis and ferroptosis, offering promising solutions to enduring challenges in oncology. Here, we have engineered a Cellular Trojan Horse, named MetaCell, which uses live neutrophils to stably internalize thermosensitive liposomal bimetallic Fe-Cu MOFs (Lip@Fe-Cu-MOFs). MetaCell can instigate cuproptosis and ferroptosis, thereby enhancing treatment efficacy. Mirroring the characteristics of neutrophils, MetaCell can evade the immune system and not only infiltrate tumors but also respond to inflammation by releasing therapeutic components, thereby surmounting traditional treatment barriers. Notably, Lip@Fe-Cu-MOFs demonstrate notable photothermal effects, inciting a targeted release of Fe-Cu-MOFs within cancer cells and amplifying the synergistic action of cuproptosis and ferroptosis. MetaCell has demonstrated promising treatment outcomes in tumor-bearing mice, effectively eliminating solid tumors and forestalling recurrence, leading to extended survival. This research provides great insights into the complex interplay between copper and iron homeostasis in malignancies, potentially paving the way for innovative approaches in cancer treatment.
Collapse
Affiliation(s)
- Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Jielei He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
4
|
Luo G, Xu Z, Zhong H, Shao H, Liao H, Liu N, Jiang X, Zhang Y, Ji X. Biodegradable photothermal thermosensitive hydrogels treat osteosarcoma by reprogramming macrophages. Biomater Sci 2023; 11:2818-2827. [PMID: 36826467 DOI: 10.1039/d2bm01900k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Osteosarcoma is one of the most common malignant tumors in children and tends to occur around the knee. Problems such as recurrence and metastasis are the outcomes of traditional treatment methods. One of the reasons for these issues is the infiltration of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Photothermal immunotherapy has emerged as one of the most potent approaches for cancer treatment. In this study, we designed a biodegradable, injectable, and photothermal hydrogel that functions to reprogram TAMs into classically activated macrophages (M1) based on hydroxypropyl chitin (HPCH), tannic acid and ferric ions (HTA). We found that HTA had better photothermal efficiency than a pure hydrogel; its photothermal repeatability is good and it can be NIR (808 nm) irradiated as needed. In addition, the precooled hydrogel solution can be injected into the tumor and it can rapidly gel in situ. In vitro, HTA with NIR irradiation (HTA + NIR) induced the apoptosis of K7M2 cancer cells. In vivo, the local administration of HTA + NIR exerted photothermal killing of primary tumors and reprogramming of TAMs into M1-type macrophages in the TME. Therefore, the injectable photothermally active antitumor hydrogel has great potential for modulating the TME to treat bone tumors.
Collapse
Affiliation(s)
- Guowen Luo
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China. .,Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Ziyang Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China. .,Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, No.566, Congcheng Road, Conghua District, Guangzhou, Guangdong Province, 510900, China
| | - Hongwei Shao
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China. .,Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Hongyi Liao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Nan Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| | - Yu Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China. .,Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| | - Xiongfa Ji
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
5
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Fahmy S, Preis E, Dayyih AA, Alawak M, El-Said Azzazy HM, Bakowsky U, Shoeib T. Thermosensitive Liposomes Encapsulating Nedaplatin and Picoplatin Demonstrate Enhanced Cytotoxicity against Breast Cancer Cells. ACS OMEGA 2022; 7:42115-42125. [PMID: 36440163 PMCID: PMC9686199 DOI: 10.1021/acsomega.2c04525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Thermosensitive liposomes (TSL) have been used for localized temperature-responsive release of chemotherapeutics into solid cancers, with a minimum of one invention currently in clinical trials (phase III). In this study, TSL was designed using a lipid blend comprising 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (DSPE-PEG-2000) (molar ratio of 88:9:2.8:0.2). Either nedaplatin (ND) or p-sulfonatocalix[4]arene-nedaplatin was encapsulated in the aqueous inner layer of TSL to form (ND-TSL) or p-SC4-ND-TSL, respectively. The hydrophobic platinum-based drug picoplatin (P) was loaded into the external lipid bilayer of the TSL to develop P-TSL. The three nanosystems were studied in terms of size, PDI, surface charge, and on-shelf stability. Moreover, the entrapment efficiency (EE%) and release % at 37 and 40 °C were evaluated. In a 30 min in vitro release study, the maximum release of ND, p-SC4-ND, and picoplatin at 40 °C reached 74, 79, and 75%, respectively, compared to approximately 10% at 37 °C. This demonstrated temperature-triggered drug release from the TSL in all three developed systems. The designed TSL exhibited significant in vitro anticancer activity at 40 °C when tested on human mammary gland/breast adenocarcinoma cells (MDA-MB-231). The cytotoxicity of ND-TSL, p-SC4-ND-TSL, and P-TSL at 40 °C was approximately twice those observed at 37 °C. This study suggests that TSL is a promising nanoplatform for the temperature-triggered release of platinum-based drugs into cancer cells.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, American University in Cairo
(AUC), AUC Avenue, P.O. Box 74, New Cairo11835, Egypt
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, AL109AB, Cairo11835, Egypt
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Alice Abu Dayyih
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Mohamed Alawak
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | | | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037Marburg, Germany
| | - Tamer Shoeib
- Department
of Chemistry, American University in Cairo
(AUC), AUC Avenue, P.O. Box 74, New Cairo11835, Egypt
| |
Collapse
|
7
|
Amin M, Lammers T, Ten Hagen TLM. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR. Adv Drug Deliv Rev 2022; 189:114503. [PMID: 35998827 DOI: 10.1016/j.addr.2022.114503] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Heat-triggered drug release from temperature-sensitive nanocarriers upon the application of mild hyperthermia is a promising approach to achieve site-specific delivery of drugs. The combination of mild hyperthermia (41-42 °C) and temperature-sensitive liposomes (TSL) that undergo lipid phase-transition and drug release has been studied extensively and has shown promising therapeutic outcome in a variety of animal tumor models as well as initial indications of success in humans. Sensitization of liposomes to mild hyperthermia by means of exploiting the thermal behavior of temperature-sensitive polymers (TSP) provides novel opportunities. Recently, TSP-modified liposomes (TSPL) have shown potential for enhancing tumor-directed drug delivery, either by triggered drug release or by triggered cell interactions in response to heat. In this review, we describe different classes of TSPL, and analyze and discuss the mechanisms and kinetics of content release from TSPL in response to local heating. In addition, the impact of lipid composition, polymer and copolymer characteristics, serum components and PEGylation on the mechanism of content release and TSPL performance is addressed. This is done from the perspective of rationally designing TSPL, with the overall goal of conceiving efficient strategies to increase the efficacy of TSPL plus hyperthermia to improve the outcome of targeted anticancer therapy.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Center for Biohybrid Medical Systems, Aachen, Germany.
| | - Timo L M Ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Mills H, Acquah R, Tang N, Cheung L, Klenk S, Glassen R, Pirson M, Albert A, Hoang DT, Van TN. A Critical Scrutiny on Liposomal Nanoparticles Drug Carriers as Modelled by Topotecan Encapsulation and Release in Treating Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7702512. [PMID: 35983007 PMCID: PMC9381203 DOI: 10.1155/2022/7702512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
The medical field is looking for drugs and/or ways of delivering drugs without harming patients. A number of severe drug side effects are reported, such as acute kidney injury (AKI), hepatotoxicity, skin rash, and so on. Nanomedicine has come to the rescue. Liposomal nanoparticles have shown great potential in loading drugs, and delivering drugs to specific targeted sites, hence achieving a needed bioavailability and steady state concentration, which is achieved by a controlled drug release ability by the nanoparticles. The liposomal nanoparticles can be conjugated to cancer receptor tags that give the anticancer-loaded nanoparticles specificity to deliver anticancer agents only at cancerous sites, hence circumventing destruction of normal cells. Also, the particles are biocompatible. The drugs are shielded by attack from the liver and other cytochrome P450 enzymes before reaching the desired sites. The challenge, however, is that the drug release is slow by these nanoparticles on their own. Scientists then came up with several ways to enhance drug release. Magnetic fields, UV light, infrared light, and so on are amongst the enhancers used by scientists to potentiate drug release from nanoparticles. In this paper, synthesis of liposomal nanoparticle formulations (liposomal-quantum dots (L-QDs), liposomal-quantum dots loaded with topotecan (L-QD-TPT)) and their analysis (cytotoxicity, drug internalization, loading efficiency, drug release rate, and the uptake of the drug and nanoparticles by the HeLa cells) are discussed.
Collapse
Affiliation(s)
- Hilla Mills
- Department of Medical Science, University for Development, Accra, Ghana
| | - Ronald Acquah
- Department of Medical Science, University for Development, Accra, Ghana
| | - Nova Tang
- RD Lab, The Hospital Institute for Hebal Research, Toluca, MEX 50200, Mexico
| | - Luke Cheung
- RD Lab, The Hospital Institute for Hebal Research, Toluca, MEX 50200, Mexico
| | - Susanne Klenk
- Research Institution of Clinical Biomedicine, Hospital University Medical Centre, Ulm 89000, Germany
| | - Ronald Glassen
- Research Institution of Clinical Biomedicine, Hospital University Medical Centre, Ulm 89000, Germany
| | - Magali Pirson
- Industrial Research Group, International College of Science and Technology, Route de Lennik 800, CP 590, Brussels 1070, Belgium
| | - Alain Albert
- Industrial Research Group, International College of Science and Technology, Route de Lennik 800, CP 590, Brussels 1070, Belgium
| | | | | |
Collapse
|
9
|
Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities. Cancers (Basel) 2022; 14:cancers14051322. [PMID: 35267630 PMCID: PMC8909191 DOI: 10.3390/cancers14051322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Thermosensitive liposomal doxorubicin (TSL-Dox) combined with localized hyperthermia enables targeted drug delivery. Tumor drug uptake occurs only during hyperthermia. We developed a novel method for removal of systemic TSL-Dox remaining after hyperthermia-triggered delivery to reduce toxicities. The carotid artery and jugular vein of Norway brown rats carrying two subcutaneous BN-175 tumors were catheterized. After allowing the animals to recover, TSL-Dox was infused at 7 mg/kg dose. Drug delivery to one of the tumors was performed by inducing 15 min microwave hyperthermia (43 °C). At the end of hyperthermia, an extracorporeal circuit (ECC) comprising a heating module to release drug from TSL-Dox followed by an activated carbon filter to remove free drug was established for 1 h (n = 3). A computational model simulated TSL-Dox pharmacokinetics, including ECC filtration, and predicted cardiac Dox uptake. In animals receiving ECC, we were able to remove 576 ± 65 mg of Dox (29.7 ± 3.7% of the infused dose) within 1 h, with a 2.9-fold reduction of plasma AUC. Fluorescent monitoring enabled real-time quantification of blood concentration and removed drug. Computational modeling predicted that up to 59% of drug could be removed with an ideal filter, and that cardiac uptake can be reduced up to 7×. We demonstrated removal of drug remaining after tumor delivery, reduced plasma AUC, and reduced cardiac uptake, suggesting reduced toxicity.
Collapse
|
10
|
Sebeke L, Gómez JDC, Heijman E, Rademann P, Maul AC, Ekdawi S, Vlachakis S, Toker D, Mink BL, Schubert-Quecke C, Yeo SY, Schmidt P, Lucas C, Brodesser S, Hossann M, Lindner LH, Grüll H. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. J Control Release 2022; 343:798-812. [DOI: 10.1016/j.jconrel.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
11
|
Priester MI, Curto S, van Rhoon GC, ten Hagen TLM. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers (Basel) 2021; 13:cancers13184628. [PMID: 34572855 PMCID: PMC8470307 DOI: 10.3390/cancers13184628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The application of mild hyperthermia can be beneficial for solid tumor treatment by induction of sublethal effects on a tissue- and cellular level. When designing a hyperthermia experiment, several factors should be taken into consideration. In this review, multiple elementary hyperthermia devices are described in detail to aid standardization of treatment design. Abstract Preclinical studies have shown that application of mild hyperthermia (40–43 °C) is a promising adjuvant to solid tumor treatment. To improve preclinical testing, enhance reproducibility, and allow comparison of the obtained results, it is crucial to have standardization of the available methods. Reproducibility of methods in and between research groups on the same techniques is crucial to have a better prediction of the clinical outcome and to improve new treatment strategies (for instance with heat-sensitive nanoparticles). Here we provide a preclinically oriented review on the use and applicability of basic hyperthermia systems available for solid tumor thermal treatment in small animals. The complexity of these techniques ranges from a simple, low-cost water bath approach, irradiation with light or lasers, to advanced ultrasound and capacitive heating devices.
Collapse
Affiliation(s)
- Marjolein I. Priester
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
12
|
Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021; 13:pharmaceutics13091345. [PMID: 34575424 PMCID: PMC8470396 DOI: 10.3390/pharmaceutics13091345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.
Collapse
|
13
|
Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021; 38:1174-1187. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Pia Rademann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Alexandra Claudia Maul
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Sin Yuin Yeo
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo Gómez
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Daniel A Deenen
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Patrick Schmidt
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Bram de Jager
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Holger Grüll
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Edwin Heijman
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
14
|
Petrini M, Lokerse WJM, Mach A, Hossann M, Merkel OM, Lindner LH. Effects of Surface Charge, PEGylation and Functionalization with Dipalmitoylphosphatidyldiglycerol on Liposome-Cell Interactions and Local Drug Delivery to Solid Tumors via Thermosensitive Liposomes. Int J Nanomedicine 2021; 16:4045-4061. [PMID: 34163158 PMCID: PMC8214027 DOI: 10.2147/ijn.s305106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Previous studies demonstrated the possibility of targeting tumor-angiogenic endothelial cells with positively charged nanocarriers, such as cationic liposomes. We investigated the active targeting potential of positively charged nanoparticles in combination with the heat-induced drug release function of thermosensitive liposomes (TSL). This novel dual-targeted approach via cationic TSL (CTSL) was thoroughly explored using either a novel synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) or a conventional polyethylene glycol (PEG) surface modification. Anionic particles containing either DPPG2 or PEG were also included in the study to highlight difference in tumor enrichment driven by surface charge. With this study, we aim to provide a deep insight into the main differences between DPPG2- and PEG-functionalized liposomes, focusing on the delivery of a well-known cytotoxic drug (doxorubicin; DOX) in combination with local hyperthermia (HT, 41–43°C). Materials and Methods DPPG2- and PEG-based cationic TSLs (PG2-CTSL/PEG-CTSL) were thoroughly analyzed for size, surface charge, and heat-triggered DOX release. Cancer cell targeting and DOX delivery was evaluated by FACS, fluorescence imaging, and HPLC. In vivo particle behavior was analyzed by assessing DOX biodistribution with local HT application in tumor-bearing animals. Results The absence of PEG in PG2-CTSL promoted more efficient liposome–cell interactions, resulting in a higher DOX delivery and cancer cell toxicity compared with PEG-CTSL. By exploiting the dual-targeting function of CTSLs, we were able to selectively trigger DOX release in the intracellular compartment by HT. When tested in vivo, local HT promoted an increase in intratumoral DOX levels for all (C)TSLs tested, with DOX enrichment factors ranging from 3 to 14-fold depending on the type of formulation. Conclusion Cationic particles showed lower hemocompatibility than their anionic counterparts, which was partially mitigated when PEG was grafted on the liposome surface. DPPG2-based anionic TSL showed optimal local drug delivery compared to all other formulations tested, demonstrating the potential advantages of using DPPG2 lipid in designing liposomes for tumor-targeted applications.
Collapse
Affiliation(s)
- Matteo Petrini
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich, Germany
| | - Wouter J M Lokerse
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Agnieszka Mach
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| | | | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
15
|
Gkionis L, Aojula H, Harris LK, Tirella A. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Int J Pharm 2021; 604:120711. [PMID: 34015381 DOI: 10.1016/j.ijpharm.2021.120711] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/04/2023]
Abstract
Microfluidic enables precise control over the continuous mixing of fluid phases at the micrometre scale, aiming to optimize the processing parameters and to facilitate scale-up feasibility. The optimization of parameters to obtain monodispersed drug-loaded liposomes however is challenging. In this work, two phosphatidylcholines (PC) differing in acyl chain length were selected, and used to control the release of the chemotherapeutic agent doxorubicin hydrochloride, an effective drug used to treat breast cancer. Microfluidics was used to rapidly screen manufacturing parameters and PC formulations to obtain monodispersed unilamellar liposomal formulations with a reproducible size (i.e. < 200 nm). Cholesterol was included in all liposomal formulations; some formulations also contained DMPC(1,2-dimyristoyl-sn-glycero-3-phosphocholine) and/or DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine). Systematic variations in microfluidics total flow rate (TFR) settings were performed, while keeping a constant flow rate ratio (FRR). A total of six PC-based liposomes were fabricated using the optimal manufacturing parameters (TFR 500 μL/min, FRR 0.1) for the production of reproducible, stable liposome formulations with a narrow size distribution. Liposomes actively encapsulating doxorubicin exhibited high encapsulation efficiencies (>80%) for most of the six formulations, and sustained drug release profiles in vitro over 48 h. Drug release profiles varied as a function of the DMPC/DSPC mol content in the lipid bilayer, with DMPC-based liposomes exhibiting a sustained release of doxorubicin when compared to DSPC liposomes. The PC-based liposomes, with a slower release of doxorubicin, were tested in vitro, as to investigate their cytotoxic activity against three human breast cancer cell lines: the non-metastatic ER+/PR + MCF7 cells, the triple-negative aggressive MDA-MB 231 cells, and the metastatic HER2-overexpressing/PR + BT474 cells. Similar cytotoxicity levels to that of free doxorubicin were reported for DMPC5 and DMPC3 binary liposomes (IC50 ~ 1 μM), whereas liposomes composed of a single PC were less cytotoxic (IC50 ~ 3-4 μM). These results highlight that microfluidics is suitable for the manufacture of monodispersed and size-specific PC-based liposomes in a controlled single-step; furthermore, selected PC-based liposome represent promising nanomedicines for the prolonged release of chemotherapeutics, with the aim of improving outcomes for patients.
Collapse
Affiliation(s)
- Leonidas Gkionis
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Harmesh Aojula
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
16
|
Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. J Control Release 2021; 333:1-15. [DOI: 10.1016/j.jconrel.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
|
17
|
Lu T, Haemmerich D, Liu H, Seynhaeve AL, van Rhoon GC, Houtsmuller AB, ten Hagen TL. Externally triggered smart drug delivery system encapsulating idarubicin shows superior kinetics and enhances tumoral drug uptake and response. Am J Cancer Res 2021; 11:5700-5712. [PMID: 33897876 PMCID: PMC8058728 DOI: 10.7150/thno.55163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Rationale: Increasing the bioavailable drug level in a tumor is the key to enhance efficacy of chemotherapy. Thermosensitive smart drug delivery systems (SDDS) in combination with local hyperthermia facilitate high local drug levels, thus improving uptake in the tumor. However, inability to rapidly and efficiently absorb the locally released drug results in reduced efficacy, as well as undesired redistribution of the drug away from the tumor to the system. Methods: Based on this paradigm we propose a novel approach in which we replaced doxorubicin (DXR), one of the classic drugs for nanocarrier-based delivery, with idarubicin (IDA), a hydrophobic anthracycline used solely in the free form for treatment hematologic cancers. We established a series of in vitro and in vivo experiments to in depth study the kinetics of SDDS-based delivery, drug release, intratumor biodistribution and subsequent cell uptake. Results: We demonstrate that IDA is taken up over 10 times more rapidly by cancer cells than DXR in vitro. Similar trend is observed in in vivo online imaging and less drug redistribution is shown for IDA, together resulting in 4-times higher whole tumor drug uptake for IDA vs. DXR. Together his yielded an improved intratumoral drug distribution for IDA-SDDS, translating into superior tumor response compared to DXR-SDDS treatment at the same dose. Thus, IDA - a drug that is not used for treatment of solid cancers - shows superior therapeutic index and better outcome when administered in externally triggered SDDS. Conclusions: We show that a shift in selection of chemotherapeutics is urgently needed, away from the classic drugs towards selection based on properties of a chemotherapeutic in context of the nanoparticle and delivery mode, to maximize the therapeutic efficacy.
Collapse
|
18
|
Du C, Li S, Li Y, Galons H, Guo N, Teng Y, Zhang Y, Li M, Yu P. F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia. Drug Deliv 2021; 27:836-847. [PMID: 32508162 PMCID: PMC8216433 DOI: 10.1080/10717544.2020.1772409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In order to enhance the targeting efficiency and reduce anti-tumor drug’s side effects, topotecan (TPT) and F7 were co-loaded in thermosensitive liposomes (F7-TPT-TSL), which show enhanced permeability and retention in tumors, as well as local controlled release by heating in vitro. TPT is a water-soluble inhibitor of topoisomerase I that is converted to an inactive carboxylate structure under physiological conditions (pH 7.4). F7 is a novel drug significantly resistant to cyclin-dependent kinase but its use was restricted by its high toxicity. F7-TPT-TSL had excellent particle distribution (about 103 nm), high entrapment efficiency (>95%), obvious thermosensitive property, and good stability. Confocal microscopy demonstrated specific higher accumulation of TSL in tumor cells. MTT proved F7-TPT-TSL/H had strongest cell lethality compared with other formulations. Then therapeutic efficacy revealed synergism of TPT and F7 co-loaded in TSL, together with hyperthermia. Therefore, the F7-TPT-TSL may serve as a promising system for temperature triggered cancer treatment.
Collapse
Affiliation(s)
- Chunyang Du
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| | - Shuangshuang Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| | - Yuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| | - Hervé Galons
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China.,Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Paris, France
| | - Na Guo
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| | - Yuou Teng
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| | - Yongmin Zhang
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China.,Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Paris, France
| | - Mingyuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| | - Peng Yu
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, China
| |
Collapse
|
19
|
Amin M, Huang W, Seynhaeve ALB, ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020; 12:E1007. [PMID: 33105816 PMCID: PMC7690578 DOI: 10.3390/pharmaceutics12111007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology has great capability in formulation, reduction of side effects, and enhancing pharmacokinetics of chemotherapeutics by designing stable or long circulating nano-carriers. However, effective drug delivery at the cellular level by means of such carriers is still unsatisfactory. One promising approach is using spatiotemporal drug release by means of nanoparticles with the capacity for content release triggered by internal or external stimuli. Among different stimuli, interests for application of external heat, hyperthermia, is growing. Advanced technology, ease of application and most importantly high level of control over applied heat, and as a result triggered release, and the adjuvant effect of hyperthermia in enhancing therapeutic response of chemotherapeutics, i.e., thermochemotherapy, make hyperthermia a great stimulus for triggered drug release. Therefore, a variety of temperature sensitive nano-carriers, lipid or/and polymeric based, have been fabricated and studied. Importantly, in order to achieve an efficient therapeutic outcome, and taking the advantages of thermochemotherapy into consideration, release characteristics from nano-carriers should fit with applicable clinical thermal setting. Here we introduce and discuss the application of the three most studied temperature sensitive nanoparticles with emphasis on release behavior and its importance regarding applicability and therapeutic potentials.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Wenqiu Huang
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
20
|
Ruiz A, Ma G, Seitsonen J, Pereira SGT, Ruokolainen J, Al-Jamal WT. Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. J Control Release 2020; 328:665-678. [PMID: 32961247 DOI: 10.1016/j.jconrel.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX)-loaded lysolipid temperature-sensitive liposomes (LTSLs) are a promising stimuli-responsive drug delivery system that rapidly releases DOX in response to mild hyperthermia (HT). This study investigates the influence of loaded DOX crystals on the thermosensitivity of LTSLs and their therapeutic efficacy in vitro and in vivo. The properties of DOX crystals were manipulated using different remote loading methods (namely (NH4)2SO4, NH4-EDTA and MnSO4) and varying the lipid:DOX weight ratio during the loading step. Our results demonstrated that (NH4)2SO4 or NH4-EDTA remote loading methods had a comparable encapsulation efficiency (EE%) into LTSLs in contrast to the low DOX EE% obtained using the metal complexation method. Cryogenic transmission electron microscopy (cryo-TEM) revealed key differences in the nature of DOX crystals formed inside LTSLs based on the loading buffer or/and the lipid:DOX ratio used, resulting in different DOX release profiles in response to mild HT. The in vitro assessment of DOX release/uptake in CT26 and PC-3 cells revealed that the use of a high lipid:DOX ratio exhibited a fast and controlled release profile in combination with mild HT, which correlated well with their cytotoxicity studies. Similarly, in vivo DOX release, tumour growth inhibition and mice survival rates were influenced by the physicochemical properties of LTSLs payload. This study demonstrates, for the first time, that the characteristics of DOX crystals loaded into LTSLs, and their conformational rearrangement during HT, are important factors that impact the TSLs performance in vivo.
Collapse
Affiliation(s)
- Amalia Ruiz
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Guanglong Ma
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Sara G T Pereira
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
21
|
Luo X, Zhang J, Wu YP, Yang X, Kuang XP, Li WX, Li YF, He RR, Liu M. Multifunctional HNT@Fe 3O 4@PPy@DOX Nanoplatform for Effective Chemo-Photothermal Combination Therapy of Breast Cancer with MR Imaging. ACS Biomater Sci Eng 2020; 6:3361-3374. [PMID: 33463181 DOI: 10.1021/acsbiomaterials.9b01709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multifunctional nanoparticles for imaging and treatment in cancer are getting more and more attention recently. Herein, halloysite nanotubes (HNTs), natural clay nanotubes, are designed as multifunctional nanoplatform for targeted delivering photothermal therapy agents and chemotherapeutic drugs. Fe3O4 was anchored on the outer surfaces of HNTs and then doxorubicin (DOX) was loaded on the nanotubes. Afterward, a layer of polypyrrole (PPy), as photothermal agent, was wrapped on the tubes. The nanoplatform of HNT@Fe3O4@PPy@DOX can be guided to tumor tissue by an external magnetic field, and then performs chemo-photothermal combined therapy by 808 nm laser irradiation. HNT@Fe3O4@PPy@DOX shows the ability of T2-weighted magnetic resonance imaging, which could be considered as a promising application in magnetic targeting tumor therapy. In vitro and in vivo experiments demonstrate that HNTs nanoplatform has good biocompatibility and produces a strong antitumor effect trigged by near-infrared laser irradiation. The novel chemo-photothermal therapy nanoplatform based on HNTs may be developed as a multifunctional nanoparticle for imaging and therapy in breast cancer.
Collapse
Affiliation(s)
- Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaohan Yang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiu-Ping Kuang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
| | - Wei-Xi Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Transforming a toxic drug into an efficacious nanomedicine using a lipoprodrug strategy for the treatment of patient-derived melanoma xenografts. J Control Release 2020; 324:289-302. [PMID: 32442582 DOI: 10.1016/j.jconrel.2020.05.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
Despite the progress made with the recent clinical use of the anticancer compound cabazitaxel, the efficacy in patients remains unsatisfactory, largely due to the high in vivo toxicity of the agent. Therefore, strategies that achieve favorable outcomes and good safety profiles will greatly expand the repertoire of this potent agent. Here, we propose a combinatorial strategy to reform the cabazitaxel agent and the use of sequential supramolecular nanoassembly with liposomal compositions to assemble a prodrug-formulated liposome, termed lipoprodrug, for safe and effective drug delivery. Reconstructing cabazitaxel with a polyunsaturated fatty acid (i.e., docosahexaenoic acid) via a hydrolyzable ester bond confers the generated prodrug with the ability to be readily integrated into the lipid bilayer of liposomes for systemic administration. The resulting lipoprodrug scaffold showed significantly sustained drug release profiles and improved pharmacokinetics in rats as well as a reduction in systemic toxicity in vivo. Notably, the lipoprodrug outperformed free cabazitaxel in terms of in vivo therapeutic efficacy in multiple separate tumor xenograft-bearing mouse models, one of which was a patient-derived xenograft model. Surprisingly, the lipoprodrug was able to reduce tumor invasiveness and reprogram the tumor immunosuppressive microenvironment by proinflammatory macrophage polarization. Our findings validate this lipoprodrug approach as a simple yet effective strategy for transforming the highly toxic cabazitaxel agent into an efficacious nanomedicine with excellent in vivo tolerability. This approach could also be applied to rescue other drugs or drug candidates that have failed in clinical trials due to poor pharmacokinetic properties or unacceptable toxicity in patients.
Collapse
|
23
|
Zhang L, Zhang S, Chen H, Liang Y, Zhao B, Luo W, Xiao Q, Li J, Zhu J, Peng C, Zhang Y, Hong Z, Wang Y, Li Y. An acoustic/thermo-responsive hybrid system for advanced doxorubicin delivery in tumor treatment. Biomater Sci 2020; 8:2202-2211. [PMID: 32100739 DOI: 10.1039/c9bm01794a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The efficiency of drug delivery and bioavailability to tumor cells are crucial for effective cancer chemotherapy. Herein, a doxorubicin (DOX) encapsulated lysolipid-based thermosensitive liposome decorated with cRGD peptide (RTSL) is conjugated on the surface of an IR780-loaded microbubble (IMB) to synthesize RTSL-IMBs. Sequentially taking advantage of acoustic-assisted early extravasation and thermo-triggered interstitium ultrafast drug release, RTSL-IMBs combine with ultrasound (US) and laser irradiation can advance drug delivery and bioavailability. In vitro experiments demonstrate that RTSL-IMBs associated with a two-step protocol (subsequently US irradiation for 1 min and laser irradiation for 5 min) can dramatically enhance the cellular uptake and bioavailability of DOX. In vivo fluorescence imaging studies reveal that the combination of RTSL-IMBs and US shows a 2.8-fold intratumoral drug accumulation increase at 0.5 h post-injection, while it will take 48 h to reach the same level of intratumoral drug accumulation for the RTSL-IMB group alone. Interestingly, the following localized application of a laser can further increase drug accumulation and slow tumor clearance. Histological analysis demonstrates that the combinational RTSL-IMBs, US and laser significantly improve the drug penetration distance and delivery efficiency in the tumor core. In this study, the acoustic/thermo-responsive hybrid system shows potential for advancing DOX chemotherapy in breast cancer cell MCF-7 xenograft nude mice.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
25
|
Zhu J, Zhang H, Chen K, Li Y, Yang Z, Chen S, Zheng X, Zhou X, Jiang Z. Peptidic Monodisperse PEG "Comb" as Multifunctional "Add-On" Module for Imaging-Traceable and Thermo-Responsive Theranostics. Adv Healthc Mater 2020; 9:e1901331. [PMID: 31851435 DOI: 10.1002/adhm.201901331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Indexed: 12/17/2022]
Abstract
Monodisperse polyethylene glycols-modified (M-PEGylated) biomaterials exhibit high structural accuracy, biocompatibility, and fine-tunable physicochemical properties. To develop "smart" drug delivery systems in a controllable and convenient manner, a peptidic M-PEG "comb" with fluorinated L-lysine side chains and a fluorescent N-terminal is conveniently prepared as a 19 F magnetic resonance imaging (19 F MRI) and fluorescence dual-imaging traceable and thermo-responsive "add-on" module for liposomal theranostics in cancer therapy. The peptidic M-PEG "comb" has high biocompatibility, thermo-responsivity with a sharp lower critical solution temperature, an aggregation-induced emission fluorescence, and high 19 F MRI sensitivity. As a highly branched amphiphile, it self-assembles and firmly anchors on the doxorubicin-loaded liposomal nanoparticles, which M-PEGylates the liposomes and facilitates the thermo-responsive drug release and drug tracking with dual-imaging technologies. In a rodent xenograft model of human liver cancer HepG2 cells, the M-PEGylated liposomes exhibit long in vivo half time, low toxicity, high tumor accumulation, "hot spot" 19 F MRI, and therapeutic efficacy. With accurately programmable chemical structure, fine-tunable physicochemical and biological properties to meet the demands of diagnosis, drug delivery, and therapy, the M-PEG "comb" is promising as a versatile "add-on" module for rapid and convenient formulation of various "smart" theranostics.
Collapse
Affiliation(s)
- Junfei Zhu
- Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsSchool of Pharmaceutical SciencesWuhan University Wuhan 430071 China
| | - Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsSchool of Pharmaceutical SciencesWuhan University Wuhan 430071 China
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Kexin Chen
- Group of Lead CompoundInstitute of Pharmacy & PharmacologyHunan Province Cooperative Innovation Center for Molecular Target New Drug StudyUniversity of South China Hengyang 421001 China
| | - Yu Li
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsSchool of Pharmaceutical SciencesWuhan University Wuhan 430071 China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Xing Zheng
- Group of Lead CompoundInstitute of Pharmacy & PharmacologyHunan Province Cooperative Innovation Center for Molecular Target New Drug StudyUniversity of South China Hengyang 421001 China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Zhong‐Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsSchool of Pharmaceutical SciencesWuhan University Wuhan 430071 China
| |
Collapse
|
26
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
27
|
Zhang T, Jiang Z, Xve T, Sun S, Li J, Ren W, Wu A, Huang P. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. NANOSCALE 2019; 11:21759-21766. [PMID: 31482919 DOI: 10.1039/c9nr05671h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing nanocarriers with high drug loading capacity is a challenge, which limits the effective delivery of drugs to solid tumors. Here, we reported a one-pot synthesis of hollow nanoparticles (NPs) encapsulated by doxorubicin (DOX) and modified with polydopamine (PDA) to form PDA@DOX NPs for breast cancer treatment. PDA@DOX NPs demonstrated exceptionally high capacity (53.16%) for loading DOX. In addition, when PDA@DOX NPs were administered systemically, they exhibited responsive aggregation in the tumor sites and demonstrated a good controlled release effect for DOX due to the weak acidic environment of the tumor sites and targeting near-infrared (NIR) light irradiation. The PDA outer layer absorbed the near-infrared (NIR) light and facilitated simultaneous generation of heat energy for destroying the tumor cells to release the drug upon NIR irradiation. Moreover, this NIR-activated combined/synergistic therapy exhibited remarkably complete tumor growth suppression in a breast cancer mouse model. Importantly, NPs exhibited a good ultrasound performance both in vitro and in vivo, which could monitor the treatment process. In conclusion, this NIR-activated PDA@DOX NP system is demonstrated as a good US-guided combination (chemotherapy + PTT) therapy platform with high loading capacity and controlled drug release characteristics, which is promising for the treatment of breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of Urokinase-Type Plasminogen Activator Receptor-Targeted Heterostructures for Efficient Photothermal Chemotherapy against Cervical Cancer To Achieve Simultaneous Anticancer and Antiangiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39688-39705. [PMID: 31588724 DOI: 10.1021/acsami.9b15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational design and construction of theranostic nanomedicines based on clinical characteristics of cervical cancer is an important strategy to achieve precise cancer therapy. Herein, we fabricate a cervical cancer-targeting gold nanorod-mesoporous silica heterostructure for codelivery of synergistic cisplatin and antiangiogenic drug Avastin (cisplatin-AuNRs@SiO2-Avastin@PEI/AE105) to achieve synergistic chemophotothermal therapy. Based on database analysis and clinical sample staining, conjugation of the AE105-targeting peptide obviously improves the intracellular uptake of the nanosystem and enhances the cancer-killing ability and selectivity between cervical cancer and normal cells. It could also be used to specifically monitor the urokinase-type plasminogen activator receptor (uPAR) expression level in clinical cervical specimens, which would be an early indicator of prognosis in cancer treatment. Under 808 nm laser irradiation, the nanosystem demonstrates smart NIR-light-triggered drug release and prominent photodynamic activity via induction of reactive oxygen species overproduction-mediated cell apoptosis. The nanosystem also simultaneously suppresses HeLa tumor growth and angiogenesis in vivo, with no evident histological damage observed in the major organs. In short, this study not only provides a clinical data-based rational design strategy of smart nanomedicine for precise treatment and rapid clinical diagnosis of cervical cancer but also contributes to the development of the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Chetry Mandika
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lizhen He
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yuanyuan You
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanzhou Chang
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jing Wang
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
29
|
Kozlovskaya V, Liu F, Yang Y, Ingle K, Qian S, Halade GV, Urban VS, Kharlampieva E. Temperature-Responsive Polymersomes of Poly(3-methyl- N-vinylcaprolactam)- block-poly( N-vinylpyrrolidone) To Decrease Doxorubicin-Induced Cardiotoxicity. Biomacromolecules 2019; 20:3989-4000. [PMID: 31503464 DOI: 10.1021/acs.biomac.9b01026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite being one of the most potent chemotherapeutics, doxorubicin (DOX) facilitates cardiac toxicity by irreversibly damaging the cardiac muscle as well as severely dysregulating the immune system and impairing the resolution of cardiac inflammation. Herein, we report synthesis and aqueous self-assembly of nanosized polymersomes from temperature-responsive poly(3-methyl-N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) (PMVC-PVPON) diblock copolymers and demonstrate their potential to minimize DOX cardiotoxicity compared to liposomal DOX. RAFT polymerization of vinylpyrrolidone and 3-methyl-N-vinylcaprolactam, which are structurally similar monomers but have drastically different hydrophobicity, allows decreasing the cloud point of PMVCm-PVPONn copolymers below 20 °C. The lower critical solution temperature (LCST) of the PMVC58-PVPONn copolymer varied from 19.2 to 18.6 and to 15.2 °C by decreasing the length of the hydrophilic PVPONn block from n = 98 to n = 65 and to n = 20, respectively. The copolymers assembled into stable vesicles at room temperature when PVPON polymerization degrees were 65 and 98. Anticancer drug DOX was entrapped with high efficiency into the aqueous PMVC58-PVPON65 polymersomal core surrounded by the hydrophobic temperature-sensitive PMVC shell and the hydrophilic PVPON corona. Unlike many liposomal, micellar, or synthetic drug delivery systems, these polymersomes exhibit an exceptionally high loading capacity of DOX (49%) and encapsulation efficiency (95%) due to spontaneous loading of the drug at room temperature from aqueous DOX solution. We also show that C57BL/6J mice injected with the lethal dose of DOX at 15 mg kg-1 did not survive the 14 day treatment, resulting in 100% mortality. The DOX-loaded PMVC58-PVPON65 polymersomes did not cause any mortality in mice indicating that they can be used for successful DOX encapsulation. The gravimetric analyses of the animal organs from mice treated with liposome-encapsulated DOX (Lipo-DOX) and PMVC58-PVPON65 polymersomes (Poly-DOX) revealed that the Lipo-DOX injection caused some toxicity manifesting as decreased body weight compared to Poly-DOX and saline control. Masses of the left ventricle of the heart, lung, and spleen reduced in the Lipo-DOX-treated mice compared to the nontoxic saline control, while no significant decrease of those masses was observed for the Poly-DOX-treated mice. Our results provide evidence for superior stability of synthetic polymersomes in vivo and show promise for the development of next-generation drug carriers with minimal side effects.
Collapse
Affiliation(s)
| | | | | | | | - Shuo Qian
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | | - Volker S Urban
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | |
Collapse
|
30
|
Besse HC, Barten-van Rijbroek AD, van der Wurff-Jacobs KMG, Bos C, Moonen CTW, Deckers R. Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo. Cancers (Basel) 2019; 11:cancers11101512. [PMID: 31600958 PMCID: PMC6826934 DOI: 10.3390/cancers11101512] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023] Open
Abstract
Tumor drug distribution and concentration are important factors for effective tumor treatment. A promising method to enhance the distribution and the concentration of the drug in the tumor is to encapsulate the drug in a temperature sensitive liposome. The aim of this study was to investigate the tumor drug distribution after treatment with various injected doses of different liposomal formulations of doxorubicin, ThermoDox (temperature sensitive liposomes) and DOXIL (non-temperature sensitive liposomes), and free doxorubicin at macroscopic and microscopic levels. Only ThermoDox treatment was combined with hyperthermia. Experiments were performed in mice bearing a human fibrosarcoma. At low and intermediate doses, the largest growth delay was obtained with ThermoDox, and at the largest dose, the largest growth delay was obtained with DOXIL. On histology, tumor areas with increased doxorubicin concentration correlated with decreased cell proliferation, and substantial variations in doxorubicin heterogeneity were observed. ThermoDox treatment resulted in higher tissue drug levels than DOXIL and free doxorubicin for the same dose. A relation with the distance to the vasculature was shown, but vessel perfusion was not always sufficient to determine doxorubicin delivery. Our results indicate that tumor drug distribution is an important factor for effective tumor treatment and that its dependence on delivery formulation merits further systemic investigation.
Collapse
Affiliation(s)
- Helena C Besse
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | - Kim M G van der Wurff-Jacobs
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Clemens Bos
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Chrit T W Moonen
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Roel Deckers
- Center of Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
31
|
Li S, Yin G, Pu X, Huang Z, Liao X, Chen X. A novel tumor-targeted thermosensitive liposomal cerasome used for thermally controlled drug release. Int J Pharm 2019; 570:118660. [PMID: 31491484 DOI: 10.1016/j.ijpharm.2019.118660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/06/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022]
Abstract
Drug carriers with tumor targeting and controlled release have strong prospects for application in safe and efficient chemotherapy. Among various carriers, liposomes have good biocompatibility and can enhance the uptake of drugs by cancer cells. However, traditional liposomes have no specific targeting to cancer cells and are prone to insufficient stability, causing early leakage of the drug. Accordingly, organic-inorganic hybrid phospholipid and thermosensitive phospholipid are deliberately introduced into a liposome system to enhance the morphological and structural stability of the liposomes while realizing thermally controlled drug release. Furthermore, modification with a targeting ligand (WSG-peptide) can endow liposomes with active targeting to ovarian carcinoma cells. First, WSG-peptide was grafted onto the hydrophilic terminal of phospholipid molecules, and the organic-inorganic hybrid cerasome-forming lipid (CFL) was synthesized via a two-step chemical reaction. Then, the WSG-grafted thermosensitive liposomal cerasome (c-LIP-WSG) was prepared by thin-film hydration method. The results showed that the c-LIP-WSG had excellent structural stability both in storage and in a simulated circulation environment. In vitro drug release confirmed that the liposomes exhibited thermally controlled release. Cell uptake experiments and living fluorescence imaging of SKOV-3 tumor-bearing nude mice confirmed that the WSG-peptide modified liposomes were provided with specific targeting properties for ovarian carcinoma.
Collapse
Affiliation(s)
- Sixie Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhongbin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiaoming Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
32
|
Bi H, Xue J, Jiang H, Gao S, Yang D, Fang Y, Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J Pharm Sci 2019; 14:365-379. [PMID: 32104466 PMCID: PMC7032122 DOI: 10.1016/j.ajps.2018.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Thermosensitive liposomes (TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-sn-glyce-ro-3-phosphocholine (DPPC) as the primary liposomal lipid, many studies have been done using this type of liposome from basic and practical aspects. While TSLs composed of DPPC enhance the cargo release near the phase transition temperature, it has been shown that many factors affect their temperature sensitivity. Thus numerous attempts have been undertaken to develop new TSLs for improving their thermal response performance. The main objective of this review is to introduce the development and recent update of innovative TSLs formulations, including combination of radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), magnetic resonance imaging (MRI) and alternating magnetic field (AMF). In addition, various factors affecting the design of TSLs, such as lipid composition, surfactant, size and serum components are also discussed.
Collapse
Key Words
- (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
- (DPPGOG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol
- (DSPC), 1,2-distearoyl-sn-glycero-3-phosphocholine
- (DSPE-mPEG2000), 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy(polyethyleneglycol)-2000]
- (LTSLs), lyso-lipid temperature sensitive liposomes
- (MPPC), 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphatidylcholine
- (MSPC), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine
- (P-lyso-PC), lysophosphatidylcholine
- (P188), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphatidylcholinex
- (P188), HO-(C2H4O)a-(C3H6O)b-(C2H4O)c-H, a=80, b=27, c=80
- Content release rate
- Drug delivery
- Hyperthermia
- Smart liposomes
- Thermosensitive liposomes
- Tumor chemotherapy
- fTSLs, fast release TSLs
- sTSLs, slow release TSLs
Collapse
Affiliation(s)
- Hongshu Bi
- Institute of New Drug Development, Liaoning Yaolian Pharmaceutical Co., Ltd., Benxi, Liaoning 117004, China
| | - Jianxiu Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Hong Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Shan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Dongjuan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yan Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Kai Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| |
Collapse
|
33
|
Tang L, Gong L, Zhou G, Liu L, Zhang D, Tang J, Zheng J. Design of low temperature-responsive hydrogels used as a temperature indicator. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Zhang J, Luo X, Wu YP, Wu F, Li YF, He RR, Liu M. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3690-3703. [PMID: 30618237 DOI: 10.1021/acsami.8b17533] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanorods (GNRs) and doxorubicin (DOX) were loaded into the lumen of halloysite nanotubes (HNTs) via a rapid synthesis process (2 min) and physical adsorption. The targeting molecules of folic acid (FA) are then conjugated to HNTs via reactions with bovine serum albumin (BSA). The formation of GNRs in HNTs was verified by different techniques. Au-HNT-DOX@BSA-FA shows a maximum temperature of 26.8 °C rising after 8 min of 808 nm laser irradiation under 0.8 W cm-2. The functionalized HNTs exhibited stronger chemotherapeutic effect under laser irradiation as the laser could promote the release of DOX and temperature rising. Au-HNT-DOX@BSA-FA-treated MCF-7 cells exhibited a survival rate of 7.4% after laser irradiation. Au-HNT-DOX@BSA-FA treatment does not induce obvious toxicity in blood biochemistry, liver, and kidney function in normal mice. In vivo chemo-photothermal treatment toward 4T1-bearing mice suggested that Au-HNT-DOX@BSA-FA exhibited remarkable tumor-targeted efficiency and good controlled release effect for DOX. Also, the nanoparticles exhibited a rapid photothermal performance and an ability to inhibit the growth of tumors. Because of the synergistic effect of chemical-photothermal therapy, the toxicity of DOX to normal tissues was reduced on the premise of ensuring the same curative effect with a low dosage of 0.32 mg kg-1. This novel chemo-photothermal therapy nanoplatform provided a safe, rapid, effective, and cheap choice for the treatment of breast tumors both in vitro and in vivo.
Collapse
|
35
|
Zhu J, Xiao Y, Zhang H, Li Y, Yuan Y, Yang Z, Chen S, Zheng X, Zhou X, Jiang ZX. Peptidic Monodisperse PEG “combs” with Fine-Tunable LCST and Multiple Imaging Modalities. Biomacromolecules 2019; 20:1281-1287. [DOI: 10.1021/acs.biomac.8b01693] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junfei Zhu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Xiao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
36
|
Song C, Lin T, Zhang Q, Thayumanavan S, Ren L. pH-Sensitive morphological transitions in polymeric tadpole assemblies for programmed tumor therapy. J Control Release 2019; 293:1-9. [PMID: 30391316 PMCID: PMC6338209 DOI: 10.1016/j.jconrel.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Ultrafine single-chain tadpole polymers (SCTPs), containing an intrachain crosslinked globule and a pH-sensitive linear polymer chain, have been synthesized. Self-assembly of these polymers depends on the linear block length and the pH, at which the polymer is assembled. Although the SCTPs themselves exhibit a size that is consistent with a single-chain species, the self-assembled SCTPs were found to be substantially larger. Since the transition between these two structures is reversibly dependent on pH, we explored the possibility of utilizing these assemblies to achieve deep tissue penetration in tumors. Our results indicate that there is indeed a pH-dependent deep tissue penetration in ex vivo tumor multicellular spheroids. Moreover, the multi-tadpole assemblies (MTAs) can stably encapsulate hydrophobic molecules, which have been used to encapsulate paclitaxel (PTX). These PTX/MTAs show excellent therapeutic efficacy and biosafety in 4 T1 xenograft mouse models. The innovative multi-compartment aggregates are able to fulfill structure-related function transitions with the variation of microenvironment, which has potential to extremely enrich the design of sophisticated biological agents.
Collapse
Affiliation(s)
- Cunfeng Song
- State Key Lab of Physical Chemistry of Solid Surface, Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Tongtong Lin
- State Key Lab of Physical Chemistry of Solid Surface, Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qiang Zhang
- State Key Lab of Physical Chemistry of Solid Surface, Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lei Ren
- State Key Lab of Physical Chemistry of Solid Surface, Key Laboratory of Biomedical Engineering of Fujian Province, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
37
|
Argudo PG, Carril M, Martín-Romero MT, Giner-Casares JJ, Carrillo-Carrión C. Surface-Active Fluorinated Quantum Dots for Enhanced Cellular Uptake. Chemistry 2018; 25:195-199. [PMID: 30257052 DOI: 10.1002/chem.201804704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Fluorescent nanoparticles, such as quantum dots, hold great potential for biomedical applications, mainly sensing and bioimaging. However, the inefficient cell uptake of some nanoparticles hampers their application in clinical practice. Here, the effect of the modification of the quantum dot surface with fluorinated ligands to increase their surface activity and, thus, enhance their cellular uptake was explored.
Collapse
Affiliation(s)
- Pablo G Argudo
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, 14014, Córdoba, Spain
| | - Mónica Carril
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3,6 solaiura, 48011, Bilbao, Spain
| | - María T Martín-Romero
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, 14014, Córdoba, Spain
| | - Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, 14014, Córdoba, Spain
| | - Carolina Carrillo-Carrión
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo Miramón 182, 20014, San Sebastian, Spain.,Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| |
Collapse
|
38
|
Mathematical modelling of liposomal drug release to tumour. Math Biosci 2018; 306:82-96. [PMID: 30391313 DOI: 10.1016/j.mbs.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
The primary aim of liposomal drug delivery is to wisely modulate the drug delivery system in order to target diseased tissues. Temperature-sensitive liposomes function as a prospective weapon to combat toxic side effects corresponding to direct infusion of anticancer drugs. The main objective of the present study is to model liposomal drug release, subsequent drug transport in solid tumour along with integrated actions of tumour cell surface and endosomal events. Generalized mathematical model for liposomal drug delivery is proposed in which vital physical phenomena, such as kinetics of liposome-encapsulated drug, free drug release from liposomes, transport of both liposomal drug and free drug into the tumour compartment, plasma clearance, protein-drug interactions, drug-tumour cell receptor interactions, internalization of drug through endocytosis along with corresponding endosomal events. The model is expressed through a system of coupled partial differential equations along with appropriate set of initial, interface and boundary conditions which is solved numerically. Simulated results are compared with respective existing experimental data to demonstrate the potency and reliability of the proposed model. Graphical representations of time variant concentration profiles are illustrated to understand the underlying phenomena in details. Moreover, the model speaks for the sensitivity of important drug kinetic parameters, such as advection coefficients, drug release coefficient, plasma clearance rate and internalization parameters through graphical portrayals. The proposed model and the simulated results act as a tool in designing a more effective drug delivery system for cancerous tumours.
Collapse
|
39
|
Safety of novel liposomal drugs for cancer treatment: Advances and prospects. Chem Biol Interact 2018; 295:13-19. [DOI: 10.1016/j.cbi.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
|
40
|
de Matos MBC, Beztsinna N, Heyder C, Fens MHAM, Mastrobattista E, Schiffelers RM, Leneweit G, Kok RJ. Thermosensitive liposomes for triggered release of cytotoxic proteins. Eur J Pharm Biopharm 2018; 132:211-221. [PMID: 30223028 DOI: 10.1016/j.ejpb.2018.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/22/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
Lysolipid-containing thermosensitive liposomes (LTSL) are clinically-relevant drug nanocarriers which have been used to deliver small molecule cytostatics to tumors in combination with local hyperthermia (42 °C) to trigger local drug release. The objective of this study was to investigate the feasibility of LTSL for encapsulation and triggered release of macromolecular drugs such as plant-derived cytotoxins. As therapeutic protein we used Mistletoe lectin-1 (ML1) - a ribosome-inactivating protein with potent cytotoxic activity in tumor cells. Model macromolecules (dextrans, albumin) and ML1 were encapsulated in small unilamellar LTSL with varying lipid compositions by the thin film hydration method and extrusion. LTSLs showed molecular weight dependent heat-triggered release of the loaded cargo. The most promising composition, ML1 formulated in LTSL composed of 86:10:4 %mol DPPC:MSPC:DSPE-PEG2000, was further studied for bioactivity against murine CT26 colon carcinoma cells. Confocal live-cell imaging showed uptake of released ML1 after mild hyperthermia at 42 °C, subsequently leading to potent cytotoxicity by LTSL-ML1. Our study shows that LTSL in combination with localized hyperthermia hold promise as local tumor delivery strategy for macromolecular cytotoxins.
Collapse
Affiliation(s)
- Maria B C de Matos
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Nataliia Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | | | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Raymond M Schiffelers
- Laboratory Clinical Chemistry & Haematology, University Medical Center Utrecht, the Netherlands
| | | | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
41
|
Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Invest Radiol 2018; 52:620-630. [PMID: 28598900 DOI: 10.1097/rli.0000000000000392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a method to heat lesions noninvasively to a stable, elevated temperature and a well-suited method to induce local hyperthermia (41°C-43°C) in deep-seated tissues. Magnetic Resonance (MR) imaging provides therapy planning on anatomical images and offers temperature feedback based on near-real-time MR thermometry. Although constant acquisition of MR thermometry data is crucial to ensure prolonged hyperthermia, it limits the freedom to perform measurements of other MR parameters, which are of interest during hyperthermia treatments. In image-guided drug delivery applications, co-encapsulation of paramagnetic MR contrast agents with a drug inside temperature-sensitive liposomes (TSLs) allows to visualize hyperthermia-triggered drug delivery through changes of the longitudinal relaxation rate R1. While the drug accumulates in the heated tumor tissue, R1 changes can be used for an estimate of the tumor drug concentration. The main objective of this study was to demonstrate that interleaved MR sequences are able to monitor temperature with an adequate temporal resolution and could give a reasonable estimate of the achieved tumor drug concentration through R1 changes. To this aim, in vitro validation tests and an in vivo proof-of-concept study were performed. MATERIALS AND METHODS All experiments were performed on a clinical 3-T MR-HIFU system adapted with a preclinical setup. The validity of the R1 values and the temperature maps stability were evaluated in phantom experiments and in ex vivo porcine muscle tissue. In vivo experiments were performed on rats bearing a 9L glioma tumor on their hind limb. All animals (n = 4 HIFU-treated, n = 4 no HIFU) were injected intravenously with TSLs co-encapsulating doxorubicin and gadoteridol as contrast agent. The TSL injection was followed by either 2 times 15 minutes of MR-HIFU-induced hyperthermia or a sham treatment. R1 maps were acquired before, during, and after sonication, using a single slice Inversion Recovery Look-Locker (IR-LL) sequence (field of view [FOV], 50 × 69 mm; in-plane resolution, 0.52 × 0.71 mm; slice thickness, 3 mm; 23 phases of 130 milliseconds; 1 full R1 map every 2 minutes). The R1 maps acquired during treatment were interleaved with 2 perpendicular proton resonance frequency shift (PRFS) MR thermometry slices (dynamic repetition time, 8.6 seconds; FOV, 250 × 250 mm; 1.4 × 1.4 mm in-plane resolution; 4 mm slice thickness). Tumor doxorubicin concentrations were determined fluorometrically. RESULTS In vitro results showed a slight but consistent overestimation of the measured R1 values compared with calibrated R1 values, regardless whether the R1 was acquired with noninterleaved IR-LL or interleaved. The average treatment cell temperature had a slightly higher temporal standard deviation for the interleaved PRFS sequence compared with the noninterleaved PRFS sequence (0.186°C vs 0.101°C, respectively). The prolonged time in between temperature maps due to the interleaved IR-LL sequence did not degrade the temperature stability during MR-HIFU treatment (Taverage = 40.9°C ± 0.3°C). Upon heat treatment, some tumors showed an R1 increase in a large part of the tumor while other tumors hardly showed any ΔR1. The tumor doxorubicin concentration showed a linear correlation with the average ΔR1 during both sonications (n = 8, Radj = 0.933), which was higher than for the ΔR1 measured after tumor cooldown (averaged for both sonications, n = 8, Radj = 0.877). CONCLUSIONS The new approach of interleaving different MR sequences was applied to simultaneously acquire R1 maps and PRFS thermometry scans during a feedback-controlled MR-HIFU-induced hyperthermia treatment. Interleaved acquisition did not compromise speed or accuracy of each scan. The ΔR1 acquired during treatment was used to visualize and quantify hyperthermia-triggered release of gadoteridol from TSLs and better reflected the intratumoral doxorubicin concentrations than the ΔR1 measured after cooldown of the tumor, exemplifying the benefit of interleaving R1 maps with temperature maps during drug delivery. Our study serves as an example for interleaved MR acquisition schemes, which introduce a higher flexibility in speed, sequence optimization, and timing.
Collapse
|
42
|
Yu L, Dong A, Guo R, Yang M, Deng L, Zhang J. DOX/ICG Coencapsulated Liposome-Coated Thermosensitive Nanogels for NIR-Triggered Simultaneous Drug Release and Photothermal Effect. ACS Biomater Sci Eng 2018; 4:2424-2434. [DOI: 10.1021/acsbiomaterials.8b00379] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lixia Yu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Muyang Yang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Garello F, Terreno E. Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update. Front Chem 2018; 6:157. [PMID: 29868560 PMCID: PMC5949352 DOI: 10.3389/fchem.2018.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
In the tireless search for innovative and more efficient cancer therapies, sonosensitive Magnetic Resonance Imaging (MRI) agents play an important role. Basically, these systems consist of nano/microvesicles composed by a biocompatible membrane, responsive to ultrasound-induced thermal or mechanical effects, and an aqueous core, filled up with a MRI detectable probe and a therapeutic agent. They offer the possibility to trigger and monitor in real time drug release in a spatio-temporal domain, with the expectation to predict the therapeutic outcome. In this review, the key items to design sonosensitive MRI agents will be examined and an overview on the different approaches available so far will be given. Due to the extremely wide range of adopted ultrasound settings and formulations conceived, it is hard to compare the numerous preclinical studies reported. However, in general, a significantly better therapeutic outcome was noticed when exploiting ultrasound triggered drug release in comparison to traditional therapies, thus paving the way to the possible clinical translation of optimized sonosensitive MRI agents.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
44
|
Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. J Control Release 2018; 282:35-45. [PMID: 29673642 DOI: 10.1016/j.jconrel.2018.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Triple negative breast cancer is an aggressive disease that accounts for at least 15% of breast cancer diagnoses, and a disproportionately high percentage of breast cancer related morbidity. Intensive research efforts are focused on the development of more efficacious treatments for this disease, for which therapeutic options remain limited. The high incidence of mutations in key DNA repair pathways in triple negative breast cancer results in increased sensitivity to DNA damaging agents, such as platinum-based chemotherapies. Hyperthermia has been successfully used in breast cancer treatment to sensitize tumors to radiation therapy and chemotherapy. It has also been used as a mechanism to trigger drug release from thermosensitive liposomes. In this study, mild hyperthermia is used to trigger release of cisplatin from thermosensitive liposomes in the vasculature of human triple negative breast cancer tumors implanted orthotopically in mice. This heat-triggered liposomal formulation of cisplatin resulted in significantly delayed tumor growth and improved overall survival compared to treatment with either non-thermosensitive liposomes containing cisplatin or free cisplatin, as was observed in two independent tumor models (i.e. MDA-MB-231 and MDA-MB-436). The in vitro sensitivity of the cell lines to cisplatin and hyperthermia alone and in combination was characterized extensively using enzymatic assays, clonogenic assays, and spheroid growth assays. Evaluation of correlations between the in vitro and in vivo results served to identify the in vitro approach that is most predictive of the effects of hyperthermia in vivo. Relative expression of several heat shock proteins and the DNA damage repair protein BRCA1 were assayed at baseline and in response to hyperthermia both in vitro and in vivo. Interestingly, delivery of cisplatin in thermosensitive liposomes in combination with hyperthermia resulted in the most significant tumor growth delay, relative to free cisplatin, in the less cisplatin-sensitive cell line (i.e. MDA-MB-231). This work demonstrates that thermosensitive cisplatin liposomes used in combination with hyperthermia offer a novel method for effective treatment of triple negative breast cancer.
Collapse
|
45
|
Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. J Control Release 2018; 275:162-176. [DOI: 10.1016/j.jconrel.2018.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 02/02/2023]
|
46
|
Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J Control Release 2018. [DOI: 10.1016/j.jconrel.2018.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Bahuguna S, Kumar M, Sharma G, Kumar R, Singh B, Raza K. Fullerenol-Based Intracellular Delivery of Methotrexate: A Water-Soluble Nanoconjugate for Enhanced Cytotoxicity and Improved Pharmacokinetics. AAPS PharmSciTech 2018; 19:1084-1092. [PMID: 29159749 DOI: 10.1208/s12249-017-0920-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/05/2017] [Indexed: 11/30/2022] Open
Abstract
Derivatization of fullerenes to polyhydroxylated fullerenes, i.e., fullerenols (FLU), dramatically decreases their toxicity and has been reported to enhance the solubility as well as cellular permeability. In this paper, we report synthesis of FLU as nanocarrier and subsequent chemical conjugation of Methotrexate (MTX) to FLU with a serum-stable and intracellularly hydrolysable ester bond between FLU and MTX. The conjugate was characterized for physiochemical attributes, micromeritics, drug-loading, and drug-release and evaluated for cancer cell-toxicity, cellular-uptake, hemocompatibility, protein binding, and pharmacokinetics. The developed hemocompatible FL-MTX offered lower protein binding vis-à-vis naïve drug and substantially higher drug loading. The conjugate offered pH-dependent release of 38.20 ± 1.19% at systemic pH and 85.67 ± 3.39% at the cancer cell pH. FLU-MTX-treated cells showed significant reduction in IC50 value vis-à-vis the cells treated with pure MTX. Analogously, the results from confocal scanning laser microscopy also confirmed the easy access of the dye-tagged FLU-MTX conjugate to the cell interiors. In pharmacokinetics, the AUC of MTX was enhanced by approx. 6.15 times and plasma half-life was enhanced by 2.45 times, after parenteral administration of single equivalent dose in rodents. FLU-MTX offered enhanced availability of drug to the biological system, meanwhile improved the cancer-cell cytotoxicity, sustained the effective plasma drug concentrations, and offered substantial compatibility to erythrocytes.
Collapse
|
48
|
Munaweera I, Shaikh S, Maples D, Nigatu AS, Sethuraman SN, Ranjan A, Greenberg DE, Chopra R. Temperature-sensitive liposomal ciprofloxacin for the treatment of biofilm on infected metal implants using alternating magnetic fields. Int J Hyperthermia 2018; 34:189-200. [PMID: 29498309 PMCID: PMC6034688 DOI: 10.1080/02656736.2017.1422028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Implants are commonly used as a replacement for damaged tissue. Many implants, such as pacemakers, chronic electrode implants, bone screws, and prosthetic joints, are made of or contain metal. Infections are one of the difficult to treat complications associated with metal implants due to the formation of biofilm, a thick aggregate of extracellular polymeric substances (EPS) produced by the bacteria. In this study, we treated a metal prosthesis infection model using a combination of ciprofloxacin-loaded temperature-sensitive liposomes (TSL) and alternating magnetic fields (AMF). AMF heating is used to disrupt the biofilm and release the ciprofloxacin-loaded TSL. The three main objectives of this study were to (1) investigate low- and high-temperature-sensitive liposomes (LTSLs and HTSLs) containing the antimicrobial agent ciprofloxacin for temperature-mediated antibiotic release, (2) characterise in vitro ciprofloxacin release and stability and (3) study the efficacy of combining liposomal ciprofloxacin with AMF against Pseudomonas aeruginosa biofilms grown on metal washers. The release of ciprofloxacin from LTSL and HTSL was assessed in physiological buffers. Results demonstrated a lower transition temperature for both LTSL and HTSL formulations when incubated in serum as compared with PBS, with a more pronounced impact on the HTSLs. Upon combining AMF with temperature-sensitive liposomal ciprofloxacin, a 3 log reduction in CFU of Pseudomonas aeruginosa in biofilm was observed. Our initial studies suggest that AMF exposure on metal implants can trigger release of antibiotic from temperature sensitive liposomes for a potent bactericidal effect on biofilm.
Collapse
Affiliation(s)
- Imalka Munaweera
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumbul Shaikh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Adane S. Nigatu
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - David E. Greenberg
- Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Ho L, Bokharaei M, Li SD. Current update of a thermosensitive liposomes composed of DPPC and Brij78. J Drug Target 2018; 26:407-419. [DOI: 10.1080/1061186x.2017.1419361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laurence Ho
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Mehrdad Bokharaei
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Lokerse WJM, Eggermont AMM, Grüll H, Koning GA. Development and evaluation of an isolated limb infusion model for investigation of drug delivery kinetics to solid tumors by thermosensitive liposomes and hyperthermia. J Control Release 2017; 270:282-289. [PMID: 29269141 DOI: 10.1016/j.jconrel.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
The combined administration of thermosensitive liposomes (TSLs) and hyperthermia (HT) has been increasingly shown to be a powerful tool for the treatment of solid tumors. At present, it is hypothesized that the circulation of TSLs through the vasculature of a heated tumor results in the rapid release of the entrapped drug, followed by its uptake and distribution within the tumor microenvironment. However, simple questions on the transport kinetics of TSLs through the heated tumor and how much drug is retained upon passage of TSLs through the tumor microcirculation have not been investigated in an experimental setting to-date. The present work describes a novel methodology for investigating these parameters by isolated limb infusion (ILI), developed in a rat model of sarcoma. This approach was used to assess the efficacy of Doxorubicin (Dox) delivery by TSL in a heated (42°C) tumor following a single passage of TSL through the tumor vasculature. Analysis of the effluent post-ILI, whole-tumor histological sections, and tissue homogenates revealed that upon a single passage, Dox delivery by TSL at 42°C did not exceed delivery under conventional (i.e. free Dox) or physiological (i.e. TSL at 37°C, or normothermia; NT) conditions. In fact, mathematical modeling demonstrated that at least thirteen passages are required to obtain the intratumoral Dox levels typically achieved using TSL (i.e. ~5%ID/g). Overall, this work investigates TSL-based determinants for achieving efficacious drug delivery using a model of ILI in tumor-bearing rats and the results bear important implications for TSL disposition in vivo.
Collapse
Affiliation(s)
- Wouter J M Lokerse
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands; Medical Clinic III, University Hospital of Munich, Ludwig Maximilian University, Munich, Germany.
| | | | - Holger Grüll
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Gerben A Koning
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|