1
|
Li Q, Gao C, Shen X, Xing D. Graphene oxide-functionalized molecular beacon for real-time interference-free detection of Ki-67 mRNA in living cells. Talanta 2024; 278:126538. [PMID: 39002264 DOI: 10.1016/j.talanta.2024.126538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Molecular beacons (MBs) based on hairpin-shaped oligonucleotides are captivating owing to their capability to enable effective real-time detection of cytosolic mRNA in living cells. However, DNase in the nucleus and lysosome could induce the degradation of oligonucleotides in MBs, leading to the generation of false-positive signals. Herein, a graphene oxide (GO) nanosheet was applied as a nanocarrier for MBs to greatly enhance the anti-interference of the easily designed nanoprobe. Advantageously, the absorption capacity of GO for MBs increased with the decrease in pH values, providing the MB-GO nanoprobe with the ability to detect the expression of cytosolic Ki-67 mRNA without interference from DNase Ⅱ in lysosomes. Moreover, the size of GO nanosheets was considerably higher than that of the nuclear pore complex (NPC), which prevented nanoprobes from transition through the NPCs, thereby avoiding the generation of false-positive signals in the nucleus. Altogether, the present work affords a convenient approach for the successful detection of Ki-67 mRNA expression in the cytosol without interference from DNase Ⅰ/Ⅱ in the nucleus/lysosome, which may be potentially further applied for the detection of other cytosolic RNAs.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Qingdao Cancer Institute, Qingdao, 266071, China.
| | - Chihao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xin Shen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dongming Xing
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Qingdao Cancer Institute, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2024:1-20. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Lineage tracing reveals B cell antibody class switching is stochastic, cell-autonomous, and tuneable. Immunity 2022; 55:1843-1855.e6. [PMID: 36108634 DOI: 10.1016/j.immuni.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.
Collapse
|
5
|
Nucleic acid-based fluorescent sensor systems: a review. Polym J 2022. [DOI: 10.1038/s41428-022-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Chen F, Li G, Wu C, Wang W, Ma DL, Leung CH. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosens Bioelectron 2022; 198:113829. [PMID: 34840016 DOI: 10.1016/j.bios.2021.113829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
Abstract
Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
7
|
Li Z, Zhang P, Zhang R, Wang X, Tse YC, Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep 2021; 35:109072. [PMID: 33951426 DOI: 10.1016/j.celrep.2021.109072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visualizing mRNA in real time in vivo at high resolution is critical for a full understanding of the spatiotemporal dynamics of gene regulation and function. Here, using a PP7/PCP-based mRNA-tagging approach, we construct a collection of tissue-specific and differentially expressed toolkit strains for visualizing mRNAs encoding apical, basolateral, and junctional proteins in Caenorhabditis elegans epithelia. We precisely delineate the spatiotemporal organization and dynamics of these transcripts across multiple subcellular compartments and tissues. Remarkably, all the transcripts exhibit an asymmetric, membrane-associated localization during epithelial polarization and maturation, which suggests that mRNA localization is a prerequisite for epithelial polarization and function. Single-particle tracking reveals striking features of the transport dynamics of the mRNAs in a gene-specific, compartment-linked, and time-resolved manner. The toolkit can be used to identify the cis-regulatory elements and trans-acting factors for mRNA localization. This study provides a valuable resource to investigate complex RNA dynamics in epithelial polarity and morphogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruotong Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xinyan Wang
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Chung Tse
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.
| |
Collapse
|
8
|
Chen Y, Zhai LY, Zhang LM, Ma XS, Liu Z, Li MM, Chen JX, Duan WJ. Breast cancer plasma biopsy by in situ determination of exosomal microRNA-1246 with a molecular beacon. Analyst 2021; 146:2264-2276. [PMID: 33599630 DOI: 10.1039/d0an02224a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid biopsy is becoming an innovative tool in precision oncology owing to its noninvasive identification of biomarkers circulating in the body fluid at various time points for continuous and real-time analysis of disease progression. MicroRNAs in blood exosomes are identified as a new promising class of potential biomarkers for cancer diagnostics and prognostics. Conventional detection of blood exosomal microRNAs need multiple-step, complicated, costly, and time-consuming sample preparation of exosomes isolation and RNA extract, which affect the accuracy and reproducibility of analytical results. In this work, we set up an in situ quantitative analysis of human plasma exosomal miR-1246 by a probe of 2'-O-methyl and phosphorothioate modified molecular beacon. The probe has outstanding nuclease resistance in highly active RNase A/T1/I, which makes it stable for direct application in blood samples. With rapid rupture of exosomes membrane by Triton X-100, the probe can enter exosomes to specifically target miR-1246 exhibiting quantitative fluorescent signals. Using the output signals as a diagnostic marker, we differentiated 33 breast cancer patients from 37 healthy controls with 97.30% sensitivity and 93.94% specificity at the best cutoff. The blood biopsy is simple without extracting plasma exosomes and their nucleic acids content, time-saving in about 2 h of total analysis process, and microvolumes needed for plasma sample, suggesting its good potential to clinical application.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fan L, Chong X, Zhao M, Jia F, Wang Z, Zhou Y, Lu X, Huang Q, Li P, Yang Y, Hu Z, Li Q, Zhang X, Shen L. Ultrasensitive Gastric Cancer Circulating Tumor Cellular CLDN18.2 RNA Detection Based on a Molecular Beacon. Anal Chem 2020; 93:665-670. [DOI: 10.1021/acs.analchem.0c04055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Linyang Fan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China
| | - Minzhi Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fei Jia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ying Zhou
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China
| | - Qiongrong Huang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China
| |
Collapse
|
10
|
Mao S, Ying Y, Wu R, Chen AK. Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging. iScience 2020; 23:101801. [PMID: 33299972 PMCID: PMC7702005 DOI: 10.1016/j.isci.2020.101801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids, aside from being best known as the carrier of genetic information, are versatile biomaterials for constructing nanoscopic devices for biointerfacing, owing to their unique properties such as specific base pairing and predictable structure. For live-cell analysis of native RNA transcripts, the most widely used nucleic acid-based nanodevice has been the molecular beacon (MB), a class of stem-loop-forming probes that is activated to fluoresce upon hybridization with target RNA. Here, we overview efforts that have been made in developing MB-based bioassays for sensitive intracellular analysis, particularly at the single-molecule level. We also describe challenges that are currently limiting the widespread use of MBs and provide possible solutions. With continued refinement of MBs in terms of labeling specificity and detection accuracy, accompanied by new development in imaging platforms with unprecedented sensitivity, the application of MBs is envisioned to expand in various biological research fields.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruonan Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Antony K. Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Corresponding author
| |
Collapse
|
11
|
Ying Y, Mao S, Krueger CJ, Chen AK. Live-Cell Imaging of Long Noncoding RNAs Using Molecular Beacons. Methods Mol Biol 2020; 2038:21-33. [PMID: 31407275 DOI: 10.1007/978-1-4939-9674-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a family of non-protein-coding RNA transcripts greater than 200 nucleotides in length that have been regarded as crucial modulators of gene expression in various biological and disease contexts, but mechanisms underlying such regulation still remains largely elusive. In addition to cell lysate-based approaches that have proven invaluable for studies of lncRNAs, live-imaging methods can add value by providing more in-depth information on lncRNA dynamics and localizations at the single-molecule level. Recently, we have developed a versatile imaging approach based on molecular beacons (MBs), which are a class of fluorogenic oligonucleotide-based probes with the capacity to convert RNA target hybridization into a measurable fluorescence signal. In this chapter, we describe the detailed protocol of using MBs to illuminate lncRNA transcripts at the single-molecule level in living cells.
Collapse
Affiliation(s)
- Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
12
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
|
14
|
Wu X, Ying Y, Mao S, Krueger CJ, Chen AK. Live-Cell Imaging of Genomic Loci Using CRISPR/Molecular Beacon Hybrid Systems. Methods Mol Biol 2020; 2166:357-372. [PMID: 32710420 DOI: 10.1007/978-1-0716-0712-1_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor the behavior of specific genomic loci in living cells can offer tremendous opportunities for deciphering the molecular basis driving cellular physiology and disease evolution. Toward this goal, clustered regularly interspersed short palindromic repeat (CRISPR)-based imaging systems have been developed, with tagging of either the nuclease-deactivated mutant of the CRISPR-associated protein 9 (dCas9) or the CRISPR single-guide RNA (sgRNA) with fluorescent protein (FP) molecules currently the major strategies for labeling. Recently, we have demonstrated the feasibility of tagging the sgRNA with molecular beacons, a class of small molecule dye-based, fluorogenic oligonucleotide probes, and demonstrated that the resulting system, termed CRISPR/MB, could be more sensitive and quantitative than conventional approaches employing FP reporters in detecting single telomere loci. In this chapter, we describe detailed protocols for the synthesis of CRISPR/MB, as well as its applications for imaging single telomere and centromere loci in live mammalian cells.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
15
|
Delivering Molecular Beacons via an Electroporation-Based Approach Enables Live-Cell Imaging of Single RNA Transcripts and Genomic Loci. Methods Mol Biol 2020; 2106:241-252. [PMID: 31889262 DOI: 10.1007/978-1-0716-0231-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Molecular beacons (MBs) are synthetic oligonucleotide probes that are designed to fluoresce upon hybridization to complementary nucleic acid targets. In contrast to genetically encoded probes that can be readily introduced into cells via standard transfection procedures, using MBs to obtain reliable intracellular measurements entails a reliable delivery method that maximizes MB entry while minimizing cell damage. One promising approach is microporation, a microliter volume electroporation-based method that exhibits reduced harmful events as compared with traditional electroporation methods. In this chapter, we describe in detail microporation steps for MB delivery that we have utilized over the past several years, followed by examples demonstrating successful MB-based imaging of specific RNA transcripts and genomic loci at the single-molecule level.
Collapse
|
16
|
Higashikuni Y, Lu TK. Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synth Biol 2019; 8:2607-2619. [PMID: 31751114 DOI: 10.1021/acssynbio.9b00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human diseases are caused by dysregulation of cellular biological programs that are encoded in DNA. Unveiling the endogenous programs and encoding new programs into the genome are key to creating novel diagnostic and therapeutic strategies. CRISPR/Cas9, originally identified in bacteria, has revolutionized genome editing in mammalian cells. Recent advances in CRISPR technologies have provided new programmable platforms for modifying cell function and behavior. CRISPR-based transcriptional regulators and modified gRNAs have enabled multiplexed regulation and visualization of genome dynamics with spatiotemporal precision. Using these toolkits, genome-scale screening platforms can identify key genetic elements or combinations thereof that modulate phenotypes in mammalian cells. In addition, imaging platforms for multiplexed genomic labeling have been created to study the conformation and dynamics of chromatin in living cells, which are essential for genome function. Furthermore, CRISPR-based computation and memory platforms have been built in living mammalian cells by using DNA as a data processing and storage medium to regulate and monitor cellular behaviors. The conditional regulation of CRISPR-based parts has enabled the design of complex multilayered biological programs. CRISPR-based memory platforms can continuously record biological events as mutations in defined DNA loci. By making use of base editors, CRISPR-based computation and memory platforms have been interconnected to perform logic operations based on past events. These technologies open up new avenues for understanding biological phenomena and designing mammalian cells as living machines for biomedical applications.
Collapse
|
17
|
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res 2019; 47:e131. [PMID: 31504824 PMCID: PMC6847002 DOI: 10.1093/nar/gkz752] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic imaging systems predominantly rely on fluorescent protein reporters, which lack the optical properties essential for sensitive dynamic imaging. Here, we modified the CRISPR single-guide RNA (sgRNA) to carry two distinct molecular beacons (MBs) that can undergo fluorescence resonance energy transfer (FRET) and demonstrated that the resulting system, CRISPR/dual-FRET MB, enables dynamic imaging of non-repetitive genomic loci with only three unique sgRNAs.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Murata Y, Jo JI, Tabata Y. Intracellular Controlled Release of Molecular Beacon Prolongs the Time Period of mRNA Visualization. Tissue Eng Part A 2019; 25:1527-1537. [DOI: 10.1089/ten.tea.2019.0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Kim SH, Vieira M, Shim JY, Choi H, Park HY. Recent progress in single-molecule studies of mRNA localization in vivo. RNA Biol 2019; 16:1108-1118. [PMID: 30336727 PMCID: PMC6693552 DOI: 10.1080/15476286.2018.1536592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
From biogenesis to degradation, mRNA goes through diverse types of regulation and interaction with other biomolecules. Uneven distribution of mRNA transcripts and the diverse isoforms and modifications of mRNA make us wonder how cells manage the complexity and keep the functional integrity for the normal development of cells and organisms. Single-molecule microscopy tools have expanded the scope of RNA research with unprecedented spatiotemporal resolution. In this review, we highlight the recent progress in the methods for labeling mRNA targets and analyzing the quantitative information from fluorescence images of single mRNA molecules. In particular, the MS2 system and its various applications are the main focus of this article. We also review how recent studies have addressed biological questions related to the significance of mRNA localization in vivo. Efforts to visualize the dynamics of single mRNA molecules in live cells will push forward our knowledge on the nature of heterogeneity in RNA sequence, structure, and distribution as well as their molecular function and coordinated interaction with RNA binding proteins.
Collapse
Affiliation(s)
- Songhee H. Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Melissa Vieira
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Jae Youn Shim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hongyoung Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Institute of Applied Physics, Seoul National University, Seoul, Korea
| |
Collapse
|
20
|
Feng X, Kang W, Wu X, Wang S, Liu F. Quantitative Detection and Real-Time Monitoring of Endogenous mRNA at the Single Live Cell Level Using a Ratiometric Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28752-28761. [PMID: 31329405 DOI: 10.1021/acsami.9b12394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Messenger ribonucleic acid (mRNA) plays an important role in various cellular processes. however, traditional techniques cannot realize mRNA detections in live cells as they rely on mRNA purification or cell fixation. To achieve real-time and quantitative mRNA detections at a single live cell level, a single-strand stem-loop-structured ratiometric molecular beacon (RMB) composed of the phosphorothioate-modified loop domain on the 2'-O-methyl RNA backbone with a reporter dye, quencher, and reference dye is proposed to detect the Hsp27 mRNA as a modeled endogenous mRNA. When the RMB hybridizes with the target, the stem-loop structure opens, causing separation of the reporter dye and the quencher and restores the reporter fluorescent signals; therefore, the Hsp27 mRNA can be quantitatively detected according to the ratio of the reporter fluorescent signal to the reference fluorescent signal. Both the phosphorothioate and 2'-O-methyl RNA modifications obviously reduce the nonspecific opening, and the additional reference dye ensures the detection precision using co-localization analysis. Not only does this remove the false-positive signal caused by the nuclease degradation-generated RMB fragment, but it also corrects variations caused by direct measurement of reporter fluorescence intensities at a single cell level owing to inhomogeneity in probe delivery. The designed RMB could detect the Hsp27 mRNA with high signal-to-noise ratio and sensitivity as well as excellent specificity and antidegradation capability proved in vitro and in live cells. Furthermore, it was successfully adopted in subcellular localization, quantitative copy number measurements, and even real-time monitoring of Hsp27 mRNA in live cells, demonstrating that the proposed RMB can be a potential quantitative endogenous mRNA detection tool, especially at a single live cell level.
Collapse
Affiliation(s)
- Xufei Feng
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Wenjie Kang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xuping Wu
- The Second Hospital of Nanjing , Nanjing University of Chinese Medicine , Nanjing 210003 , China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
- Computational Optics Laboratory, School of Science , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab) , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
21
|
Wu X, Mao S, Yang Y, Rushdi MN, Krueger CJ, Chen AK. A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Res 2019; 46:e80. [PMID: 29718399 PMCID: PMC6061827 DOI: 10.1093/nar/gky304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
The clustered regularly interspersed short palindromic repeat (CRISPR) gene-editing system has been repurposed for live-cell genomic imaging, but existing approaches rely on fluorescent protein reporters, making sensitive and continuous imaging difficult. Here, we present a fluorophore-based live-cell genomic imaging system that consists of a nuclease-deactivated mutant of the Cas9 protein (dCas9), a molecular beacon (MB), and an engineered single-guide RNA (sgRNA) harboring a unique MB target sequence (sgRNA-MTS), termed CRISPR/MB. Specifically, dCas9 and sgRNA-MTS are first co-expressed to target a specific locus in cells, followed by delivery of MBs that can then hybridize to MTS to illuminate the target locus. We demonstrated the feasibility of this approach for quantifying genomic loci, for monitoring chromatin dynamics, and for dual-color imaging when using two orthogonal MB/MTS pairs. With flexibility in selecting different combinations of fluorophore/quencher pairs and MB/MTS sequences, our CRISPR/MB hybrid system could be a promising platform for investigating chromatin activities.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muaz N Rushdi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Guan Q, Li N, Shi L, Yu C, Gao X, Yang J, Guo Y, Li P, Zhu X. Aggregation-Induced Emission Fluorophore-Based Molecular Beacon for Differentiating Tumor and Normal Cells by Detecting the Specific and False-Positive Signals. ACS Biomater Sci Eng 2019; 5:3618-3630. [DOI: 10.1021/acsbiomaterials.9b00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qinghua Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai 200025, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai 200032, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai 200025, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
23
|
Ikonnikova AY, Surzhikov SA, Pozhitnova VO, Zasedatelev AS, Nasedkina TV. 2'-O-Methyl Oligoribonucleotide Analogs Used to Change the Temperature Characteristics of Immobilized Probes and to Enhance the Specificity of Hybridization. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350918060118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Wu X, Mao S, Ying Y, Krueger CJ, Chen AK. Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:119-128. [PMID: 30710789 PMCID: PMC6620262 DOI: 10.1016/j.gpb.2018.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Chromatin conformation, localization, and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states, the requirement for cell fixation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review, we describe currently-available approaches for imaging single genomic loci in cells, with special focus on clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition, we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches, and potential solutions to address these challenges. We anticipate that, with continued refinement of CRISPR-based imaging techniques, significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Chen M, Mao S, Wu X, Ma Z, Yang Y, Krueger CJ, Chen AK. Single-Molecule Analysis of RNA Dynamics in Living Cells Using Molecular Beacons. Methods Mol Biol 2019; 1870:23-39. [PMID: 30539544 DOI: 10.1007/978-1-4939-8808-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, emerging evidence has indicated that long intergenic noncoding RNAs (lincRNAs), a class of RNA transcripts greater than 200 nt in length, function as key regulators of gene expression in cellular physiology and pathogenesis. Greater understanding of lincRNA activities, particularly in the context of subcellular localization and dynamic regulation at the single-molecule level, is expected to provide in-depth understanding of molecular mechanisms that regulate cell behavior and disease evolution. We have recently developed a fluorescence-imaging approach to investigate RNA dynamics in living cells at the single-molecule level. This approach entails the use of molecular beacons (MBs), which are a class of stem-loop forming oligonculeotide-based probes that emit detectable fluorescence upon binding to target sequence, and tandem repeats of MB target sequences integrated to the target RNA sequence. Binding of the MBs to the tandem repeats could illuminate the target RNA as a bright spot when imaged by conventional fluorescence microscopy, making the MB-based imaging approach a versatile tool for RNA analysis across laboratories. In this chapter, we describe the development of the MB-based approach and its application for imaging single NEAT1 lincRNA transcripts in living cells.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
26
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
27
|
Murata Y, Jo JI, Tabata Y. Preparation of cationized gelatin nanospheres incorporating molecular beacon to visualize cell apoptosis. Sci Rep 2018; 8:14839. [PMID: 30287861 PMCID: PMC6172245 DOI: 10.1038/s41598-018-33231-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
The objective of this study is to prepare cationized gelatin nanospheres (cGNS) incorporating a molecular beacon (MB), and visualize cellular apoptosis. Two types of MB to detect the messenger RNA (mRNA) of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (GAP MB), and caspase-3 (casp3 MB) were incorporated in cGNS, respectively. MB incorporated in cGNS showed the DNA sequence specificity in hybridization. The cGNS incorporation enabled MB to enhance the stability against nuclease to a significantly great extent compared with free MB. The cGNS incorporating GAP MB were internalized into the KUM6 of a mouse bone marrow-derived stem cell by an endocytotic pathway. The cGNS were not distributed at the lysosomes. After the incubation with cGNS, the cell apoptosis was induced at different concentrations of camptothecin. No change in the intracellular fluorescence was observed for cGNSGAPMB. On the other hand, for the cGNScasp3MB, the fluorescent intensity significantly enhanced by the apoptosis induction of cells. It is concluded that cGNS incorporating MB is a promising system for the visualization of cellular apoptosis.
Collapse
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
28
|
Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc Natl Acad Sci U S A 2018; 115:E9697-E9706. [PMID: 30254174 PMCID: PMC6187124 DOI: 10.1073/pnas.1806189115] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
De novo protein synthesis in neuronal axons plays important roles in neural circuit formation, maintenance, and disease. Key to the selectivity of axonal protein synthesis is whether an mRNA is present at the right place to be translated, but the mechanisms behind axonal mRNA localization remain poorly understood. In this work, we quantitatively analyze the link between axonal β-actin mRNA trafficking and its localization patterns. By developing a single-molecule approach to live-image β-actin mRNAs in axons, we explore the biophysical drivers behind β-actin mRNA motion and uncover a mechanism for generating increased density at the axon tip by differences in motor protein-driven transport speeds. These results provide mechanistic insight into the control of local translation through mRNA trafficking. During embryonic nervous system assembly, mRNA localization is precisely regulated in growing axons, affording subcellular autonomy by allowing controlled protein expression in space and time. Different sets of mRNAs exhibit different localization patterns across the axon. However, little is known about how mRNAs move in axons or how these patterns are generated. Here, we couple molecular beacon technology with highly inclined and laminated optical sheet microscopy to image single molecules of identified endogenous mRNA in growing axons. By combining quantitative single-molecule imaging with biophysical motion models, we show that β-actin mRNA travels mainly as single copies and exhibits different motion-type frequencies in different axonal subcompartments. We find that β-actin mRNA density is fourfold enriched in the growth cone central domain compared with the axon shaft and that a modicum of directed transport is vital for delivery of mRNA to the axon tip. Through mathematical modeling we further demonstrate that directional differences in motor-driven mRNA transport speeds are sufficient to generate β-actin mRNA enrichment at the growth cone. Our results provide insight into how mRNAs are trafficked in axons and a mechanism for generating different mRNA densities across axonal subcompartments.
Collapse
|
29
|
Tutucci E, Vera M, Singer RH. Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nat Protoc 2018; 13:2268-2296. [DOI: 10.1038/s41596-018-0037-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Abstract
Conventional molecular beacons (MBs) have been used extensively for imaging specific endogenous RNAs in living cells, but their tendency to generate false-positive signals as a result of nuclease degradation and/or nonspecific binding limits sensitive and accurate imaging of intracellular RNAs. In an attempt to overcome this limitation, MBs have been synthesized with various chemically modified oligonucleotide backbones to confer greater biostability. We have recently developed a new MB architecture composed of 2'-O-methyl RNA (2Me), a fully phosphorothioate (PS) modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). We showed that this new MB exhibits a marginal level of false-positive signals and enables accurate single-molecule imaging of target RNA in living cells. In this chapter, we describe detailed methods that led us to conclude that, among various PS-modified configurations, the 2Me/PSLOOP MB is an optimal design for intracellular RNA analysis.
Collapse
|
31
|
Cao C, Zhang F, Goldys EM, Gao F, Liu G. Advances in structure-switching aptasensing towards real time detection of cytokines. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ma Z, Wu X, Krueger CJ, Chen AK. Engineering Novel Molecular Beacon Constructs to Study Intracellular RNA Dynamics and Localization. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:279-286. [PMID: 28942262 PMCID: PMC5673673 DOI: 10.1016/j.gpb.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/08/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
Abstract
With numerous advancements in novel biochemical techniques, our knowledge of the role of RNAs in the regulation of cellular physiology and pathology has grown significantly over the past several decades. Nevertheless, detailed information regarding RNA processing, trafficking, and localization in living cells has been lacking due to technical limitations in imaging single RNA transcripts in living cells with high spatial and temporal resolution. In this review, we discuss techniques that have shown great promise for single RNA imaging, followed by highlights in our recent work in the development of molecular beacons (MBs), a class of nanoscale oligonucleotide-probes, for detecting individual RNA transcripts in living cells. With further refinement of MB design and development of more sophisticated fluorescence microscopy techniques, we envision that MB-based approaches could promote new discoveries of RNA functions and activities.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
Qu N, Ma Z, Zhang M, Rushdi MN, Krueger CJ, Chen AK. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation. Protein Cell 2017; 9:640-651. [PMID: 28884441 PMCID: PMC6019656 DOI: 10.1007/s13238-017-0461-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022] Open
Abstract
We recently reported an unconventional mechanism by which miRNAs inhibit HIV-1 viral production. This occurs when miRNAs bind nonspecifically to the viral structural protein Gag, interfering with viral RNA-mediated Gag assembly at the plasma membrane. Consequently, misassembled viral complexes are redirected into the endocytic pathway where they are delivered to lysosomes for degradation. In this study, we demonstrate that autophagy is a critical mediator of the viral degradation pathway and that this pathway is not HIV-1 specific. Misassembled viral complexes were found to colocalize extensively with LC3 and p62 in late endosomes/lysosomes, demonstrating a convergence of autophagy with functional degradative compartments. Knocking down autophagosome formation machineries reduced this convergence, while treatment with autophagy-inducer rapamycin enhanced the convergence. Furthermore, similar autophagy-dependent nonspecific miRNA inhibition of murine leukemia virus (MLV) assembly was shown. Overall, these results reveal autophagy as a crucial regulator of the retroviral degradation pathway in host cells initiated by nonspecific miRNA-Gag interactions. These findings could have significant implications for understanding how cells may regulate retroviral complex assembly by miRNA expression and autophagy, and raise the possibility that similar regulations can occur in other biological contexts.
Collapse
Affiliation(s)
- Na Qu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mengrao Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Muaz N Rushdi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Bakshi SF, Guz N, Zakharchenko A, Deng H, Tumanov AV, Woodworth CD, Minko S, Kolpashchikov DM, Katz E. Magnetic Field-Activated Sensing of mRNA in Living Cells. J Am Chem Soc 2017; 139:12117-12120. [PMID: 28817270 PMCID: PMC5654739 DOI: 10.1021/jacs.7b06022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Detection of specific mRNA in living cells has attracted significant attention in the past decade. Probes that can be easily delivered into cells and activated at the desired time can contribute to understanding translation, trafficking and degradation of mRNA. Here we report a new strategy termed magnetic field-activated binary deoxyribozyme (MaBiDZ) sensor that enables both efficient delivery and temporal control of mRNA sensing by magnetic field. MaBiDZ uses two species of magnetic beads conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The DZ sensor is activated only in the presence of a specific target mRNA and when a magnetic field is applied. Here we demonstrate that MaBiDZ sensor can be internalized in live MCF-7 breast cancer cells and activated by a magnetic field to fluorescently report the presence of specific mRNA, which are cancer biomarkers.
Collapse
Affiliation(s)
- Saira F Bakshi
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Andrey Zakharchenko
- Nanostructured Materials Lab, University of Georgia , Athens, Georgia 30602, United States
| | - Han Deng
- Department of Biology, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Craig D Woodworth
- Department of Biology, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia , Athens, Georgia 30602, United States
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida , 4000 Central Florida Boulevard, Orlando, Florida 32816-2366, United States.,Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University , Lomonosova St. 9, 191002 St. Petersburg, Russian Federation
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| |
Collapse
|
36
|
Xu J, Tran T, Padilla Marcia CS, Braun DM, Goggin FL. Superoxide-responsive gene expression in Arabidopsis thaliana and Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:51-60. [PMID: 28587993 DOI: 10.1016/j.plaphy.2017.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 05/06/2023]
Abstract
Superoxide (O2-) and other reactive oxygen species (ROS) are generated in response to numerous biotic and abiotic stresses. Different ROS have been reported to elicit different transcriptional responses in plants, and so ROS-responsive marker genes and promoter::reporter gene fusions have been proposed as indirect means of detecting ROS and discriminating among different species. However, further information about the specificity of transcriptional responses to O2- is needed in order to assess potential markers for this critical stress-responsive signaling molecule. Using qRT-PCR, the expression of 12 genes previously reported to be upregulated by O2- was measured in Arabidopsis thaliana plants exposed to elicitors of common stress-responsive ROS: methyl viologen (an inducer of O2-), rose bengal (an inducer of singlet oxygen, 1ΔO2), and exogenous hydrogen peroxide (H2O2). Surprisingly, Zinc-Finger Protein 12 (AtZAT12), which had previously been used as a reporter for H2O2, responded more strongly to O2- than to H2O2; moreover, the expression of an AtZAT12 promoter-reporter fusion (AtZAT12::Luc) was enhanced by diethyldithiocarbamate, which inhibits dismutation of O2- to H2O2. These results suggest that AtZAT12 is transcriptionally upregulated in response to O2-, and that AtZAT12::Luc may be a useful biosensor for detecting O2- generation in vivo. In addition, transcripts encoding uncoupling proteins (AtUCPs) showed selectivity for O2- in Arabidopsis, and an AtUCP homolog upregulated by methyl viologen was also identified in maize (Zea mays L.), indicating that there are O2--responsive members of this family in monocots. These results expand our limited knowledge of ROS-responsive gene expression in monocots, as well as O2--selective responses in dicots.
Collapse
Affiliation(s)
- Junhuan Xu
- Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Thu Tran
- Division of Biological Sciences, 308 Tucker Hall, University of Missouri, Columbia, MO 65211, United States.
| | - Carmen S Padilla Marcia
- Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, United States.
| | - David M Braun
- Division of Biological Sciences, 308 Tucker Hall, University of Missouri, Columbia, MO 65211, United States.
| | - Fiona L Goggin
- Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
37
|
Fozooni T, Ravan H, Sasan H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 2017; 183:1224-1253. [DOI: 10.1007/s12010-017-2494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
38
|
Chen M, Ma Z, Wu X, Mao S, Yang Y, Tan J, Krueger CJ, Chen AK. A molecular beacon-based approach for live-cell imaging of RNA transcripts with minimal target engineering at the single-molecule level. Sci Rep 2017; 7:1550. [PMID: 28484218 PMCID: PMC5431543 DOI: 10.1038/s41598-017-01740-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Analysis of RNA dynamics and localization at the single-molecule level in living cells has been predominantly achieved by engineering target RNAs with large insertions of tandem repeat sequences that are bound by protein-based or oligonucleotide-based fluorescent probes. Thus, individual RNAs are tagged by multiple fluorescent probes, making them detectable by fluorescence microscopy. Since large insertions may affect RNA processes including trafficking and localization, here we present a strategy to visualize single RNA transcripts in living cells using molecular beacons (MBs) - fluorogenic oligonucleotide probes - with minimal target engineering. The MBs are composed of 2′-O-methyl RNAs with a fully phosphorothioate-modified loop domain (2Me/PSLOOP MBs), an architecture that elicits marginal levels of nonspecific signals in cells. We showed that MBs can detect single transcripts containing as few as 8 target repeat sequences with ~90% accuracy. In both the nucleus and the cytoplasm, mRNAs harboring 8 repeats moved faster than those with 32 repeats, suggesting that intracellular activities are less impeded by smaller engineered insertions. We then report the first MB-based imaging of intracellular dynamics and localization of single long noncoding RNAs (lncRNAs). We envision the proposed minimally-engineered, MB-based technology for live-cell single-molecule RNA imaging could facilitate new discoveries in RNA research.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jie Tan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
39
|
Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. Nat Commun 2017; 8:14016. [PMID: 28091529 PMCID: PMC5241866 DOI: 10.1038/ncomms14016] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of diverse biological processes. Here we report on functional identification and characterization of a novel long intergenic non-coding RNA with MyoD-regulated and skeletal muscle-restricted expression that promotes the activation of the myogenic program, and is therefore termed Linc-RAM (Linc-RNA Activator of Myogenesis). Linc-RAM is transcribed from an intergenic region of myogenic cells and its expression is upregulated during myogenesis. Notably, in vivo functional studies show that Linc-RAM knockout mice display impaired muscle regeneration due to the differentiation defect of satellite cells. Mechanistically, Linc-RAM regulates expression of myogenic genes by directly binding MyoD, which in turn promotes the assembly of the MyoD–Baf60c–Brg1 complex on the regulatory elements of target genes. Collectively, our findings reveal the functional role and molecular mechanism of a lineage-specific Linc-RAM as a regulatory lncRNA required for tissues-specific chromatin remodelling and gene expression.
Long non-coding RNAs are important regulators of many diverse biological processes. Here the authors describe Linc-RAM, which regulates myogenesis by binding MyoD and promoting the assembly of the MyoD–Baf60c–Brg1 complex at target genes.
Collapse
|
40
|
Niu C, Peng M, You Y, Wang R, Jia Y, Xie T, Wang J, Na N, Ouyang J. A comparative study of plasmonic-enhanced single-molecule fluorescence induced by gold nanoantennas and its application for illuminating telomerase. Chem Commun (Camb) 2017; 53:5633-5636. [DOI: 10.1039/c7cc01330b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparative study of plasmonic-enhanced single molecular fluorescence (PESMF) induced by four gold nanoantennas is reported.
Collapse
Affiliation(s)
- Caixia Niu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Manshu Peng
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ying You
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ruihua Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Tianxin Xie
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jinyu Wang
- High School Affiliated to Southwest University
- Chongqing 400700
- China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|