1
|
Sheng H, Li H, Li S, Yu C, Wang Y, Hu H, Fang L, Chen F, Lu Y, Xu X, Yang X, Chen S, Hao Y, Li Y, Feng S, Chen J. Synchronously in vivo real-time monitoring bacterial load and temperature with evaluating immune response to decipher bacterial infection. Bioeng Transl Med 2024; 9:e10656. [PMID: 39036094 PMCID: PMC11256147 DOI: 10.1002/btm2.10656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 07/23/2024] Open
Abstract
Determining the precise course of bacterial infection requires abundant in vivo real-time data. Synchronous monitoring of the bacterial load, temperature, and immune response can satisfy the shortage of real-time in vivo data. Here, we conducted a study in the joint-infected mouse model to synchronously monitor the bacterial load, temperature, and immune response using the second near-infrared (NIR-II) fluorescence imaging, infrared thermography, and immune response analysis for 2 weeks. Staphylococcus aureus (S. aureus) was proved successfully labeled with glucose-conjugated quantum dots in vitro and in subcutaneous-infected model. The bacterial load indicated by NIR-II fluorescence imaging underwent a sharp drop at 1 day postinfection. At the same time, the temperature gap detected through infrared thermography synchronously brought by infection reached lowest value. Meanwhile, the flow cytometry analysis demonstrated that immune response including macrophage, neutrophil, B lymphocyte, and T lymphocyte increased to the peak at 1 day postinfection. Moreover, both M1 macrophage and M2 macrophage in the blood have an obvious change at ~ 1 day postinfection, and the change was opposite. In summary, this study not only obtained real-time and long-time in vivo data on the bacterial load, temperature gap, and immune response in the mice model of S. aureus infection, but also found that 1 day postinfection was the key time point during immune response against S. aureus infection. Our study will contribute to synchronously and precisely studying the complicated complex dynamic relationship after bacterial infection at the animal level.
Collapse
Affiliation(s)
- Huaixuan Sheng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Huizhu Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Shunyao Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Chengxuan Yu
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Yueming Wang
- Department of Anatomy and PhysiologySchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Haichen Hu
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Lu Fang
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Infrared System Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of SciencesShanghaiChina
| | - Fuchun Chen
- Key Laboratory of Infrared System Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of SciencesShanghaiChina
| | - Yanyan Lu
- Institute of Antibiotics, Huashan Hospital, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Fudan UniversityShanghaiChina
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Fudan UniversityShanghaiChina
| | - Xing Yang
- Department of OrthopedicsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Shiyi Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuefeng Hao
- Department of OrthopedicsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Yunxia Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Sijia Feng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Jun Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Shi C, Guo L, Song R, Xu H, Zhang Y. Prediction of pedicled flap survival preoperatively by operating indocyanine green angiography at 1,450 nm wavelength: an animal model study. Front Med (Lausanne) 2024; 11:1389384. [PMID: 38831995 PMCID: PMC11146014 DOI: 10.3389/fmed.2024.1389384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Background Predicting flap viability benefits patients by reducing complications and guides flap design by reducing donor areas. Due to varying anatomy, obtaining individual vascular information preoperatively is fundamental for designing safe flaps. Although indocyanine green angiography (ICGA) is a conventional tool in intraoperative assessment and postoperative monitoring, it is rare in preoperative prediction. Methods ICGA was performed on 20 male BALB/c mice under five wavelengths (900/1,000/1,100, /1,250/1,450 nm) to assess vascular resolution after ICG perfusion. A "mirrored-L" flap model with three angiosomes was established on another 20 male BALB/c mice, randomly divided into two equal groups. In Group A, a midline between angiosomes II and III was used as a border. In Group B, the points of the minimized choke vessel caliber marked according to the ICG signal at 1,450 nm wavelength (ICG1450) were connected. Necrotic area calculations, pathohistological testing, and statistical analysis were performed. Results The vascular structure was clearly observed at 1,450 nm wavelength, while the 900 to 1,100 nm failed to depict vessel morphology. Necrosis was beyond the borderline in 60% of Group A. Conversely, 100% of Group B had necrosis distal to the borderline. The number of choke vessels between angiosomes II and III was positively correlated with the necrotic area (%). The pathohistological findings supported the gross observation and analysis. Conclusion ICG1450 can delineate the vessel structure in vivo and predict the viability of pedicled skin flaps using the choke vessel as the border between angiosomes.
Collapse
Affiliation(s)
- Chenchen Shi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxiumei Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihu Song
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Meng X, Li H, Chen Y, Sai L, Feng S, Li K, Xi W, Li Y, Thanh NTK, Wang Y, Wo Y, Yang X, Hao Y, Zhang Y, Chen J, Feng S. In Vivo Precision Evaluation of Lymphatic Function by SWIR Luminescence Imaging with PbS Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206579. [PMID: 36587979 PMCID: PMC9982568 DOI: 10.1002/advs.202206579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 05/09/2023]
Abstract
Advancements in lymphography technology are essential for comprehensive investigation of the lymphatic system and its function. Here, a shortwave infrared (SWIR) luminescence imaging of lymphatic vessels is proposed in both normal and lymphatic dysfunction in rat models with PbS quantum dots (PbS Qdots). The lymphography with PbS Qdots can clearly and rapidly demonstrate the normal lymphatic morphology in both the tail and hind limb. More importantly, compared to ICG, SWIR luminescence imaging with PbS Qdots can easily identify the dominant lymphatic vessel and node with higher luminescence signal in rats. Moreover, lymphatic pump is identified as segment contracting sections with a size of ≈1 cm in rat by in vivo SWIR lymphograhy, which propose a direct feature for precise evaluation of lymphatic function. Notably, in vivo SWIR luminescence imaging with PbS Qdots also clearly deciphers the in vivo pattern of morphological and function recovery from lymphatic system in rat model. In summary, SWIR luminescence imaging with PbS Qdots can improve the lymphography and thus deepen the understanding of the morphology and structure of the lymphatic system as well as lymphatic function such as lymphatic pump, which will facilitate the diagnosis of lymphatic dysfunction in the future.
Collapse
Affiliation(s)
- Xinxian Meng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju Rd.Shanghai200011P. R. China
| | - Huizhu Li
- Sports Medicine Institute of Fudan UniversityDepartment of Sports MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Yuzhou Chen
- Sports Medicine Institute of Fudan UniversityDepartment of Sports MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Liman Sai
- Department of PhysicsShanghai Normal UniversityGuilin Road 100Shanghai200234P. R. China
| | - Sijia Feng
- Sports Medicine Institute of Fudan UniversityDepartment of Sports MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Ke Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju Rd.Shanghai200011P. R. China
| | - Wenjing Xi
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju Rd.Shanghai200011P. R. China
| | - Yunxia Li
- Sports Medicine Institute of Fudan UniversityDepartment of Sports MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Nguyen T. K. Thanh
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonGower StreetLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Yueming Wang
- Department of Anatomy and PhysiologySchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Yan Wo
- Department of Anatomy and PhysiologySchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Xing Yang
- Department of orthopedicsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215500P. R. China
| | - Yuefeng Hao
- Department of orthopedicsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215500P. R. China
| | - Yixin Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju Rd.Shanghai200011P. R. China
| | - Jun Chen
- Sports Medicine Institute of Fudan UniversityDepartment of Sports MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalSchool of MedicineShanghai Jiao Tong University639 Zhizaoju Rd.Shanghai200011P. R. China
| |
Collapse
|
4
|
Wu Y, Yu Y, Wang Z, Gao S, Zhang D, Yu A. NIR-II imaging with ICG for identifying perforators, assessing flap status and predicting division timing of pedicled flaps in a porcine model. JOURNAL OF BIOPHOTONICS 2022; 15:e202200061. [PMID: 35474297 DOI: 10.1002/jbio.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The use of skin flaps to fill large defects is a key surgical technique in reconstructive surgery, effective real-time in vivo imaging for flap design and use is urgent. Currently, fluorescent imaging in the second NIR window (NIR-II; 1000-1700 nm) is characterized by non-radiation, less expensive and higher resolution in comparisons with the first NIR window (NIR-I; 700-900 nm) and other traditional imaging modalities. In this article, we identified the location and numbers of perforators and choke zone via NIR-II imaging. Then, eight abdominal perforator flaps were established and the perfusion zones were evaluatedat special time points. Finally, after eight pedicled flaps establishment, NIR-II imaging was used to guide the optimal timing for division of flap pedicle. The results showed that NIR-II fluorescence imaging with indocyanine green (ICG) can reliably visualize vascular supply, which makes it to be an accurate and in vivo imaging approach to flap clinical design and use.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Gao
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Dual-targeting magnetic fluorescent mesoporous organosilicon hollow nanospheres for gambogic acid loading, sustained release and anti-tumor properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zhu Z, Yuan Z, Guo L, Nurzat Y, Xu H, Zhang Y. Construction of adipose tissue using a silica expander capsule and cell sheet-assembled of decellularized adipose tissue. Acta Biomater 2022; 141:89-101. [PMID: 34974176 DOI: 10.1016/j.actbio.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
Delayed neovascularization and unstable adipose formation are major confounding factors in adipose tissue engineering. A system using decellularized adipose tissue (DAT), adipose-derived stem cells (ADSCs), and human umbilical vein endothelial cells (HUVECs) has been preliminarily studied, but it requires optimization, as adipogenic and angiogenic capabilities for maintaining a stable construct shape are limited. The current study aimed to address these limitations. Our initial modification involved the addition of exogenous chemokine (C-C motif) ligand 2 (CCL2), which resulted in enhanced adipogenesis and angiogenesis. However, further improvement was required due to delayed blood recanalization. To further optimize the system, a vascularized fibrous capsule derived from an implanted silica expander was utilized as a second modification. We hypothesized this would function as both a microbioreactor to fix the seed cells and exogenous CCL2 locally and as a vascular bed to promote neovascularization. Compared with that of the CCL2 loaded ADSC-HUVECs cell sheet assembled DAT system, adding the silica expander capsule resulted in significantly increased construct stability, new vessel intensity, a greater number of Oil Red O-positive lipid droplets, more enhanced tissue remodeling, and upregulated peroxisome proliferator-activated receptor gamma (PPARγ) & leptin expression. Thus, these two modifications helped optimize the currently available ADSC-HUVEC cell sheet assembled DAT system, providing an adipose tissue construction strategy with enhanced adipogenesis and angiogenesis to reconstruct soft tissue defects. Moreover, close-to-normal leptin expression provided the engineered adipose tissue with a glucometabolic function, in addition to remodeling capabilities. STATEMENT OF SIGNIFICANCE: Delayed neovascularization and unstable adipose formation are the two major problems in tissue engineering adipose. Here, we introduced an adipose tissue engineering construction strategy using a silica expander capsule along with hADSCs-HUVECs cell sheet-assembled DAT in a CCL2-rich microenvironment. Our data suggested that CCL2 could improve angiogenesis and adipogenesis in vitro and in vivo. The addition of tissue expander capsule could further improve the stability of construction and fabricated adipose tissue with increased new vessel intensity, greater numbers of Oil Red O-positive lipid droplets, more enhanced tissue remodeling, and upregulated leptin expression. CCL2 and expander capsule can have clinical utility for soft tissue defects repair, and these two factors can be useful in other tissue engineering.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Zhaoqi Yuan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Linxiumei Guo
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China.
| |
Collapse
|
7
|
Yang Y, Chen M, Wang P, Sai L, Chen C, Qian P, Dong S, Feng S, Yang X, Wang H, Abdou AM, Li Y, Chen S, Hao Y, Ma D, Feng S, Chen J. Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap. J Nanobiotechnology 2022; 20:128. [PMID: 35279148 PMCID: PMC8917748 DOI: 10.1186/s12951-022-01312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Surgeons face great challenges in acquiring high-performance imaging because fluorescence probes with desired thermal stability remains rare. Here, hybrid lead sulfide/zinc sulfide quantum dots (PbS/ZnS QDs) nanostructures emitting in the long-wavelength end of the second near-infrared (NIR-IIb) window were synthesized and conjugated with Ribonuclease-A (RNase A). Such formed RNase A@PbS/ZnS QDs exhibited strong NIR IIb fluorescence and thermal stability, as supported by the photoluminescent emission assessment at different temperatures. This will allow the RNase A@PbS/ZnS QDs to provide stable fluorescence signals for long-time intraoperative imaging navigation, despite often happened, undesirable thermal accumulation in vivo. Compared to NIR-IIa fluorescence imaging, NIR-IIb vascular fluorescence imaging achieved larger penetration depth, higher signal/background ratios and nearly zero endogenous tissue autofluorescence. Moreover, these QDs illustrate the reliability during the real-time and long-time precise assessment of flap perfusion by clearly visualizing microvasculature map. These findings contribute to intraoperative imaging navigation with higher precision and lower risk.
Collapse
|
8
|
Khoong YM, Huang X, Gu S, Zan T. Imaging for thinned perforator flap harvest: current status and future perspectives. BURNS & TRAUMA 2021; 9:tkab042. [PMID: 34926708 PMCID: PMC8677592 DOI: 10.1093/burnst/tkab042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/24/2021] [Indexed: 11/12/2022]
Abstract
With advances in anatomical knowledge and technology, increased interest has been directed towards reconstruction with enhanced aesthetic and functional outcomes. A myriad of thinned perforator flap harvest approaches have been developed for this purpose; however, concerns about jeopardizing their vascularity remain. To ensure optimum reconstructive outcome without hampering the flap's microcirculation, it is important to make good use of the existing advanced imaging modalities that can provide clear visualization of perforator branches, particularly in the adipose layer, and an accurate assessment of flap perfusion. Therefore, this review will highlight the imaging modalities that have been utilized for harvesting a thinned perforator flap from these two perspectives, along with future insights into creating both functionally and aesthetically satisfying, yet simultaneously safe, thinned perforator flaps for the best reconstructive outcomes for patients.
Collapse
Affiliation(s)
- Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
9
|
Feng S, Li H, Liu C, Chen M, Sheng H, Huang M, Li Y, Chen J, Zhang J, Hao Y, Chen S. Real-Time In Vivo Detection and Monitoring of Bacterial Infection Based on NIR-II Imaging. Front Chem 2021; 9:689017. [PMID: 34195175 PMCID: PMC8236861 DOI: 10.3389/fchem.2021.689017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment according to the dynamic changes of bacterial load in vivo is critical for preventing progression of bacterial infections. Here, we present a lead sulfide quantum dots (PbS QDs) based second near-infrared (NIR-II) fluorescence imaging strategy for bacteria detection and real-time in vivo monitoring. Four strains of bacteria were labeled with synthesized PbS QDs which showed high bacteria labeling efficiency in vitro. Then bacteria at different concentrations were injected subcutaneously on the back of male nude mice for in vivo imaging. A series of NIR-II images taken at a predetermined time manner demonstrated changing patterns of photoluminescence (PL) intensity of infected sites, dynamically imaging a changing bacterial load in real-time. A detection limit around 102–104 CFU/ml was also achieved in vivo. Furthermore, analysis of pathology of infected sites were performed, which showed high biocompatibility of PbS QDs. Therefore, under the guidance of our developed NIR-II imaging system, real-time detection and spatiotemporal monitoring of bacterial infection in vivo can be achieved, thus facilitating anti-infection treatment under the guidance of the dynamic imaging of bacterial load in future.
Collapse
Affiliation(s)
- Sijia Feng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huizhu Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chang Liu
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mo Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huaixuan Sheng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingru Huang
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunxia Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuefeng Hao
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shiyi Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Yang F, Zhang Q, Huang S, Ma D. Recent advances of near infrared inorganic fluorescent probes for biomedical applications. J Mater Chem B 2020; 8:7856-7879. [PMID: 32749426 DOI: 10.1039/d0tb01430c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity. There are essentially three NIR biological windows, i.e., 700-950 nm (NIR I), 1000-1350 nm (NIR II) and 1550-1870 nm (NIR III). Recently emerging optical probes that can be excited by an 800 nm laser and emit in the NIR II or III windows, denoted as NIR I-to-NIR II/III, are particularly attractive. That is because the longer wavelengths in the NIR II and NIR III windows offer deeper penetration and higher signal to noise ratio than those in the NIR I window. NIR imaging has indeed become a quickly evolving field and, simultaneously, stimulated the further development of new classes of NIR I-to-NIR II/III inorganic fluorescent probes, which include PbS, Ag2S-based quantum dots (QDs) and rare earth (RE) doped NPs (RENPs) that possess quite diverse optical properties and follow different emission mechanisms. This review summarizes the recent progress on material merits, synthetic routes, the rational choice of excitation in the NIR I window, NIR II/III emission optimization, and surface modification of aforementioned fluorescent probes. We also introduce the latest notable accomplishments enabled by these probes in fluorescence imaging, lifetime-based multiplexed imaging and photothermal therapy (PTT), together with a critical discussion of forthcoming challenges and perspectives for clinic use.
Collapse
Affiliation(s)
- Fan Yang
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | | | | | | |
Collapse
|
11
|
Chen J, Feng S, Chen M, Li P, Yang Y, Zhang J, Xu X, Li Y, Chen S. In Vivo Dynamic Monitoring of Bacterial Infection by NIR-II Fluorescence Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002054. [PMID: 32715565 DOI: 10.1002/smll.202002054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Time window of antibiotic administration is a critical but long-neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug-resistance. Here, a second near-infrared (NIR-II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real-time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL-1 ) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR-II in vivo imaging results reveal that the number of invading bacteria first decreases after post-injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self-heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR-II imaging approach enables real-time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.
Collapse
Affiliation(s)
- Jun Chen
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sijia Feng
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mo Chen
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Fudan University, Shanghai, 200040, China
| | - Yimeng Yang
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Zhang
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Aging and Medicine Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yunxia Li
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shiyi Chen
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
12
|
Li J, Wang Y, Sun S, Lv AM, Jiang K, Li Y, Li Z, Lin H. Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. Analyst 2020; 145:2982-2987. [DOI: 10.1039/d0an00071j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A self-quenched nanoprobe built on a disulfide bond-based crosslink of carbon-dots has been constructed for intracellular GSH sensing.
Collapse
Affiliation(s)
- Jia Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
- Ningbo Institute of Materials Technology & Engineering
| | - Yuhui Wang
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- PR China
| | - Shan Sun
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- PR China
| | - A-Man Lv
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- PR China
| | - Kai Jiang
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- PR China
| | - Yike Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Zhongjun Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Hengwei Lin
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- PR China
| |
Collapse
|
13
|
Xu H, Chen J, Feng Z, Fu K, Qiao Y, Zhang Z, Wang W, Wang Y, Zhang J, Perdanasari AT, Hanasono MM, Levin LS, Yang X, Hao Y, Li Y, Wo Y, Zhang Y. Shortwave infrared fluorescence in vivo imaging of nerves for minimizing the risk of intraoperative nerve injury. NANOSCALE 2019; 11:19736-19741. [PMID: 31626258 DOI: 10.1039/c9nr06066a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we present a novel nerve specific imaging agent for preventing intraoperative nerve injuries based on SWIR QD-based in vivo imaging, which not only provides real-time and long-time SWIR images to intraoperatively identify nerves but can also markedly minimize the risk of iatrogenic nerve injuries during surgeries.
Collapse
Affiliation(s)
- Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Chen
- Department of Orthopedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhujun Feng
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kan Fu
- Silicon Products Group, Applied Materials Inc., Sunnyvale, CA, USA
| | - Yusen Qiao
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenjin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yueming Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | | | - Matthew M Hanasono
- Department of Plastic Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Scott Levin
- Division of Plastic Surgery, Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Xing Yang
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China.
| | - Yuefeng Hao
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China.
| | - Yunxia Li
- Department of Orthopedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan Wo
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and National Engineering Research Center for Nanotechnology, Shanghai, China
| |
Collapse
|
14
|
Wang H, Mu X, Yang J, Liang Y, Zhang XD, Ming D. Brain imaging with near-infrared fluorophores. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Xu J, Liao K, Jiang H, Zhou W. Research progress of novel inorganic nanometre materials carriers in nanomedicine for cancer diagnosis and treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S492-S502. [PMID: 30449177 DOI: 10.1080/21691401.2018.1499665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nanomedicine, as the new achievement in combination of nanotechnology and medical science, has the potential to accurately monitor tumor for early diagnosis and dramatically improve the targeted, long-lasting and combinational therapy. Compared with traditional chemotheraphy, nanomedicine would effectively improve the drug accumulation and controlled release in the tumor sites to improve the therapeutic effect. Recently, all kinds of nanomedicines are designed and synthesized for tumor diagnosis and treatment based on inorganic nanocarriers, such as quantum dots, gold nanoparticles, silicon nanoparticles and so on. They might be adjusted and promoted their properties by core-shell structure, surface modification and other strategies. In this review, the inorganic nanometre materials as nanodrug carriers applied in tumor diagnosis and treatment were summarized; nanodrug carriers design strategies and mechanisms of tumor diagnosis and treatment were introduced in detail, the future and several questions still need to resolve about inorganic nanodrugs in tumor diagnosis and treatment of clinical application was prospected.
Collapse
Affiliation(s)
- Jiasheng Xu
- a Department of Vascular Surgery,The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kaili Liao
- a Department of Vascular Surgery,The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huixia Jiang
- a Department of Vascular Surgery,The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Weimin Zhou
- a Department of Vascular Surgery,The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
16
|
Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater 2018; 74:36-55. [PMID: 29734008 DOI: 10.1016/j.actbio.2018.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
According to recent research, nanotechnology based on quantum dots (QDs) has been widely applied in the field of bioimaging, drug delivery, and drug analysis. Therefore, it has become one of the major forces driving basic and applied research. The application of nanotechnology in bioimaging has been of concern. Through in vitro labeling, it was found that luminescent QDs possess many properties such as narrow emission, broad UV excitation, bright fluorescence, and high photostability. The QDs also show great potential in whole-body imaging. The QDs can be combined with biomolecules, and hence, they can be used for targeted drug delivery and diagnosis. The characteristics of QDs make them useful for application in pharmacy and pharmacology. This review focuses on various applications of QDs, especially in imaging, drug delivery, pharmaceutical analysis, photothermal therapy, biochips, and targeted surgery. Finally, conclusions are made by providing some critical challenges and a perspective of how this field can be expected to develop in the future. STATEMENT OF SIGNIFICANCE Quantum dots (QDs) is an emerging field of interdisciplinary subject that involves physics, chemistry, materialogy, biology, medicine, and so on. In addition, nanotechnology based on QDs has been applied in depth in biochemistry and biomedicine. Some forward-looking fields emphatically reflected in some extremely vital areas that possess inspiring potential applicable prospects, such as immunoassay, DNA analysis, biological monitoring, drug discovery, in vitro labelling, in vivo imaging, and tumor target are closely connected to human life and health and has been the top and forefront in science and technology to date. Furthermore, this review has not only involved the traditional biochemical detection but also particularly emphasized its potential applications in life science and biomedicine.
Collapse
|
17
|
McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, Langer R, Jaklenec A. Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706356. [PMID: 29468747 DOI: 10.1002/adma.201706356] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/26/2017] [Indexed: 05/20/2023]
Abstract
Approximately 1.7 million new cases of cancer will be diagnosed this year in the United States leading to 600 000 deaths. Patient survival rates are highly correlated with the stage of cancer diagnosis, with localized and regional remission rates that are much higher than for metastatic cancer. The current standard of care for many solid tumors includes imaging and biopsy with histological assessment. In many cases, after tomographical imaging modalities have identified abnormal morphology consistent with cancer, surgery is performed to remove the primary tumor and evaluate the surrounding lymph nodes. Accurate identification of tumor margins and staging are critical for selecting optimal treatments to minimize recurrence. Visible, fluorescent, and radiolabeled small molecules have been used as contrast agents to improve detection during real-time intraoperative imaging. Unfortunately, current dyes lack the tissue specificity, stability, and signal penetration needed for optimal performance. Quantum dots (QDs) represent an exciting class of fluorescent probes for optical imaging with tunable optical properties, high stability, and the ability to target tumors or lymph nodes based on surface functionalization. Here, state-of-the-art biocompatible QDs are compared with current Food and Drug Administration approved fluorophores used in cancer imaging and a perspective on the pathway to clinical translation is provided.
Collapse
Affiliation(s)
- Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lihong Jing
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Surangi Jayawardena
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Wen Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Carcinoembryonic antigen detection with “Handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron 2017; 90:508-515. [DOI: 10.1016/j.bios.2016.10.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 01/30/2023]
|
19
|
Xi Y, Yang J, Ge Y, Zhao S, Wang J, Li Y, Hao Y, Chen J, Zhu Y. One-pot synthesis of water-soluble near-infrared fluorescence RNase A capped CuInS2 quantum dots for in vivo imaging. RSC Adv 2017. [DOI: 10.1039/c7ra08418h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Near-infrared (NIR) quantum dots (QDs) have been treated as a promising candidate of imaging agents for NIR fluorescence-guided surgery. Here, the RNase A-CuInS2 QDs is good candidate, which performers well in gastrointestinal system imaging.
Collapse
Affiliation(s)
- Yue Xi
- Department of Orthopaedics
- Tenth People's Hospital of Tongji University
- Shanghai
- China
| | - Jianjun Yang
- Department of Orthopaedics
- Tenth People's Hospital of Tongji University
- Shanghai
- China
| | - Yunshen Ge
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Shenli Zhao
- Department of Orthopaedics
- Tenth People's Hospital of Tongji University
- Shanghai
- China
| | - Jianguang Wang
- Department of Orthopaedics
- Tenth People's Hospital of Tongji University
- Shanghai
- China
| | - Yunxia Li
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Yuefeng Hao
- Sports Medicine Center
- Affiliated Suzhou Hospital of Nanjing Medical University
- Suzhou Municipal Hospital
- Suzhou
- China
| | - Jun Chen
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Yuchang Zhu
- Department of Orthopaedics
- Tenth People's Hospital of Tongji University
- Shanghai
- China
| |
Collapse
|