1
|
Mohd Isa IL, Zulkiflee I, Ogaili RH, Mohd Yusoff NH, Sahruddin NN, Sapri SR, Mohd Ramli ES, Fauzi MB, Mokhtar SA. Three-dimensional hydrogel with human Wharton jelly-derived mesenchymal stem cells towards nucleus pulposus niche. Front Bioeng Biotechnol 2023; 11:1296531. [PMID: 38149172 PMCID: PMC10749916 DOI: 10.3389/fbioe.2023.1296531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: A regenerative strategy employing extracellular matrix (ECM)-based biomaterials and stem cells provide a better approach to mimicking the three-dimensional (3D) microenvironment of intervertebral disc for endogenous tissue regeneration. However, there is currently limited understanding regarding the human Wharton Jelly derived-mesenchymal stem cells (hWJ-MSCs) towards nucleus pulposus (NP)-like cells. Our study focused on the development of 3D bioengineered hydrogel based on the predominant ECM of native NP, including type II collagen (COLII) and hyaluronic acid (HA), which aims to tailor the needs of the microenvironment in NP. Methods: We have fabricated a 3D hydrogel using from COLII enriched with HA by varying the biomacromolecule concentration and characterised it for degradation, stability and swelling properties. The WJ-MSC was then encapsulated in the hydrogel system to guide the cell differentiation into NP-like cells. Results: We successfully fabricated COLII hydrogel (2 mg/ml) and HA 10 mg/ml at a weight ratio of HA and COLII at 1:9 and 4.5:9, and both hydrogels physically maintained their 3D sphere-shaped structure after complete gelation. The higher composition of HA in the hydrogel system indicated a higher water intake capacity in the hydrogel with a higher amount of HA. All hydrogels showed over 60% hydrolytic stability over a month. The hydrogel showed an increase in degradation on day 14. The hWJ-MSCs encapsulated in hydrogel showed a round morphology shape that was homogenously distributed within the hydrogel of both groups. The viability study indicated a higher cell growth of hWJ-MSCs encapsulated in all hydrogel groups until day 14. Discussion: Overall, our findings demonstrate that HA/COLII hydrogel provides an optimal swelling capacity, stability, degradability, and non-cytotoxic, thus mimics the NP microenvironment in guiding hWJ-MSCs towards NP phenotype, which is potentially used as an advanced cell delivery system for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - Izzat Zulkiflee
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raed H. Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Huda Mohd Yusoff
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Natasya Nadia Sahruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaiful Ridzwan Sapri
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
3
|
Han H, Zhao X, Ma H, Zhang Y, Lei B. Multifunctional injectable hydrogels with controlled delivery of bioactive factors for efficient repair of intervertebral disc degeneration. Heliyon 2023; 9:e21867. [PMID: 38027562 PMCID: PMC10665751 DOI: 10.1016/j.heliyon.2023.e21867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Millions of people worldwide suffer from intervertebral disc degeneration (IVDD), which imposes a significant socioeconomic burden on society. There is an urgent clinical demand for more effective treatments for IVDD because conventional treatments can only alleviate the symptoms rather than preventing the progression of IVDD. Hydrogels, a class of elastic biomaterials with good biocompatibility, are promising candidates for intervertebral disc repair and regeneration. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. This review summarizes the latest findings and developments in using bioactive factors-released bioactive injectable hydrogels for the repair and regeneration of intervertebral discs. It focuses on the analysis and summary of the use of multifunctional injectable hydrogels to delivery bioactive factors (cells, exosomes, growth factors, genes, drugs) for disc regeneration, providing guidance for future study. Finally, we discussed and analyzed the optimal timing for the application of controlled-release hydrogels in the treatment of IVDD to meet the high standards required for intervertebral disc regeneration and precision medicine.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Fronter Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
4
|
Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, Vemula PK. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv Healthc Mater 2023; 12:e2203104. [PMID: 36972409 DOI: 10.1002/adhm.202203104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 03/29/2023]
Abstract
In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
| | - Balaji Maddiboyina
- Department of Medical Writing, Freyr Solutions, Hyderabad, Telangana, 500081, India
| | - Samantha K Swamy
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, 9037, Norway
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, 624302, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| |
Collapse
|
5
|
Mahmoud M, Kokozidou M, Gögele C, Werner C, Auffarth A, Kohl B, Mrosewski I, Schulze-Tanzil GG. Does Vitamin K2 Influence the Interplay between Diabetes Mellitus and Intervertebral Disc Degeneration in a Rat Model? Nutrients 2023; 15:2872. [PMID: 37447201 DOI: 10.3390/nu15132872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain in diabetes mellitus type 2 (T2DM) patients. Its pathogenesis and the vitamin (vit.) K2 influence on this disease remain unclear. Lumbar motion segments of male Zucker Diabetes Fatty (ZDF) rats (non-diabetic [control] and diabetic; fed without or with vit. K2) were used. Femur lengths and vertebral epiphyseal cross-section areas were measured. IVDs were histopathologically examined. Protein synthesis and gene expression of isolated IVD fibrochondrocytes were analyzed. T2DM rats showed histopathological IVD degeneration. Femur lengths and epiphyseal areas were smaller in T2DM rats regardless of vit. K2 feeding. Fibrochondrocytes synthesized interleukin (IL)-24 and IL-10 with no major differences between groups. Alpha smooth muscle actin (αSMA) was strongly expressed, especially in cells of vit. K2-treated animals. Gene expression of aggrecan was low, and that of collagen type 2 was high in IVD cells of diabetic animals, whether treated with vit. K2 or not. Suppressor of cytokine signaling (Socs)3 and heme oxygenase (Hmox)1 gene expression was highest in the cells of diabetic animals treated with vit. K2. Vit. K2 influenced the expression of some stress-associated markers in IVD cells of diabetic rats, but not that of IL-10 and IL-24.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Alexander Auffarth
- Department of Orthopedics and Traumatology, Paracelsus Medical University, Müllner-Hauptstraße 48, 5020 Salzburg, Austria
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingo Mrosewski
- MVZ MDI Limbach Berlin, Aroser Alle 84, 13407 Berlin, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
6
|
Li W, Zhou P, Yan B, Qi M, Chen Y, Shang L, Guan J, Zhang L, Mao Y. Disc regeneration by injectable fucoidan-methacrylated dextran hydrogels through mechanical transduction and macrophage immunomodulation. J Tissue Eng 2023; 14:20417314231180050. [PMID: 37427012 PMCID: PMC10328174 DOI: 10.1177/20417314231180050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Modulating a favorable inflammatory microenvironment that facilitates the recovery of degenerated discs is a key strategy in the treatment of intervertebral disc (IVD) degeneration (IDD). More interestingly, well-mechanized tissue-engineered scaffolds have been proven in recent years to be capable of sensing mechanical transduction to enhance the proliferation and activation of nucleus pulposus cells (NPC) and have demonstrated an increased potential in the treatment and recovery of degenerative discs. Additionally, existing surgical procedures may not be suitable for IDD treatment, warranting the requirement of new regenerative therapies for the restoration of disc structure and function. In this study, a light-sensitive injectable polysaccharide composite hydrogel with excellent mechanical properties was prepared using dextrose methacrylate (DexMA) and fucoidan with inflammation-modulating properties. Through numerous in vivo experiments, it was shown that the co-culture of this composite hydrogel with interleukin-1β-stimulated NPCs was able to promote cell proliferation whilst preventing inflammation. Additionally, activation of the caveolin1-yes-associated protein (CAV1-YAP) mechanotransduction axis promoted extracellular matrix (ECM) metabolism and thus jointly promoted IVD regeneration. After injection into an IDD rat model, the composite hydrogel inhibited the local inflammatory response by inducing macrophage M2 polarization and gradually reducing the ECM degradation. In this study, we propose a fucoidan-DexMA composite hydrogel, which provides an attractive approach for IVD regeneration.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- Department of Orthopedics, Lixin County
People’s Hospital, Bozhou, China
| | - Pinghui Zhou
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Bomin Yan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Meiyao Qi
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yedan Chen
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| |
Collapse
|
7
|
Patil V, Bohara R, Winter C, Kilcoyne M, McMahon S, Pandit A. An insight into new glycotherapeutics in glial inflammation: Understanding the role of glycosylation in mitochondrial function and acute to the chronic phases of inflammation. CNS Neurosci Ther 2022; 29:429-444. [PMID: 36377513 PMCID: PMC9804060 DOI: 10.1111/cns.14016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Glycosylation plays a critical role during inflammation and glial scar formation upon spinal cord injury (SCI) disease progression. Astrocytes and microglia are involved in this cascade to modulate the inflammation and tissue remodeling from acute to chronic phases. Therefore, understating the glycan changes in these glial cells is paramount. METHOD AND RESULTS A lectin microarray was undertaken using a cytokine-driven inflammatory mixed glial culture model, revealing considerable differential glycosylation from the acute to the chronic phase in a cytokine-combination generated inflamed MGC model. It was found that several N- and O-linked glycans associated with glia during SCI were differentially regulated. Pearson's correlation hierarchical clustering showed that groups were separated into several clusters, illustrating the heterogenicity among the control, cytokine combination, and LPS treated groups and the day on which treatment was given. Control and LPS treatments were observed to be in dense clusters. This was further confirmed with lectin immunostaining in which GalNAc, GlcNAc, mannose, fucose and sialic acid-binding residues were detected in astrocytes and microglia. However, the sialyltransferase inhibitor inhibited this modification (upregulation of the sialic acid expression), which indeed modulates the mitochondrial functions. CONCLUSIONS The present study is the first functional investigation of glycosylation modulation in a mixed glial culture model, which elucidates the role of the glycome in neuroinflammation in progression and identified potential therapeutic targets for future glyco therapeutics in neuroinflammation.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Carla Winter
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Michelle Kilcoyne
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland,MicrobiologyUniversity of GalwayGalwayIreland
| | - Siobhan McMahon
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland,AnatomyGalwayIreland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| |
Collapse
|
8
|
Yang L, Yu C, Fan X, Zeng T, Yang W, Xia J, Wang J, Yao L, Hu C, Jin Y, Zhu Y, Chen J, Hu Z. Dual-dynamic-bond cross-linked injectable hydrogel of multifunction for intervertebral disc degeneration therapy. J Nanobiotechnology 2022; 20:433. [PMID: 36182921 PMCID: PMC9526989 DOI: 10.1186/s12951-022-01633-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Developing smart hydrogels with integrated and suitable properties to treat intervertebral disc degeneration (IVDD) by minimally invasive injection is of high desire in clinical application and still an ongoing challenge. In this work, an extraordinary injectable hydrogel PBNPs@OBG (Prussian blue nanoparticles@oxidized hyaluronic acid/borax/gelatin) with promising antibacterial, antioxidation, rapid gelation, and self-healing characteristics was designed via dual-dynamic-bond cross-linking among the oxidized hyaluronic acid (OHA), borax, and gelatin. The mechanical performance of the hydrogel was studied by dynamic mechanical analysis. Meanwhile, the swelling ratio and degradation level of the hydrogel was explored. Benefiting from its remarkable mechanical properties, sufficient tissue adhesiveness, and ideal shape-adaptability, the injectable PBNPs containing hydrogel was explored for IVDD therapy. Astoundingly, the as-fabricated hydrogel was able to alleviate H2O2-induced excessive ROS against oxidative stress trauma of nucleus pulposus, which was further revealed by theoretical calculations. Rat IVDD model was next established to estimate therapeutic effect of this PBNPs@OBG hydrogel for IVDD treatment in vivo. On the whole, combination of the smart multifunctional hydrogel and nanotechnology-mediated antioxidant therapy can serve as a fire-new general type of therapeutic strategy for IVDD and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Tianni Zeng
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Hangzhou, 310007, People's Republic of China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Jianle Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Litao Yao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Yang Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 East Qing Chun Road, Hangzhou, 310002, People's Republic of China.
| |
Collapse
|
9
|
Han F, Yu Q, Chu G, Li J, Zhu Z, Tu Z, Liu C, Zhang W, Zhao R, Mao H, Han F, Li B. Multifunctional Nanofibrous Scaffolds with Angle-Ply Microstructure and Co-Delivery Capacity Promote Partial Repair and Total Replacement of Intervertebral Disc. Adv Healthc Mater 2022; 11:e2200895. [PMID: 35834429 DOI: 10.1002/adhm.202200895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Indexed: 01/27/2023]
Abstract
There is an urgent clinical need for the treatment of annulus fibrosus (AF) impairment caused by intervertebral disc (IVD) degeneration or surgical injury. Although repairing injured AF through tissue engineering is promising, the approach is limited by the complicated angle-ply microstructure, inflammatory microenvironment, poor self-repairing ability of AF cells and deficient matrix production. In this study, electrospinning technology is used to construct aligned core-shell nanofibrous scaffolds loaded with transforming growth factor-β3 (TGFβ3) and ibuprofen (IBU), respectively. The results confirm that the rapid IBU release improves the inflammatory microenvironment, while sustained TGFβ3 release enhances nascent extracellular matrix (ECM) formation. Biomaterials for clinical applications must repair local AF defects during herniectomy and enable AF regeneration during disc replacement, so a box defect model and total IVD replacement model in rat tail are constructed. The dual-drug delivering electrospun scaffolds are assembled into angle-ply structure to form a highly biomimetic AF that is implanted into the box defect or used to replace the disc. In two animal models, it is found that biomimetic scaffolds with good anti-inflammatory ability enhance ECM formation and maintain the mechanical properties of IVD. Findings from this study demonstrate that the multifunctional nanofibrous scaffolds provide inspirations for IVD repair.
Collapse
Affiliation(s)
- Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qifan Yu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiaying Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhuang Zhu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhengdong Tu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Changjiang Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Weidong Zhang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Runze Zhao
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315000, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310000, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
10
|
Mohd Isa IL, Mokhtar SA, Abbah SA, Fauzi MB, Devitt A, Pandit A. Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies toward Precision Medicine. Adv Healthc Mater 2022; 11:e2102530. [PMID: 35373924 PMCID: PMC11469247 DOI: 10.1002/adhm.202102530] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/01/2022] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration is a common cause of discogenic low back pain resulting in significant disability. Current conservative or surgical intervention treatments do not reverse the underlying disc degeneration or regenerate the disc. Biomaterial-based tissue engineering strategies exhibit the potential to regenerate the disc due to their capacity to modulate local tissue responses, maintain the disc phenotype, attain biochemical homeostasis, promote anatomical tissue repair, and provide functional mechanical support. Despite preliminary positive results in preclinical models, these approaches have limited success in clinical trials as they fail to address discogenic pain. This review gives insights into the understanding of intervertebral disc pathology, the emerging concept of precision medicine, and the rationale of personalized biomaterial-based tissue engineering tailored to the severity of the disease targeting early, mild, or severe degeneration, thereby enhancing the efficacy of the treatment for disc regeneration and ultimately to alleviate discogenic pain. Further research is required to assess the relationship between disc degeneration and lower back pain for developing future clinically relevant therapeutic interventions targeted towards the subgroup of degenerative disc disease patients.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of AnatomyFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and TraumatologyFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
| | - Sunny A. Abbah
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative MedicineFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
| | - Aiden Devitt
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
- Department of Orthopedic SurgeryUniversity Hospital GalwayGalwayH91YR71Ireland
| | - Abhay Pandit
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| |
Collapse
|
11
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
12
|
Rebalance of the Polyamine Metabolism Suppresses Oxidative Stress and Delays Senescence in Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8033353. [PMID: 35178160 PMCID: PMC8844099 DOI: 10.1155/2022/8033353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain that becomes a prevalent age-related disease. However, the pathophysiological processes behind IDD are rarely known. Here, we used bioinformatics analysis based on the microarray datasets (GSE34095) to identify the differentially expressed genes (DEGs) as biomarkers and therapeutic targets in degenerated discs. From the previous studies, oxidative stress has been notified as a positive inducement of IDD, which causes DNA damage and accelerates cell senescence. Polyamine oxidase (PAOX), a member of the observed 1057 DEGs, is involved in polyamine metabolism and influences the oxidative balance in cells. However, it is uncertain if the IDD is implicated in the dysregulation of PAOX and polyamine metabolism. This study firstly verified the PAOX upregulation in human degenerated disc samples and applied an IL-1β-induced nucleus pulposus (NP) cell degeneration model to demonstrate that spermidine supplementation balanced polyamine metabolism and delayed NP cell senescence. Moreover, we confirmed that spermidine/N-acetylcysteine supplementation or Cdkn2a gene deletion stabilized the polyamine metabolism, suppressed oxidative stress, and therefore delayed the progress of IDD in older mice. Collectively, our study highlights the role of polyamine metabolism in IDD and foresees spermidine would be the advanced therapeutical drug for IDD.
Collapse
|
13
|
Huang Y, Yang J, Liu X, Wang X, Zhu K, Ling Z, Zeng B, Chen N, Liu S, Wei F. Cationic Polymer Brush-Modified Carbon Nanotube-Meditated eRNA LINC02569 Silencing Attenuates Nucleus Pulposus Degeneration by Blocking NF-κB Signaling Pathway and Alleviate Cell Senescence. Front Cell Dev Biol 2022; 9:837777. [PMID: 35111765 PMCID: PMC8802762 DOI: 10.3389/fcell.2021.837777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer RNAs (eRNAs) are noncoding RNAs that synthesized at active enhancers. eRNAs have important regulatory characteristics and appear to be significant for maintenance of cell identity and information processing. Series of functional eRNAs have been identified as potential therapeutic targets for multiple diseases. Nevertheless, the role of eRNAs on intervertebral disc degeneration (IDD) is still unknown yet. Herein, we utilized the nucleus pulposus samples of patients and identified a key eRNA (LINC02569) with the Arraystar eRNA Microarray. LINC02569 mostly locates in nucleus and plays an important role in the progress of IDD by activating nuclear factor kappa-B (NF-κB) signaling pathway. We used a cationic polymer brush coated carbon nanotube (oCNT-pb)-based siRNA delivery platform that we previously designed, to transport LINC02569 siRNA (si-02569) to nucleus pulposus cells. The siRNA loaded oCNT-pb accumulated in nucleus pulposus cells with lower toxicity and higher transfection efficiency, compared with the traditional siRNA delivery system. Moreover, the results showed that the delivery of si-02569 significantly alleviated the inflammatory response in the nucleus pulposus cells via inhibiting P65 phosphorylation and preventing its transfer into the nucleus, and meanwhile alleviated cell senescence by decreasing the expression of P21. Altogether, our results highlight that eRNA (LINC02569) plays important role in the progression of IDD and could be a potential therapeutic target for alleviation of IDD.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiaming Yang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhu
- Orthopaedic Section II, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baozhu Zeng
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ningning Chen
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
14
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
15
|
Zheng Q, Shen H, Tong Z, Cheng L, Xu Y, Feng Z, Liao S, Hu X, Pan Z, Mao Z, Wang Y. A thermosensitive, reactive oxygen species-responsive, MR409-encapsulated hydrogel ameliorates disc degeneration in rats by inhibiting the secretory autophagy pathway. Theranostics 2021; 11:147-163. [PMID: 33391467 PMCID: PMC7681093 DOI: 10.7150/thno.47723] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Lumbar disc degeneration is a common cause of chronic low back pain and an important contributor to various degenerative lumbar spinal disorders. However, currently there is currently no effective therapeutic strategy for treating disc degeneration. The pro-inflammatory cytokine interleukin-1β (IL-1β) mediates disc degeneration by inducing apoptotic death of nucleus pulposus (NP) cells and degradation of the NP extracellular matrix. Here, we confirmed that extracellular secretion of IL-1β via secretory autophagy contributes to disc degeneration, and demonstrate that a thermosensitive reactive oxygen species (ROS)-responsive hydrogel loaded with a synthetic growth hormone-releasing hormone analog (MR409) can protect against needle puncture-induced disc degeneration in rats. Methods: The expression levels of proteins related to secretory autophagy such as tripartite motif-containing 16 (TRIM16) and microtubule-associated protein light chain 3B (LC3B) were examined in human and rat disc tissues by histology and immunofluorescence. The effects of TRIM16 expression level on IL-1β secretion were examined in THP-1 cells transfected with TRIM16 plasmid or siRNA using ELISA, immunofluorescence, and immunoblotting. The in vitro effects of MR409 on IL-1β were examined in THP-1 cells and primary rat NP cells using ELISA, immunofluorescence, immunoblotting, and qRT-PCR. Further, MR409 was subcutaneously administered to aged mice to test its efficacy against disc degeneration using immunofluorescence, X-ray, micro-CT, and histology. To achieve controllable MR409 release for intradiscal use, MR409 was encapsulated in an injectable ROS-responsive thermosensitive hydrogel. Viscosity, rheological properties, release profile, and biocompatibility were evaluated. Thereafter, therapeutic efficacy was assessed in a needle puncture-induced rat model of disc degeneration at 8 and 12 weeks post-operation using X-ray, magnetic resonance (MR) imaging, histological analysis, and immunofluorescence. Results: Secretory autophagy-related proteins TRIM16 and LC3B were robustly upregulated in degenerated discs of both human and rat. Moreover, while upregulation of TRIM16 facilitated, and knockdown of TRIM16 suppressed, secretory autophagy-mediated IL-1β secretion from THP-1 cells under oxidative stress, MR409 inhibited ROS-induced secretory autophagy and IL-1β secretion by THP-1 cells as well as IL-1β-induced pro-inflammatory and pro-catabolic effects in rat NP cells. Daily subcutaneous injection of MR409 inhibited secretory autophagy and ameliorated age-related disc degeneration in mice. The newly developed ROS-responsive MR409-encapsulated hydrogel provided a reliable delivery system for controlled MR409 release, and intradiscal application effectively suppressed secretory autophagy and needle puncture-induced disc degeneration in rats. Conclusion: Secretory autophagy and associated IL-1β secretion contribute to the pathogenesis of disc degeneration, and MR409 can effectively inhibit this pathway. The ROS-responsive thermosensitive hydrogel encapsulated with MR409 is a potentially efficacious treatment for disc degeneration.
Collapse
Affiliation(s)
- Qiangqiang Zheng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haotian Shen
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linxiang Cheng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, P.R. China
| | - Zhiyun Feng
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiyao Liao
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310003, China
| | - Xiaojian Hu
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongyou Pan
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
16
|
Krishna KV, Benito A, Alkorta J, Gleyzes C, Dupin D, Loinaz I, Pandit A. Crossing the hurdles of translation—a robust methodology for synthesis, characterization and GMP production of cross‐linked high molecular weight hyaluronic acid particles (cHA). NANO SELECT 2020. [DOI: 10.1002/nano.202000066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- K. Vijaya Krishna
- CÚRAM SFI Research Centre for Medical Devices National University of Ireland Galway Ireland
| | - Ana Benito
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | - Janire Alkorta
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | | | - Damien Dupin
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | - Iraida Loinaz
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices National University of Ireland Galway Ireland
| |
Collapse
|
17
|
Muñoz-González PU, Rooney P, Mohd Isa IL, Pandit A, Delgado J, Flores-Moreno M, Castellano LE, Mendoza-Novelo B. Development and characterization of an immunomodulatory and injectable system composed of collagen modified with trifunctional oligourethanes and silica. Biomater Sci 2019; 7:4547-4557. [PMID: 31463512 DOI: 10.1039/c9bm00702d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunomodulatory biomaterials have emerged as a promising approach to engineer wound healing. To achieve this task, the bioactivity of the biomaterials and an easy application are two key desirable characteristics. This work reports an injectable gel system containing immune cells primed for wound healing. By combining the self-assembly of type I collagen, cross-linked with trifunctional oligourethanes, and silica particle entrapment, the structured collagen network acts as a delivery vehicle for macrophages. This structured collagen network primes the macrophages for an anti-inflammatory response. Rheological measurements suggest that the mixture of liquid precursors can be safely stored at low temperatures and low pH (4 °C, pH 3) for at least one month. After pH neutralization and injection, gels with a storage modulus of 50-80 Pa are obtained in five minutes. Several immunocytochemistry and ELISA tests strongly suggest that mouse and human macrophages are stimulated by the material to up-regulate the production of anti-inflammatory cytokines, while down-regulating the production of pro-inflammatory cytokines. The injection of gel in an ex vivo inflammation model of intervertebral discs demonstrated that it is possible to transit from a pro-inflammatory to an anti-inflammatory microenvironment. Altogether, the results suggest that this gel can polarize the macrophage response and promote a surrounding anti-inflammatory microenvironment ready for injection for wound healing applications.
Collapse
Affiliation(s)
- Pedro U Muñoz-González
- Science and Engineering Division, University of Guanajuato, Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150, León, GTO, Mexico.
| | - Peadar Rooney
- CÚRAM, Centre for Research in Medical Devices, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Isma Liza Mohd Isa
- CÚRAM, Centre for Research in Medical Devices, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Jorge Delgado
- Science and Engineering Division, University of Guanajuato, Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150, León, GTO, Mexico.
| | - Mauricio Flores-Moreno
- The Research Center in Optics, Loma del bosque # 115, Col. Lomas del campestre, C.P. 37150, León, GTO, Mexico
| | - Laura E Castellano
- Science and Engineering Division, University of Guanajuato, Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150, León, GTO, Mexico.
| | - Birzabith Mendoza-Novelo
- Science and Engineering Division, University of Guanajuato, Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150, León, GTO, Mexico.
| |
Collapse
|
18
|
Pizzute T, He F, Zhang XB, Pei M. Impact of Wnt signals on human intervertebral disc cell regeneration. J Orthop Res 2018; 36:3196-3207. [PMID: 30035326 PMCID: PMC7261601 DOI: 10.1002/jor.24115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023]
Abstract
Although preconditioning strategies are growing areas of interest for therapies targeting intervertebral discs (IVDs), it is unknown whether the Wnt signals previously implicated in chondrogenesis, Wnt3A, Wnt5A, and Wnt11, play key roles in the promotion of human nucleus pulposus (NP) cell redifferentiation. In this study, NP cells isolated from herniated disc patients were transduced with lentiviral vectors to overexpress the WNT3A, WNT5A, or WNT11 genes, or CRISPR associated protein 9 (Cas9)/single-guide RNA (sgRNA) vectors to knock out these genes. Following expansion, transduced NP cells were induced for redifferentiation toward the NP phenotype. The overexpression of specific WNT factors led to increases in both glycosaminoglycan (GAG) deposition and expression of redifferentiation genes. These effects were attenuated by knockout of the same WNT genes. These results indicate that specific WNT signals can regulate the expression of redifferentiation genes, unequally impact GAG deposition, and contribute to the redifferentiation of human NP cells. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3196-3207, 2018.
Collapse
Affiliation(s)
- Tyler Pizzute
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA;,Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin, China;,Department of Medicine, Loma Linda University, Loma Linda, CA, USA;,Co-Corresponding Author: Xiao-Bing Zhang PhD, Division of Regenerative Medicine MC 1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92350, USA,
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA;,Exercise Physiology, West Virginia University, Morgantown, WV, USA;,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
19
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
20
|
D'Este M, Eglin D, Alini M. Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomater 2018; 78:13-22. [PMID: 30092378 DOI: 10.1016/j.actbio.2018.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials science has achieved significant advancements for the replacement, repair and regeneration of intervertebral disc tissues. However, the translation of this research to the clinic presents hurdles. The goal of this paper is to identify strategies to recapitulate the intrinsic complexities of the intervertebral disc, to highlight the unresolved issues in basic knowledge hindering the clinical translation, and finally to report on the emerging technologies in the biomaterials field. On this basis, we identify promising research directions, with the hope of stimulating further debate and advances for resolving clinical problems such as cervical and low back pain using biomaterial-based approaches. STATEMENT OF SIGNIFICANCE Although not life-threatening, intervertebral disc disorders have enormous impact on life quality and disability. Disc function within the human body is mainly mechanical, and therefore the use of biomaterials to rescue disc function and alleviate pain is logical. Despite intensive research, the clinical translation of biomaterial-based therapies is hampered by the intrinsic complexity of this organ. After decades of development, artificial discs or tissue replacements are still niche applications given their issues of integration and displacement with detrimental consequences. The struggles of biological therapies and tissue engineering are therefore understandable. However, recent advances in biomaterial science give new hope. In this paper we identify the most promising new directions for intervertebral disc biomaterials.
Collapse
|
21
|
Pereira DR, Tapeinos C, Rebelo AL, Oliveira JM, Reis RL, Pandit A. Scavenging Nanoreactors that Modulate Inflammation. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diana R. Pereira
- 3B's Research Group; University of Minho; Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco GMR Portugal
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| | - Christos Tapeinos
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| | - Ana L. Rebelo
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| | - Joaquim M. Oliveira
- 3B's Research Group; University of Minho; Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Rui L. Reis
- 3B's Research Group; University of Minho; Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Abhay Pandit
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| |
Collapse
|
22
|
Larrañaga A, Isa ILM, Patil V, Thamboo S, Lomora M, Fernández-Yague MA, Sarasua JR, Palivan CG, Pandit A. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater 2018; 67:21-31. [PMID: 29258803 DOI: 10.1016/j.actbio.2017.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. STATEMENT OF SIGNIFICANCE Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i.e., hydroxyl radicals and hydrogen peroxide) and modulate extracellular matrix activity in an in vitro inflammation model of nucleus pulposus. The present work represents accordingly, an important advance in the development and application of polymer capsules with antioxidant properties for the treatment of oxidative stress, which is applicable for multiple inflammatory disease targets.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | - Isma Liza Mohd Isa
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Vaibhav Patil
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Basel, Switzerland
| | - Mihai Lomora
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Marc A Fernández-Yague
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | | | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
23
|
Abstract
Degenerative disc disease is a progressive, chronic disorder with strong association to pain, where the dysregulated tissue environment signals disc cells, thereby leading to a low inflammatory process and slow extracellular matrix degradation and fibrosis in a perpetual vicious cycle, generating a structural and functional failure of intervertebral disc joint (IVDJ). Among current biologic therapies, there is an emerging minimally invasive strategy that consists of infiltrating plasma rich in growth factors, a safe and efficacious therapeutic approach for other musculoskeletal degenerative conditions. This review summarizes the homeostasis and degeneration of IVDJ, discusses some results on basic science and therapeutic use of platelet-rich plasma products and advances an alternative minimally invasive biologic therapy in IVDJ degeneration and chronic back pain.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI - Biotechnology Institute, Laboratory of Regenerative Medicine, Jose Maria Cagigal Kalea, 19, 01007 Vitoria-Gasteiz, Álava, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), C/Jacinto Quincoces, 39,01007 Vitoria-Gasteiz, Álava, Spain
| | - Sabino Padilla
- BTI - Biotechnology Institute, Laboratory of Regenerative Medicine, Jose Maria Cagigal Kalea, 19, 01007 Vitoria-Gasteiz, Álava, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), C/Jacinto Quincoces, 39,01007 Vitoria-Gasteiz, Álava, Spain
| |
Collapse
|