1
|
Pérez-Herráez I, Ferrera-González J, Zaballos-García E, González-Béjar M, Pérez-Prieto J. Raspberry-like Nanoheterostructures Comprising Glutathione-Capped Gold Nanoclusters Grown on the Lanthanide Nanoparticle Surface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:4426-4436. [PMID: 38764750 PMCID: PMC11099914 DOI: 10.1021/acs.chemmater.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/21/2024]
Abstract
Bare lanthanide-doped nanoparticles (LnNPs), in particular, NaYF4:Yb3+,Tm3+ NPs (UCTm), have been seeded in situ with gold cations to be used in the subsequent growth of gold nanoclusters (AuNCs) in the presence of glutathione (GSH) to obtain a novel UCTm@AuNC nanoheterostructure (NHS) with a raspberry-like morphology. UCTm@AuNC displays unique optical properties (multiple absorption and emission wavelengths). Specifically, upon 350 nm excitation, it exhibits AuNC photoluminescence (PL) (500-1200 nm, λmax 650 nm) and Yb emission (λmax 980 nm); this is the first example of Yb sensitization in a UCTm@AuNC NHS. Moreover, under 980 nm excitation, it displays (i) upconverting PL of the UCTm (at the blue, red and NIR-I, ca. 800 nm, regions); (ii) two-photon PL of AuNC; and (iii) down-shifting PL of thulium (around 1470 nm). The occurrence of energy transfer from UCTm to AuNCs in the UCTm@AuNC NHS was evidenced by the drastic lengthening of the AuNC PL lifetime (τPL) (from few hundred nanoseconds to more than one hundred microseconds). Initial biological assessment of UCTm@AuNC NHSs in vitro revealed high biocompatibility and bioimaging capabilities upon near-infrared excitation.
Collapse
Affiliation(s)
- Irene Pérez-Herráez
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Juan Ferrera-González
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Elena Zaballos-García
- Department
of Organic Chemistry, Universitat de València, Av. Vicent Andrés Estellés
s/n, 46100 Burjassot, Valencia ,Spain
| | - María González-Béjar
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Julia Pérez-Prieto
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
2
|
Meng J, Cui Y, Wang Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region. J Mater Chem B 2022; 10:8596-8615. [PMID: 36264053 DOI: 10.1039/d2tb01731h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rare earth-doped nanocrystals are widely used in medical diagnostics and bioimaging due to their narrow luminescence emission spectra (10-20 nm), long lifetime, and no photobleaching properties. Especially in the near-infrared (NIR) region, deeper tissue imaging can be achieved with low background luminescence and high spatial resolution. Further precise image-guided diagnosis and treatment can be achieved by using multimodal imaging such as MRI/CT/NIR/PA. Here, we focus on the construction of rare earth-doped nanocrystals, optical properties, and progress of such nanocomposites for bioimaging in the NIR region. In addition, the limitations at this stage in the field of bioimaging and the prospects for future technological development of rare earth-doped nanocrystals are present.
Collapse
Affiliation(s)
- Jiajia Meng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
3
|
Sensing Leakage of Electrolytes from Magnesium Batteries Enabled by Natural AIEgens. Int J Mol Sci 2022; 23:ijms231810440. [PMID: 36142351 PMCID: PMC9499604 DOI: 10.3390/ijms231810440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The potential for leakage of liquid electrolytes from magnesium (Mg) batteries represents a large hurdle to future application. Despite this, there are no efficient sensing technologies to detect the leakage of liquid electrolytes. Here, we developed a sensor using laccaic acid (L-AIEgen), a naturally occurring aggregation-induced emission luminogen (AIEgens) isolated from the beetle Laccifer lacca. L-AIEgen showed good selectivity and sensitivity for Mg2+, a universal component of electrolytes in Mg batteries. Using L-AIEgen, we then produced a smart film (L-AIE-F) that was able to sense leakage of electrolytes from Mg batteries. L-AIE-F showed a strong "turn-on" AIE-active fluorescence at the leakage point of electrolyte from model Mg batteries. To the best of our knowledge, this is the first time that AIE technology has been used to sense the leakage of electrolytes.
Collapse
|
4
|
Wang Q, Ye J, Wang J, Liu M, Li C, Lv W, Liu S, Niu N, Xu J, Fu Y. Tumor-responsive nanomedicine based on Ce 3+-modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy. J Mater Chem B 2022; 10:3824-3833. [PMID: 35502611 DOI: 10.1039/d2tb00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy (CDT) and photodynamic therapy (PDT) based on intratumoral generation of reactive oxygen species (ROS) have been playing crucial roles in conquering tumors. However, the above therapeutic methods are still constrained by the overexpressed tumor glutathione (GSH) and intrinsic tumor resistance to conventional organic photosensitizers. Herein, lanthanide-doped nanoparticles (LDNPs) were coated with inorganic bimetallic copper and manganese silicate nanospheres (CMSNs) and modified with sodium alginate (SA) for second near-infrared (NIR-II, 1000-1700 nm) imaging-guided CDT and PDT. Interestingly, cross-relaxation (CR) pathways between Ce3+ and Ho3+ and CR between Ce3+ and Er3+ are fully exploited to enable dual-mode upconversion (UC) and NIR-II downconversion (DC) emissions of LDNPs under 980 nm laser excitation. UC emission can induce CMSNs to produce toxic singlet oxygen (1O2) for PDT, and the released Mn2+ and Cu+ ions caused by GSH-induced degradation of CMSNs can react with endogenous H2O2 to produce hydroxyl radical (˙OH) for CDT. Significantly, the ultrabright NIR-II DC emission endows the systems with exceptional optical imaging capabilities. All results affirm the potency of such an "all in one" theranostic nanomedicine integrating PDT, CDT and remarkable NIR-II imaging abilities accompanied by the function of modulating tumor microenvironment in cancer theranostics.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jikun Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Wubin Lv
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China.,Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
5
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Han X, Zhou L, Zhuang H, Wei P, Li F, Jiang L, Yi T. Hybrid Mesoporous MnO 2-Upconversion Nanoparticles for Image-Guided Lung Cancer Spinal Metastasis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18031-18042. [PMID: 35426297 DOI: 10.1021/acsami.1c22322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Upconversion nanoparticles (UCNPs) and MnO2 composite materials have broad prospects in biological applications due to their near-infrared (NIR) imaging capability and tumor microenvironment-responsive features. Nevertheless, the synthesis of such composite nanoplatforms still faces many hurdles such as redundant processing and uneven coatings. Here, we explored a simple, rapid, and universal method for precisely controlled coating of mesoporous MnO2 (mMnO2) using poly(ethylene imine) as a reducing agent and potassium permanganate as a manganese source. Using this strategy, a mMnO2 shell was successfully coated on UCNPs. We further modified the mMnO2-coated UCNPs (UCNP@mMnO2) with a photosensitizer (Ce6), cisplatin drug (DSP), and tumor targeting pentapeptide (TFA) to obtain a nanoplatform UCNP/Ce6@mMnO2/DSP-TFA for treating spinal metastasis of nonsmall cell lung cancer (NSCLC-SM). The utilization of both upconversion and downconversion luminescence of UCNPs with different NIR wavelengths can avoid the simultaneous initiation of NIR-II in vivo imaging and tumor photodynamic therapy, thus reducing damage to normal tissues. This platform achieved a high synergistic effect of photodynamic therapy and chemotherapy. This leads to beneficial antitumor effects on the therapy of NSCLC-SM.
Collapse
Affiliation(s)
- Xuemin Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Lei Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Hongjun Zhuang
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Fuyou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
7
|
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Anal Bioanal Chem 2022; 414:4291-4310. [PMID: 35312819 DOI: 10.1007/s00216-022-03999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.
Collapse
|
8
|
Kovalenko A, Tcelykh LO, Koshelev D, Vashchenko AA, Tsymbarenko DM, Goloveshkin AS, Aleksandrov A, Burlov A, Utochnikova VV. Record efficiency of 1000 nm electroluminescence from a solution-processable host-free OLED. Dalton Trans 2022; 51:3833-3838. [PMID: 35195116 DOI: 10.1039/d1dt04033b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New ytterbium complexes K(Solv)x[Yb(Ln)2] (Solv = ethanol and/or water) with 2-tosylaminobenzylidene-aryloylhydrazones (H2L1, aryloyl = benzoyl; H2L2, aryloyl = 2-naphthoyl) demonstrated high solubility and hole mobility (ca. 2.6 × 10-6 cm2 V-1 s-1), while their electron mobility and PLQY were different. The substitution of a benzoyl substituent with naphthoyl resulted in a significant increase of the electron mobility (6.9 × 10-7vs. 1.7 × 10-6 cm2 V-1 s-1) and a decrease of the quantum yield (1.2% vs. 0.6%). As a result, the optimized OLEDs based on the K[Yb(Ln)2] layer demonstrated efficiencies up to 385 μW W-1 and 441 μW W-1, indicating the superior importance of charge mobility over the quantum yield. These are the highest efficiencies of the Yb electroluminescence.
Collapse
Affiliation(s)
- Anton Kovalenko
- M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia.
| | - Lyubov O Tcelykh
- M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia.
| | - Daniil Koshelev
- M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia.
| | | | - Dmitry M Tsymbarenko
- M.V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow 119991, Russia.
| | - Alexander S Goloveshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova 28, Moscow, 119991, Russia
| | - Aleksey Aleksandrov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy av., 31, Moscow, 119071, Russia
| | - Anatolii Burlov
- Institute of Physical & Organic Chemistry, Southern Federal University, Stachka Avenue, 194/2, 344090 Rostov-on-Don, Russia
| | | |
Collapse
|
9
|
Liu S, Yan L, Huang J, Zhang Q, Zhou B. Controlling upconversion in emerging multilayer core-shell nanostructures: from fundamentals to frontier applications. Chem Soc Rev 2022; 51:1729-1765. [PMID: 35188156 DOI: 10.1039/d1cs00753j] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lanthanide-based upconversion nanomaterials have recently attracted considerable attention in both fundamental research and various frontier applications owing to their excellent photon upconversion performance and favourable physicochemical properties. In particular, the emergence of multi-layer core-shell (MLCS) nanostructures offers a versatile and powerful tool to realize well-defined matrix compositions and spatial distributions of the dopant on the nanometer length scale. In contrast to the conventional nanomaterials and commonly investigated core-shell nanoparticles, the rational design of MLCS nanostructures allows us to deliberately introduce more functional properties into an upconversion system, thus providing unprecedented opportunities for the precise manipulation of energy transfer channels, the dynamic control of upconversion processes, the fine tuning of switchable emission colours and new functional integration at a single-particle level. In this review, we present a summary and discussion on the key aspects of the recent progress in lanthanide-based MLCS nanoparticles, including the manipulation of emission and lifetime, the switchable multicolour output and the lanthanide ionic interactions on the nanoscale. Benefitting from the multifunctional and versatile luminescence properties, the MLCS nanostructures exhibit great potential in diversities of frontier applications such as three-dimensional display, upconversion laser, optical memory, anti-counterfeiting, thermometry, bioimaging, and therapy. The outlook and challenges as well as perspectives for the research in MLCS nanostructure materials are also provided. This review would be greatly helpful in exploring new structural designs of lanthanide-based materials to further manipulate the upconversion phenomenon and expand their application boundaries.
Collapse
Affiliation(s)
- Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
10
|
Liu Z, Yun B, Han Y, Jiang Z, Zhu H, Ren F, Li Z. Dye-Sensitized Rare Earth Nanoparticles with Up/Down Conversion Luminescence for On-Demand Gas Therapy of Glioblastoma Guided by NIR-II Fluorescence Imaging. Adv Healthc Mater 2022; 11:e2102042. [PMID: 34787378 DOI: 10.1002/adhm.202102042] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 01/06/2023]
Abstract
As the primary malignant tumor in the brain, glioblastoma exhibits a high mortality due to the challenges for complete treatment by conventional therapeutic methods. It is of great importance to develop innovative therapeutic agents and methods for treatment of glioblastoma. In this work, the imaging and therapy of glioblastoma are reported by using dye sensitized core-shell NaYF4 :Yb/Tm@NaYF4 :Nd nanoparticles with strong up/down-conversion luminescence, of which the ultraviolet up-conversion emissions at 348 and 365 nm are significantly enhanced by nearly 28 times and used to control the release of SO2 from 5-Amino-1,3-dihydrobenzo[c]thiophene 2,2-dioxide prodrug for gas therapy, and the second near-infrared (NIR-II) down conversion emission at 1340 nm is increased five times and applied for imaging. It is revealed that the released SO2 molecules not only cause oxidative stress damage of tumor cells, but also induce their pro-death autophagy by down-regulating the expression of p62 and up-regulating the ratio of LC3-II/LC3-I, ultimately inhibiting tumor growth. The work demonstrates the great potential of rare earth nano-platform with functions of NIR-II imaging and photo-controlled gas therapy in the diagnosis and treatment of orthotopic glioblastoma.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| |
Collapse
|
11
|
Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214040] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kim JH, Lepnev LS, Utochnikova VV. Dual vis-NIR emissive bimetallic naphthoates of Eu-Yb-Gd: a new approach toward Yb luminescence intensity increase through Eu → Yb energy transfer. Phys Chem Chem Phys 2021; 23:7213-7219. [PMID: 33876081 DOI: 10.1039/d1cp00029b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homo- and heteroligand mono-, bi-, and trimetallic lanthanide naphtoates EuxYbyGd1-x-y(naph)3(Phen)n (n = 0, 1) were obtained and thoroughly investigated. Homoligand naphthoates of the new phase were obtained as anhydrous powders from water. The photophysical properties of the obtained compounds were studied in detail. The first example of Eu-to-Yb energy transfer was found in these systems. Careful selection of the metal ratio allowed a dual vis-NIR emissive complex with a ytterbium quantum yield of 1.5% to be obtained.
Collapse
Affiliation(s)
- Jae Hoon Kim
- M. V. Lomonosov Moscow State University, 1/3 Leninskye Gory, Moscow, 119991, Russia.
| | | | | |
Collapse
|
13
|
Qi Y, Ye J, Ren S, Wang G, Lv J, Zhang S, Che Y, Li Y, Chen B, Ning G. Temperature Feedback-Controlled Photothermal/Photodynamic/Chemodynamic Combination Cancer Therapy Based on NaGdF 4 :Er,Yb@NaGdF 4 :Nd@Cu-BIF Nanoassemblies. Adv Healthc Mater 2020; 9:e2001205. [PMID: 33000903 DOI: 10.1002/adhm.202001205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Indexed: 01/10/2023]
Abstract
The intelligent design of multifunctional nanoplatforms is critical for cancer therapy. Herein, NaGdF4 :Er,Yb@NaGdF4 :Nd@Cu(II) boron-imidazolate frameworks (denoted as CSNPs@Cu-BIF) nanoassemblies are designed and fabricated. Upon a single 808 nm laser irradiation, the nanoassemblies not only show the outstanding photothermal conversion capacity (η = 41.7%) but also generate cytotoxic reactive oxygen species through an in situ Fenton-like reaction and fluorescence resonance energy transfer. Importantly, the nanoassemblies simultaneously introduce remarkable antitumor efficacy via photothermal/photodynamic/chemodynamic combination therapy both in vitro and in vivo. To improve the therapeutic effect of solid tumor ablation, it is highly desirable to monitor the treatment process in real-time. Multiclinical imaging modalities of ultrasonography are employed to systematically investigate the ablation mechanism of solid tumors in vivo. Furthermore, the significant difference between the eigen temperature of CSNPs@Cu-BIF nanoassemblies obtained by the temperature-sensitive emission bands signal changes and the apparent temperature recorded by the thermal imaging camera is 14.55 K at equilibrium. This current work therefore supplies an alternative strategy in temperature feedback-controlled accurate cancer therapy.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Shuangsong Ren
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Jialin Lv
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Ying Che
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology School of Public Health Dalian Medical University 9 West Section Lvshun South Road Dalian Liaoning 116044 P. R. China
| | - Baojiu Chen
- College of Science Dalian Maritime University 1 Linghai Road Dalian Liaoning 116026 P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| |
Collapse
|
14
|
Yu Z, Eich C, Cruz LJ. Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Front Chem 2020; 8:496. [PMID: 32656181 PMCID: PMC7325968 DOI: 10.3389/fchem.2020.00496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorescence imaging in the second near infrared window (NIR-II, 1,000-1,700 nm) has been widely used in cancer diagnosis and treatment due to its high spatial resolution and deep tissue penetration depths. In this work, recent advances in rare-earth-doped nanoparticles (RENPs)-a novel kind of NIR-II nanoprobes-are presented. The main focus of this study is on the modification of RENPs and their applications in NIR-II in vitro and in vivo imaging and cancer theranostics. Finally, the perspectives and challenges of NIR-II RENPs are discussed.
Collapse
Affiliation(s)
| | | | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Hu J, Shi J, Gao Y, Yang W, Liu P, Liu Q, He F, Wang C, Li T, Xie R, Zhu J, Yang P. 808 nm Near-Infrared Light-Excited UCNPs@mSiO 2-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer. Int J Nanomedicine 2019; 14:10009-10021. [PMID: 31908456 PMCID: PMC6929933 DOI: 10.2147/ijn.s221496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Background It is important to explore effective treatment for liver cancer. Photodynamic therapy (PDT) is a novel technique to treat liver cancer, but its clinical application is obstructed by limited depth of visible light penetration into tissue. The near-infrared (NIR) photosensitizer is a potential solution to the limitations of PDT for deep tumor tissue treatment. Purpose We aimed to investigate 808 nm NIR light-excited UCNPs@mSiO2-Ce6-GPC3 nanocomposites for PDT in liver cancer. Methods In our study, 808 nm NIR light-excited upconversion nanoparticles (UCNPs) were simultaneously loaded with the photosensitizer chlorin e6 (Ce6) and the antibody glypican-3 (GPC3), which is overexpressed in hepatocellular carcinoma cells. The multitasking UCNPs@mSiO2-Ce6-GPC3 nanoparticles under 808 nm laser irradiation with enhanced depth of penetration would enable the effective targeting of PDT. Results We found that the UCNPs@mSiO2-Ce6-GPC3 nanoparticles had good biocompatibility, low toxicity, excellent cell imaging in HepG2 cancer cells and high anti-tumor effect in vitro and in vivo. Conclusion We believe that the utilization of 808 nm NIR excited UCNPs@mSiO2-Ce6-GPC3 nanoparticles for PDT is a safe and potential therapeutic option for liver cancer.
Collapse
Affiliation(s)
- Jiahe Hu
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China.,Department of Surgery, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 12132, USA
| | - Yingqian Gao
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Wei Yang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Ping Liu
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Qinghao Liu
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Chunxu Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Tao Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Jiuxin Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratories of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
16
|
Ding L, Ren F, Liu Z, Jiang Z, Yun B, Sun Q, Li Z. Size-Dependent Photothermal Conversion and Photoluminescence of Theranostic NaNdF4 Nanoparticles under Excitation of Different-Wavelength Lasers. Bioconjug Chem 2019; 31:340-351. [DOI: 10.1021/acs.bioconjchem.9b00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lihua Ding
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
17
|
Theranostic nanocomplex of gold-decorated upconversion nanoparticles for optical imaging and temperature-controlled photothermal therapy. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Liu Z, Ren F, Zhang H, Yuan Q, Jiang Z, Liu H, Sun Q, Li Z. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. Biomaterials 2019; 219:119364. [PMID: 31352311 DOI: 10.1016/j.biomaterials.2019.119364] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 01/06/2023]
Abstract
Rare-earth nanoparticles (RE NPs) with narrow long wavelength emissions have been recently investigated for their potential application for fluorescence imaging in the second near-infrared window (NIR-II). Previously these RE NPs have a very limited application in the diagnosis and treatment of deep-seated tumors such as brain tumors, due to their weak fluorescence in the range of 1300-1700 nm. Herein, we report a significant enhancement of more than 10 times regular emission of NaNdF4 nanoparticles at 1340 nm wavelength by coating them with an inert layer of NaLuF4, followed by sensitizing with a near-infrared dye (IR-808). We deliver these highly bright nanoparticles into the brain by using focused ultrasound to temporarily open the blood-brain barrier (BBB), and then detect the orthotopic glioblastoma by fluorescence imaging at 1340 nm. The images obtained from long wavelength fluorescence (i.e. 1340 nm) exhibited better resolution and contrast compared to the short wavelength fluorescence (i.e. 1060 nm). Our study not only provides insights for enhancing often overlooked emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of deep-seated tumors, but also demonstrates great potential of focused ultrasound based technology in delivering nanotheranostic agents.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Qiang Yuan
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China.
| |
Collapse
|
20
|
Kasuya K, Sato Y, Kobayashi M, Kato H, Kakihana M, Tomita K. B-site-ordered Double-perovskite Oxide Up-conversion Phosphors Doped with Yb and Ho, Er, or Tm. J PHOTOPOLYM SCI TEC 2019. [DOI: 10.2494/photopolymer.32.593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kohei Kasuya
- Graduate School of Science and Technology, Tokai University
| | - Yasushi Sato
- Department of Chemistry, Okayama University of Science
| | - Makoto Kobayashi
- Institute of Materials and Systems for Sustainability, Nagoya University
| | - Hideki Kato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| | - Masato Kakihana
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| | - Koji Tomita
- Graduate School of Science and Technology, Tokai University
| |
Collapse
|
21
|
Liu P, Yang W, Shi L, Zhang H, Xu Y, Wang P, Zhang G, Chen WR, Zhang B, Wang X. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J Mater Chem B 2019; 7:6924-6933. [PMID: 31638633 DOI: 10.1039/c9tb01573f] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The concurrent photothermal and photodynamic therapy of cutaneous squamous cell carcinoma by a single drug of Au25(Capt)18nanoclusters is demonstrated, together with a preliminary immune response study conducted under a single NIR laser irradiation.
Collapse
Affiliation(s)
- Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
- Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Yan Xu
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
- Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Wei R. Chen
- Biophotonics Research Laboratory
- Center for Interdisciplinary Biomedical Education and Research
- University of Central Oklahoma
- Edmond
- USA
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
- Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital
- Tongji University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|
22
|
Zhang Z, Niu N, Gao X, Han F, Chen Z, Li S, Li J. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf B Biointerfaces 2019; 173:335-345. [DOI: 10.1016/j.colsurfb.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/18/2023]
|
23
|
Gao R, Sun L, Li L, Pan T, Fu L, Ai XC, Zhang JP. A facile aqueous synthesis strategy for hexagonal phase NaGdF 4 nanorods. NEW J CHEM 2019. [DOI: 10.1039/c9nj01226e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A facile aqueous synthesis method is explored to synthesize hydrophilic β-NaGdF4 nanorods at 60 °C.
Collapse
Affiliation(s)
- Rongyao Gao
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Liyuan Sun
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Luoyuan Li
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Tingting Pan
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Limin Fu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Xi-Cheng Ai
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Jian-Ping Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
24
|
Tamura S, Iwaoka M, Sato Y, Kobayasi M, Kakihana M, Tomita K. Effects of Crystal Structure on Up-conversion Luminescence in Er 3+/Yb 3+ Co-doped SrTa 4O 11. CHEM LETT 2018. [DOI: 10.1246/cl.180605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sayaka Tamura
- Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Michio Iwaoka
- Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yasushi Sato
- Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Makoto Kobayasi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masato Kakihana
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Koji Tomita
- School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
25
|
Liu Y, Jia Q, Zhou J. Recent Advance in Near‐Infrared (NIR) Imaging Probes for Cancer Theranostics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxin Liu
- Department of ChemistryCapital Normal University Xisanhuan North Road No.105 Beijing 100048 China
| | - Qi Jia
- Department of ChemistryCapital Normal University Xisanhuan North Road No.105 Beijing 100048 China
| | - Jing Zhou
- Department of ChemistryCapital Normal University Xisanhuan North Road No.105 Beijing 100048 China
| |
Collapse
|
26
|
Guller AE, Nadort A, Generalova AN, Khaydukov EV, Nechaev AV, Kornienko IA, Petersen EV, Liang L, Shekhter AB, Qian Y, Goldys EM, Zvyagin AV. Rational Surface Design of Upconversion Nanoparticles with Polyethylenimine Coating for Biomedical Applications: Better Safe than Brighter? ACS Biomater Sci Eng 2018; 4:3143-3153. [PMID: 33435055 DOI: 10.1021/acsbiomaterials.8b00633] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Upconversion nanoparticles (UCNPs) coated with polyethylenimine (PEI) are popular background-free optical contrast probes and efficient drug and gene delivery agents attracting attention in science, industry, and medicine. Their unique optical properties are especially useful for subsurface nanotheranostics applications, in particular, in skin. However, high cytotoxicity of PEI limits safe use of UCNP@PEI, and this represents a major barrier for clinical translation of UCNP@PEI-based technologies. Our study aims to address this problem by exploring additional surface modifications to UCNP@PEI to create less toxic and functional nanotheranostic materials. We designed and synthesized six types of layered polymer coatings that envelop the original UCNP@PEI surface, five of which reduced the cytotoxicity to human skin keratinocytes under acute (24 h) and subacute (120 h) exposure. In parallel, we examined the photoluminescence spectra and lifetime of the surface-modified UCNP@PEI. To quantify their brightness, we developed original methodology to precisely measure the colloidal concentration to normalize the photoluminescence signal using a nondigesting mass spectrometry protocol. Our results, specified for the individual coatings, show that, despite decreasing the cytotoxicity, the external polymer coatings of UCNP@PEI quench the upconversion photoluminescence in biologically relevant aqueous environments. This trade-off between cytotoxicity and brightness for surface-coated UCNPs emphasizes the need for the combined assessment of the viability of normal cells exposed to the nanoparticles and the photophysical properties of postmodification UCNPs. We present an optimized methodology for rational surface design of UCNP@PEI in biologically relevant conditions, which is essential to facilitate the translation of such nanoparticles to the clinical applications.
Collapse
Affiliation(s)
- Anna E Guller
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia.,University of New South Wales, Sydney, New South Wales 2032, Australia
| | - Annemarie Nadort
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia
| | - Alla N Generalova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia.,Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Evgeny V Khaydukov
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey V Nechaev
- Institute of Fine Chemical Technologies, Moscow Technological University, Moscow, 119571, Russia
| | - Inna A Kornienko
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141700, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141700, Russia
| | - Liuen Liang
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia
| | | | - Yi Qian
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia
| | - Ewa M Goldys
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia.,University of New South Wales, Sydney, New South Wales 2032, Australia
| | - Andrei V Zvyagin
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia.,Lobachevsky Nizhniy Novgorod State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
27
|
Labrador-Páez L, Ximendes EC, Rodríguez-Sevilla P, Ortgies DH, Rocha U, Jacinto C, Martín Rodríguez E, Haro-González P, Jaque D. Core-shell rare-earth-doped nanostructures in biomedicine. NANOSCALE 2018; 10:12935-12956. [PMID: 29953157 DOI: 10.1039/c8nr02307g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The current status of the use of core-shell rare-earth-doped nanoparticles in biomedical applications is reviewed in detail. The different core-shell rare-earth-doped nanoparticles developed so far are described and the most relevant examples of their application in imaging, sensing, and therapy are summarized. In addition, the advantages and disadvantages they present are discussed. Finally, a critical opinion of their potential application in real life biomedicine is given.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen H, Chen Z, Kuang Y, Li S, Zhang M, Liu J, Sun Z, Jiang B, Chen X, Li C. Stepwise-acid-active organic/inorganic hybrid drug delivery system for cancer therapy. Colloids Surf B Biointerfaces 2018; 167:407-414. [DOI: 10.1016/j.colsurfb.2018.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
|
29
|
Dong L, Zhang P, Xu X, Lei P, Du K, Zhang M, Wang D, Feng J, Li W, Zhang H. Simple construction of Cu 2-xS:Pt nanoparticles as nanotheranostic agent for imaging-guided chemo-photothermal synergistic therapy of cancer. NANOSCALE 2018; 10:10945-10951. [PMID: 29850761 DOI: 10.1039/c8nr02692k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synergistic therapy has attracted intense attention in medical treatment because it can make up for the disadvantages of single therapy and greatly improve the efficacy of cancer treatment. However, it remains a challenge to build a simple system to achieve synergistic therapy. In this study, X-ray computed tomography (CT) imaging-guided chemo-photothermal synergistic therapy can be easily achieved by simple construction of Cu2-xS:Pt(0.3)/PVP nanoparticles (NPs). Cu2-xS:Pt(0.3)/PVP NPs can passively accumulate within the tumor sites, thus ensuring that many Cu2-xS:Pt(0.3)/PVP NPs are brought into the tumor cells, which can be confirmed by the results of cellular uptake, imaging, and nanoparticle biodistribution. It can be verified that the platinum ions can be released from Cu2-xS:Pt(0.3)/PVP NPs under 808 nm laser irradiation. Simultaneously, Pt(iv) ions are reduced to Pt(ii) ions by excess glutathione and then, they exhibit chemo-anticancer activities. In addition, Cu2-xS:Pt(0.3)/PVP NPs can be used as an effective photothermal agent. The results demonstrate that the efficient tumor growth inhibition effect can be realized from the mice treated with Cu2-xS:Pt(0.3)/PVP NPs under 808 nm laser irradiation by chemo-photothermal synergistic therapy. Furthermore, Cu2-xS:Pt(0.3)/PVP NPs can be thoroughly cleared through feces in a short time, showing high biosafety for further potential clinical translations.
Collapse
Affiliation(s)
- Lile Dong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat Commun 2018; 9:2176. [PMID: 29872036 PMCID: PMC5988832 DOI: 10.1038/s41467-018-04571-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Combinational administration of chemotherapy (CT) and photothermal therapy (PTT) has been widely used to treat cancer. However, the scheduling of CT and PTT and how it will affect the therapeutic efficacy has not been thoroughly investigated. The challenge is to realize the sequence control of these two therapeutic modes. Herein, we design a temperature sensitive upconversion nanocomposite for CT-PTT combination therapy. By monitoring the microscopic temperature of the nanocomposite with upconversion luminescence, photothermal effect can be adjusted to achieve thermally triggered combination therapy with a sequence of CT, followed by PTT. We find that CT administered before PTT results in better therapeutic effect than other administration sequences when the dosages of chemodrug and heat are kept at the same level. This work proposes a programmed method to arrange the process of combination cancer therapy, which takes full advantage of each therapeutic mode and contributes to the development of new cancer therapy strategies. The combination of chemo and photothermal therapy is widely used to treat cancer but control of chemo and thermal effects is needed for optimized treatment. Here, the authors describe an upconversion nanoparticle which can be used for controlled sequential treatment by controlling laser power.
Collapse
|
31
|
Tamai K, Mizushima T, Wu X, Inoue A, Ota M, Yokoyama Y, Miyoshi N, Haraguchi N, Takahashi H, Nishimura J, Hata T, Matsuda C, Doki Y, Mori M, Yamamoto H. Photodynamic Therapy Using Indocyanine Green Loaded on Super Carbonate Apatite as Minimally Invasive Cancer Treatment. Mol Cancer Ther 2018; 17:1613-1622. [PMID: 29654066 DOI: 10.1158/1535-7163.mct-17-0788] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/26/2017] [Accepted: 04/06/2018] [Indexed: 11/16/2022]
Abstract
Minimally invasive treatment is getting more and more important in an aging society. The purpose of this study was to explore the possibility of ICG loaded on super carbonate apatite (sCA) nanoparticles as a novel photodynamic therapy (PDT) against cancers. Using colon cancer cells, ICG uptake and anti-tumor effects were examined between the treatments of ICG and sCA-ICG. Reactive oxygen species (ROS) production and temperature rise were also evaluated to explore the underlying mechanism. Atomic force microscopy revealed that the size of sCA-ICG ranged from 10 to 20 nm. In aqueous solution with 0.5% albumin, the temperature increase after laser irradiation was 27.1°C and 23.1°C in sCA-ICG and ICG, respectively (control DW: 5.7°C). A significant increase in ROS generation was noted in cell cultures treated with sCA-ICG plus irradiation compared with those treated with ICG plus irradiation (P < 0.01). Uptake of ICG in the tumor cells significantly increased in sCA-ICG compared with ICG in vitro and in vivo The fluorescence signals of ICG in the tumor, liver, and kidney faded away in both treatments by 24 hours. Finally, the HT29 tumors treated with sCA-ICG followed by irradiation exhibited drastic tumor growth retardation (P < 0.01), whereas irradiation of tumors after injection of ICG did not inhibit tumor growth. This study shows that sCA is a useful vehicle for ICG-based PDT. Quick withdrawal of ICG from normal organs is unique to sCA-ICG and contrasts with the other nanoparticles remaining in normal organs for a long time. Mol Cancer Ther; 17(7); 1613-22. ©2018 AACR.
Collapse
Affiliation(s)
- Koki Tamai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Xin Wu
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Minori Ota
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Yuhki Yokoyama
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan. .,Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
32
|
Suo H, Zhao X, Zhang Z, Guo C. 808 nm Light-Triggered Thermometer-Heater Upconverting Platform Based on Nd 3+-Sensitized Yolk-Shell GdOF@SiO 2. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43438-43448. [PMID: 29172416 DOI: 10.1021/acsami.7b12753] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The realization of real-time and accurate temperature reading at subcutaneous level during the photothermal therapy (PTT) could maximally avoid the collateral damages induced by overheating effects, which remains a formidable challenge for biomedical applications. Herein, 808 nm light-driven yolk-shell GdOF:Nd3+/Yb3+/Er3+@SiO2 microcapsules were developed with thermal-sensing and heating bifunctions. Under 808 nm excitation, sensitive thermometry was implemented by monitoring thermoresponsive emission from 2H11/2/4S3/2 levels of Er3+; meanwhile, the addition of Nd3+ with rich metastable intermediate levels and the yolk-shell configuration with large specific surface area triggered efficient light-to-heat conversion via enhanced nonradiative channels. The potentiality of dual-functional samples for controlled subcutaneous photothermal treatment was validated through ex vivo experiments, and the antibacterial activity against Escherichia coli was also elaborately evaluated. Results open a general avenue for designing and developing upconverting platforms with sensitive thermal-sensing and efficient heating bifunctions, which makes a significant step toward the achievement of real-time controlled PTT.
Collapse
Affiliation(s)
- Hao Suo
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| | - Xiaoqi Zhao
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| | - Zhiyu Zhang
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| | - Chongfeng Guo
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| |
Collapse
|
33
|
Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702299. [PMID: 28961374 DOI: 10.1002/smll.201702299] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Indexed: 05/21/2023]
Abstract
Nowadays, photodynamic therapy (PDT) is under the research spotlight as an appealing modality for various malignant tumors. Compared with conventional PDT treatment activated by ultraviolet or visible light, near infrared (NIR) light-triggered PDT possessing deeper penetration to lesion area and lower photodamage to normal tissue holds great potential for in vivo deep-seated tumor. In this review, recent research progress related to the exploration of NIR light responsive PDT nanosystems is summarized. To address current obstacles of PDT treatment and facilitate the effective utilization, several innovative strategies are developed and introduced into PDT nanosystems, including the conjugation with targeted moieties, O2 self-sufficient PDT, dual photosensitizers (PSs)-loaded PDT nanoplatform, and PDT-involved synergistic therapy. Finally, the potential challenges as well as the prospective for further development are also discussed.
Collapse
Affiliation(s)
- Kerong Deng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Huang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhiyao Hou
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Jun Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
34
|
Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C. Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20361-20375. [PMID: 28532154 DOI: 10.1021/acsami.7b02307] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, gold nanorods (GNRs) were incorporated into the hydrogel networks formed by the copolymerization of N-isopropylacrylamide (NIPAm) and methacrylated poly-β-cyclodextrin (MPCD)-based macromer to fabricate an injectable and near-infrared (NIR)/pH-responsive poly(NIPAm-co-MPCD)/GNRs nanocomposite hydrogel, which could serve as a long-acting implant for chemophotothermal synergistic cancer therapy. The nanocomposite hydrogel showed superior mechanical and swelling properties, gelation characteristics, and excellent NIR-responsive property. A hydrophobic acid-labile adamantane-modified doxorubicin (AD-DOX) prodrug was loaded into the hydrogel efficiently by host-guest interaction. The nanocomposite hydrogel exhibited a manner of sustained drug release and could sustain the slow and steady release of DOX for more than 1 month. The pH-responsive release of DOX from the nanocomposite hydrogel was observed owing to the cleavage of acid-labile hydrazone bond between DOX and the adamantyl group in acidic environment. NIR irradiation could accelerate the release of DOX from the networks, which was controlled by the collapse of the hydrogel networks induced by photothermal effect of GNRs. The in vitro cytotoxicity test demonstrated the excellent biocompatibility and photothermal effect of the nanocomposite hydrogel. Moreover, the in situ-forming hydrogel showed promising tissue biocompatibility in the mouse model study. The in vivo antitumor test demonstrated the capacity of the nanocomposite hydrogel for chemophotothermal synergistic therapy with reduced adverse effects owing to the prolonged drug retention in the tumor region and efficient photothermal effect. Therefore, this injectable and NIR/pH-responsive nanocomposite hydrogel exhibited great potential as a long term drug delivery platform for chemophotothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Xuefei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Siyu He
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Xiaoqi Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Yifeng Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Mina Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| |
Collapse
|
35
|
Xu J, Xu L, Wang C, Yang R, Zhuang Q, Han X, Dong Z, Zhu W, Peng R, Liu Z. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS NANO 2017; 11:4463-4474. [PMID: 28362496 DOI: 10.1021/acsnano.7b00715] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While immunotherapy has become a highly promising paradigm for cancer treatment in recent years, it has long been recognized that photodynamic therapy (PDT) has the ability to trigger antitumor immune responses. However, conventional PDT triggered by visible light has limited penetration depth, and its generated immune responses may not be robust enough to eliminate tumors. Herein, upconversion nanoparticles (UCNPs) are simultaneously loaded with chlorin e6 (Ce6), a photosensitizer, and imiquimod (R837), a Toll-like-receptor-7 agonist. The obtained multitasking UCNP-Ce6-R837 nanoparticles under near-infrared (NIR) irradiation with enhanced tissue penetration depth would enable effective photodynamic destruction of tumors to generate a pool of tumor-associated antigens, which in the presence of those R837-containing nanoparticles as the adjuvant are able to promote strong antitumor immune responses. More significantly, PDT with UCNP-Ce6-R837 in combination with the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint blockade not only shows excellent efficacy in eliminating tumors exposed to the NIR laser but also results in strong antitumor immunities to inhibit the growth of distant tumors left behind after PDT treatment. Furthermore, such a cancer immunotherapy strategy has a long-term immune memory function to protect treated mice from tumor cell rechallenge. This work presents an immune-stimulating UCNP-based PDT strategy in combination with CTLA-4 checkpoint blockade to effectively destroy primary tumors under light exposure, inhibit distant tumors that can hardly be reached by light, and prevent tumor reoccurrence via the immune memory effect.
Collapse
Affiliation(s)
- Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Rong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Wenwen Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, and ‡School of Biology & Basic Medical Science, Medical College, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
36
|
Liu B, Li C, Yang P, Hou Z, Lin J. 808-nm-Light-Excited Lanthanide-Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605434. [PMID: 28295673 DOI: 10.1002/adma.201605434] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/10/2016] [Indexed: 06/06/2023]
Abstract
808 nm-light-excited lanthanide (Ln3+ )-doped nanoparticles (LnNPs) hold great promise for a wide range of applications, including bioimaging diagnosis and anticancer therapy. This is due to their unique properties, including their minimized overheating effect, improved penetration depth, relatively high quantum yields, and other common features of LnNPs. In this review, the progress of 808 nm-excited LnNPs is reported, including their i) luminescence mechanism, ii) luminescence enhancement, iii) color tuning, iv) diagnostic and v) therapeutic applications. Finally, the future outlook and challenges of 808 nm-excited LnNPs are presented.
Collapse
Affiliation(s)
- Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
37
|
Mimun LC, Ajithkumar G, Rightsell C, Langloss BW, Therien MJ, Sardar DK. Synthesis and characterization of Na(Gd 0.5Lu 0.5)F 4: Nd 3+,a core-shell free multifunctional contrast agent. JOURNAL OF ALLOYS AND COMPOUNDS 2017; 695:280-285. [PMID: 28781431 PMCID: PMC5542011 DOI: 10.1016/j.jallcom.2016.10.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd3+ doped Na(Gd0.5Lu0.5)F4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd3+ doped Na(Gd0.5Lu0.5)F4 shows the characteristic emission bands of Gd3+ and Nd3+ with the strongest emission peak at 1064 nm due to Nd3+. Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.
Collapse
Affiliation(s)
- L. Christopher Mimun
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | - G. Ajithkumar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | - Chris Rightsell
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| | | | | | - Dhiraj K. Sardar
- Department of Physics and Astronomy, University of Texas at San Antonio, TX 78249, United States
| |
Collapse
|
38
|
Wang Y, Liu X, Deng G, Wang Q, Zhang L, Wang Q, Lu J. Multifunctional PS@CS@Au–Fe3O4–FA nanocomposites for CT, MR and fluorescence imaging guided targeted-photothermal therapy of cancer cells. J Mater Chem B 2017; 5:4221-4232. [PMID: 32264152 DOI: 10.1039/c7tb00642j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional theranostic PS@CS@Au–Fe3O4–FA/ICG nanocomposites for MR, CT and fluorescence multiple-modal imaging-guided targeted photothermal therapy were fabricated, and they might be a promising theranostic nanoplatform for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Yeying Wang
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Guoying Deng
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 201620
- P. R. China
| | - Qian Wang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 201620
- P. R. China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Qiugen Wang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 201620
- P. R. China
| | - Jie Lu
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
39
|
Wang D, Liu B, Quan Z, Li C, Hou Z, Xing B, Lin J. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. J Mater Chem B 2017; 5:2209-2230. [DOI: 10.1039/c6tb03117j] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review primarily focuses on the new advances in the design and theranostic applications of rare earth upconversion nanoparticles (UCNPs)–NIR photothermal absorbers multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zewei Quan
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Chunxia Li
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Bengang Xing
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|