1
|
Isakova AA, Artykov AA, Plotnikova EA, Trunova GV, Khokhlova VА, Pankratov AA, Shuvalova ML, Mazur DV, Antipova NV, Shakhparonov MI, Dolgikh DA, Kirpichnikov MP, Gasparian ME, Yagolovich AV. Dual targeting of DR5 and VEGFR2 molecular pathways by multivalent fusion protein significantly suppresses tumor growth and angiogenesis. Int J Biol Macromol 2024; 255:128096. [PMID: 37972835 DOI: 10.1016/j.ijbiomac.2023.128096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Destroying tumor vasculature is a relevant therapeutic strategy due to its involvement in tumor progression. However, adaptive resistance to approved antiangiogenic drugs targeting VEGF/VEGFR pathway requires the recruitment of additional targets. In this aspect, targeting TRAIL pathway is promising as it is an important component of the immune system involved in tumor immunosurveillance. For dual targeting of malignant cells and tumor vascular microenvironment, we designed a multivalent fusion protein SRH-DR5-B-iRGD with antiangiogenic VEGFR2-specific peptide SRH at the N-terminus and a tumor-targeting and -penetrating peptide iRGD at the C-terminus of receptor-selective TRAIL variant DR5-B. SRH-DR5-B-iRGD obtained high affinity for DR5, VEGFR2 and αvβ3 integrin in nanomolar range. Fusion of DR5-B with effector peptides accelerated DR5 receptor internalization rate upon ligand binding. Antitumor efficacy was evaluated in vitro in human tumor cell lines and primary patient-derived glioblastoma neurospheres, and in vivo in xenograft mouse model of human glioblastoma. Multivalent binding of SRH-DR5-B-iRGD fusion efficiently stimulated DR5-mediated tumor cell death via caspase-dependent mechanism, suppressed xenograft tumor growth by >80 %, doubled the lifespan of xenograft animals, and inhibited tumor vascularization. Therefore, targeting DR5 and VEGFR2 molecular pathways with SRH-DR5-B-iRGD protein may provide a novel therapeutic approach for treatment of solid tumors.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Artem A Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ekaterina A Plotnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Galina V Trunova
- P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Varvara А Khokhlova
- P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey A Pankratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; P.А. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Margarita L Shuvalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Laboratory of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Manebio LLC, 115280 Moscow, Russia.
| | - Anne V Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; Manebio LLC, 115280 Moscow, Russia.
| |
Collapse
|
2
|
Duan C, Chen Y, Hou Z, Li D, Jiao J, Sun W, Xiang Y. Heteromultivalent scaffolds fabricated by biomimetic co-assembly of DNA-RNA building blocks for the multi-analysis of miRNAs. J Mater Chem B 2023; 11:1478-1485. [PMID: 36723144 DOI: 10.1039/d2tb02663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heteromultivalent scaffolds with different repeated monomers have great potential in biomedicine, but convenient construction strategies for integrating various functional modules to achieve multiple biological functions are still lacking. Here, taking advantage of the heteromultivalent effect of dendritic nucleic acids and the specific biochemical properties of microRNAs (miRNAs), we assembled novel heteromultivalent nucleic acid scaffolds by biomimetic co-assembly of DNA-RNA building blocks. In our approach, two miRNAs were used to initiate and maintain dendritic structures in an interdependent manner; so, the heteromultivalent nanostructure can only form in the presence of both miRNAs. The proposed nanostructure can be used for one-step analysis of two miRNAs in an AND logic format. Taking miR-18b-5p and miR-342-3p which are associated with Alzheimer's disease as an example, a FRET sensing system was fabricated for the simultaneous analysis of two miRNAs within one hour at picomolar concentration. Further studies show that the designed device may have the potential to distinguish between AD patients and the healthy population by analysis of two miRNAs in CSF (cerebrospinal fluid) samples, suggesting its possible applicability in clinics.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Weihao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
3
|
Jia T, Jacquet T, Dalonneau F, Coudert P, Vaganay E, Exbrayat-Héritier C, Vollaire J, Josserand V, Ruggiero F, Coll JL, Eymin B. FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol 2021; 19:173. [PMID: 34433435 PMCID: PMC8390225 DOI: 10.1186/s12915-021-01103-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. Results By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. Conclusions We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01103-3.
Collapse
Affiliation(s)
- Tao Jia
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Thibault Jacquet
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Fabien Dalonneau
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Pauline Coudert
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Elisabeth Vaganay
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Julien Vollaire
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Véronique Josserand
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Jean-Luc Coll
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France
| | - Béatrice Eymin
- Institute For Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Site Santé, Allée des Alpes, 38700, La Tronche, France.
| |
Collapse
|
4
|
Gutiérrez-Climente R, Clavié M, Dumy P, Mehdi A, Subra G. Sol-gel process: the inorganic approach in protein imprinting. J Mater Chem B 2021; 9:2155-2178. [PMID: 33624655 DOI: 10.1039/d0tb02941f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins play a central role in the signal transmission in living systems since they are able to recognize specific biomolecules acting as cellular receptors, antibodies or enzymes, being themselves recognized by other proteins in protein/protein interactions, or displaying epitopes suitable for antibody binding. In this context, the specific recognition of a given protein unlocks a range of interesting applications in diagnosis and in targeted therapies. Obviously, this role is already fulfilled by antibodies with unquestionable success. However, the design of synthetic artificial systems able to endorse this role is still challenging with a special interest to overcome limitations of antibodies, in particular their production and their stability. Molecular Imprinted Polymers (MIPs) are attractive recognition systems which could be an alternative for the specific capture of proteins in complex biological fluids. MIPs can be considered as biomimetic receptors or antibody mimics displaying artificial paratopes. However, MIPs of proteins remains a challenge due to their large size and conformational flexibility, their complex chemical nature with multiple recognition sites and their low solubility in most organic solvents. Classical MIP synthesis conditions result in large polymeric cavities and unspecific binding sites on the surface. In this review, the potential of the sol-gel process as inorganic polymerization strategy to overcome the drawbacks of protein imprinting is highlighted. Thanks to the mild and biocompatible experimental conditions required and the use of water as a solvent, the inorganic polymerization approach better suited to proteins than organic polymerization. Through numerous examples and applications of MIPs, we proposed a critical evaluation of the parameters that must be carefully controlled to achieve sol-gel protein imprinting (SGPI), including the choice of the monomers taking part in the polymerization.
Collapse
Affiliation(s)
| | | | - Pascal Dumy
- IBMM, Univ. Montpellier, CNRS, ENSCM, France.
| | - Ahmad Mehdi
- ICGM, Univ. Montpellier, CNRS, ENSCM, France
| | | |
Collapse
|
5
|
Design of PEGylated Three Ligands Silica Nanoparticles for Multi-Receptor Targeting. NANOMATERIALS 2021; 11:nano11010177. [PMID: 33445812 PMCID: PMC7828255 DOI: 10.3390/nano11010177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/23/2022]
Abstract
The synthesis of silica nanoparticles (SiNPs) decorated on their surface with a range of various elements (e.g., ligands, drugs, fluorophores, vectors, etc.) in a controlled ratio remains a big challenge. We have previously developed an efficient strategy to obtain in one-step, well-defined multifunctional fluorescent SiNPs displaying fluorophores and two peptides ligands as targeting elements, allowing selective detection of cancer cells. In this paper, we demonstrate that additional level of controlled multifunctionality can be achieved, getting even closer to the original concept of “magic bullet”, using solely sol–gel chemistry to achieve conjugation of PEG chains for stealth, along with three different ligands. In addition, we have answered the recurrent question of the surface ungrafting by investigating the stability of different siloxane linkages with the ERETIC Method (Electronic Reference to Access In Vivo Concentrations) by 19F NMR quantification. We also compared the efficiency of the hybrid silylated fluorophore covalent linkage in the core of the SiNP to conventional methods. Finally, the tumor-cell-targeting efficiency of these multi-ligand NPs on human endothelial cells (HUVEC or HDMEC) and mixed spheroids of human melanoma cells and HUVEC displaying different types of receptors were evaluated in vitro.
Collapse
|
6
|
Biomedical nanoparticle design: What we can learn from viruses. J Control Release 2021; 329:552-569. [PMID: 33007365 PMCID: PMC7525328 DOI: 10.1016/j.jconrel.2020.09.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023]
Abstract
Viruses are nanomaterials with a number of properties that surpass those of many synthetic nanoparticles (NPs) for biomedical applications. They possess a rigorously ordered structure, come in a variety of shapes, and present unique surface elements, such as spikes. These attributes facilitate propitious biodistribution, the crossing of complex biological barriers and a minutely coordinated interaction with cells. Due to the orchestrated sequence of interactions of their stringently arranged particle corona with cellular surface receptors they effectively identify and infect their host cells with utmost specificity, while evading the immune system at the same time. Furthermore, their efficacy is enhanced by their response to stimuli and the ability to spread from cell to cell. Over the years, great efforts have been made to mimic distinct viral traits to improve biomedical nanomaterial performance. However, a closer look at the literature reveals that no comprehensive evaluation of the benefit of virus-mimetic material design on the targeting efficiency of nanomaterials exists. In this review we, therefore, elucidate the impact that viral properties had on fundamental advances in outfitting nanomaterials with the ability to interact specifically with their target cells. We give a comprehensive overview of the diverse design strategies and identify critical steps on the way to reducing them to practice. More so, we discuss the advantages and future perspectives of a virus-mimetic nanomaterial design and try to elucidate if viral mimicry holds the key for better NP targeting.
Collapse
|
7
|
Jia T, Vaganay E, Carpentier G, Coudert P, Guzman-Gonzales V, Manuel R, Eymin B, Coll JL, Ruggiero F. A collagen Vα1-derived fragment inhibits FGF-2 induced-angiogenesis by modulating endothelial cells plasticity through its heparin-binding site. Matrix Biol 2020; 94:18-30. [DOI: 10.1016/j.matbio.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 01/22/2023]
|
8
|
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines 2020; 8:E307. [PMID: 32854363 PMCID: PMC7555639 DOI: 10.3390/biomedicines8090307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.
Collapse
Affiliation(s)
| | | | | | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy; (J.Z.); (F.S.); (D.G.)
| |
Collapse
|
9
|
Harman JL, Sayers J, Chapman C, Pellet-Many C. Emerging Roles for Neuropilin-2 in Cardiovascular Disease. Int J Mol Sci 2020; 21:E5154. [PMID: 32708258 PMCID: PMC7404143 DOI: 10.3390/ijms21145154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, is predominantly associated with atherosclerosis. Atherosclerosis is a chronic inflammatory disease characterised by the narrowing of large to medium-sized arteries due to a build-up of plaque. Atherosclerotic plaque is comprised of lipids, extracellular matrix, and several cell types, including endothelial, immune, and vascular smooth muscle cells. Such narrowing of the blood vessels can itself restrict blood flow to vital organs but most severe clinical complications, including heart attacks and strokes, occur when lesions rupture, triggering the blood to clot and obstructing blood flow further down the vascular tree. To circumvent such obstructions, percutaneous coronary intervention or bypass grafts are often required; however, re-occlusion of the treated artery frequently occurs. Neuropilins (NRPs), a multifunctional family of cell surface co-receptors, are expressed by endothelial, immune, and vascular smooth muscle cells and are regulators of numerous signalling pathways within the vasculature. Here, we review recent studies implicating NRP2 in the development of occlusive vascular diseases and discuss how NRP2 could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer L Harman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jacob Sayers
- University College London, Division of Medicine, Rayne Building, University Street, London WC1E 6JF, UK
| | - Chey Chapman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
10
|
Peng R, Xu C, Zheng H, Lao X. Modified Thymosin Alpha 1 Distributes and Inhibits the Growth of Lung Cancer in Vivo. ACS OMEGA 2020; 5:10374-10381. [PMID: 32426594 PMCID: PMC7226852 DOI: 10.1021/acsomega.0c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Targeted therapy of tumors is an effective method for treating cancer. Thymosin alpha 1 (Tα1), a hormone that contains 28 amino acids, is already approved for cancer treatment. However, its clinical application is limited because of the lack of tumor targeting. Considering that RGD can specifically bind to integrin, the anticancer drug can have a targeted therapeutic effect on tumors when it combines with a peptide containing an RGD sequence. We produced a polypeptide, Tα1-RGDR, by binding Tα1 to RGDR. The RGDR can combine with the αvβ3 and NRP-1 domains, which are highly expressed on the surface of the tumor, to achieve the effect of tumor targeting. This work aimed to investigate the difference of antitumor activity and tumor targeting between Tα1 modified by RGDR and Tα1 by using H460 and LLC tumor models. Results showed that Tα1-RGDR had remarkable antitumor effects, and its tumor targeting was better than that of Tα1. Hence, Tα1-RGDR is a promising antitumor drug.
Collapse
Affiliation(s)
- Renhao Peng
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| | - Caoying Xu
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| | - Heng Zheng
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| | - Xingzhen Lao
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| |
Collapse
|
11
|
Jia T, Ciccione J, Jacquet T, Maurel M, Montheil T, Mehdi A, Martinez J, Eymin B, Subra G, Coll JL. The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. Int J Pharm 2019; 568:118507. [PMID: 31299336 DOI: 10.1016/j.ijpharm.2019.118507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Covering the surface of a nanoparticle with polyethylene glycol (PEG) is a common way to prevent non-specific interactions but how its presence impacts on the activity of targeting ligands is still poorly documented. We synthesized a set of 9 silica nanoparticles grafted with c[RGDfK]-, a peptide targeting integrin αvß3 (cRGD), and/or with ATWLPPR, an anti-neuropilin 1 peptide (ATW). We then added various PEGs, and studied NPs binding on primary endothelial cells, the downstream activated signaling pathways and the impact on apoptosis. Our results show that the presence of PEG2000 on cRGD/ATW nanoparticles moderately improves cell binding but induces a 6000 times augmentation of AKT-dependent cell response due to the recruitment of other Receptor Tyrosine Kinases. Augmenting the length of the spacer that separates the peptides from the silica (using PEG3000) mainly resulted in a loss of specificity. Finally, the PEG-mediated hyperactivation of AKT did not protect endothelial cell from dying in the absence of serum, while its moderate activation obtained without PEG did. Finally, PEGylation of cRGD/ATW-NPs can generate nanoparticles with potent capacities to activate the AKT-GSK3β-eNOS cascade and to affect the resistance of endothelial cells to apoptosis. Thus, the impact of PEGylation should be precisely considered in order to avoid the apparition of counter-productive biological responses.
Collapse
Affiliation(s)
- Tao Jia
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Jéremy Ciccione
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France; ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thibault Jacquet
- Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Manon Maurel
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Titouan Montheil
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ahmad Mehdi
- ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Béatrice Eymin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Gilles Subra
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Luc Coll
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France.
| |
Collapse
|
12
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|