1
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
2
|
Belgamwar A, Sharma R, Mali Y, Agrawal Y, Nakhate K. Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicine in diagnosis and therapeutics. Neuroscience 2024:S0306-4522(24)00533-5. [PMID: 39433081 DOI: 10.1016/j.neuroscience.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
A stroke, also known as a cerebrovascular accident (CVA), is a medical emergency that occurs when the brain's blood supply is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.This review provides an overview of stroke, focusing on early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, molecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance stroke treatment, particularly for ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
Collapse
Affiliation(s)
- Aarti Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Rarchita Sharma
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogesh Mali
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogeeta Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India.
| | - Kartik Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| |
Collapse
|
3
|
Yang N, Li W, Qian Z, Tan X, Liu Z, Feng F, Liu L, Ge L. Trident-inspired fucoidan-based armor-piercing microcapsule for programmed acute pulmonary embolism treatment. Colloids Surf B Biointerfaces 2024; 245:114323. [PMID: 39442409 DOI: 10.1016/j.colsurfb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary embolism remains the third leading cause of human mortality after malignant tumors and myocardial infarction. Commonly available thrombolytic therapeutic agents suffer from the limitations of very short half-life, inadequate targeting, limited clot penetration, and a propensity for severe bleeding. Inspired by the trident, we developed the armor-piercing microcapsule (MC), fucoidan-urokinase-S-nitrosoglutathione-polydopamine@MC (FUGP@MC), which exhibited a triple combination of photothermal, mechanical and pharmacological thrombolysis for the therapeutic treatment of acute pulmonary embolism (APE). Briefly, the outermost fucoidan layer was utilized for targeting to the APE area. Programmed APE treatment was triggered by near-infrared (NIR) light irradiation. Photothermal thrombolytic therapy was carried out by photothermal conversion of polydopamine. The photothermal conversion broke the S-nitroso bond in S-nitrosoglutathione (GSNO) and produced large amounts of nitric oxide (NO) for mechanical thrombolysis, which subsequently disrupted the interfacial structure of microcapsule to stimulate the release of the urokinase (UK), leading to a triple synergistic thrombolytic effect. The results demonstrated that the embolization residual rate of FUGP@MC (contained ≈ 1452.5 IU/kg UK) group was significantly lower than that of UK (10,000 IU/kg) group (6.35 % VS 16.78 %). Remarkably, FUGP@MC demonstrated a reliable in vivo biosafety proficiency. In summary, trident-inspired armor-piercing microcapsule FUGP@MC reveals a potential avenue for advancing pulmonary embolism therapeutics and promises to be a safer alternative candidate to current drug approaches.
Collapse
Affiliation(s)
- Ning Yang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Weikun Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zhicheng Qian
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xin Tan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zonghao Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, 225 Changhai Road, Shanghai 200438, PR China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| | - Liqin Ge
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Advanced Ocean Institute of Southeast University, Nantong 226019, PR China.
| |
Collapse
|
4
|
Luo K, Wang Y, Lu E, Nie W, Yan X, Zhang Q, Luo Y, Zhang Z, Zhao J, Sha X. Ischemic Microenvironment-Targeted Bioinspired Lipoprotein Sequentially Penetrates Cerebral Ischemic Lesions to Rescue Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49628-49639. [PMID: 39228071 DOI: 10.1021/acsami.4c08966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Reperfusion injury represents a significant impediment to recovery after recanalization in an ischemic stroke and can be alleviated by neuroprotectants. However, inadequate drug delivery to ischemic lesions impairs the therapeutic effects of neuroprotectants. To address this issue, an ischemic microenvironment-targeted bioinspired lipoprotein system encapsulating lipoic acid (LA@PHDL) is herein designed to sequentially penetrate ischemic lesions and be readily taken up by neurons and microglia. In transient middle cerebral artery occlusion (tMCAO) mouse models, LA@PHDL accumulates rapidly and preferentially in the ischemic brain, with a 2.29-fold higher than the nontargeted nanoplatform in the early stage. Furthermore, LA@PHDL effectively restores neurological function, reduces infarct volume to 17.70%, prevents brain cell necrosis and apoptosis, and attenuates inflammation in tMCAO mouse models. This design presents new opportunities for delivering neuroprotectants to cerebral ischemic lesions to improve the outcome of an ischemic stroke.
Collapse
Affiliation(s)
- Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Yong Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Weimin Nie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Qi Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Yu Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai 201203, China
- Quzhou Fudan Institute, Quzhou, Zhejiang 324002, China
| |
Collapse
|
5
|
Zhang Y, Li Y, Gu J, Wu J, Ma Y, Lu G, Barboiu M, Chen J. Glycopolymeric Micellar Nanoparticles for Platelet-Mediated Tumor-Targeted Delivery of Docetaxel for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44528-44537. [PMID: 39155662 DOI: 10.1021/acsami.4c09548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The high level of accumulation of therapeutic agents in tumors is crucial for cancer treatment. Compared to the passive tumor-targeting effect, active tumor-targeting delivery systems, primarily mediated by peptides with high production costs and reduced circulation time, are highly desired. Platelet-driven technologies have opened new avenues for targeted drug delivery prevalently through a membrane coating strategy that involves intricate manufacturing procedures or the fucoidan-mediated hitchhiking method with limited platelet affinity. Here, a novel type of amphiphilic glycopolymer self-assembled micellar nanoparticle has been developed to adhere to naturally activated platelets in the blood. The simultaneous integration of fucose and sialic acid segments into glycopolymers enables closer mimicry of the structure of P-selectin glycoprotein ligand-1 (PSGL-1), thereby increasing the affinity for activated platelets. It results in the formation of glycopolymeric micelle-platelet hybrids, facilitating targeted drug delivery to tumors. The selective platelet-assisted cellular uptake of docetaxel (DTX)-loaded glycopolymeric micelles leads to lower IC50 values against 4T1 cells than that of free DTX. The directed tumor-targeting effect of activated platelets has significantly improved the tumor accumulation capacity of the glycopolymeric nanoparticles, with up to 21.0% found in tumors within the initial 0.2 h. Additionally, with acid-responsive drug release and inherent antimetastasis properties, the glycopolymeric nanoparticles ensured potent therapeutic efficacy, prolonged survival time, and reduced cardiotoxicity, presenting a new and unexplored strategy for platelet-directed drug delivery to tumors, showing promising prospects in treating localized tumors and preventing tumor metastasis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
6
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Yang N, Qian Z, Yuan R, Li W, Tan X, Liu Z, Zhang Q, Ge L, Liu L. NIR Light-Fuse Drug-Free Photothermal Armor-Piercing Microcapsule for Femoral Vein Thrombosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312191. [PMID: 38488706 DOI: 10.1002/smll.202312191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Indexed: 08/23/2024]
Abstract
Acute thrombosis and its complications are leading global causes of disability and death. Existing thrombolytic drugs, such as alteplase and urokinase (UK), carry a significant bleeding risk during clinical treatments. Thus, the development of a novel thrombolysis strategy is of utmost urgency. Based on the previous work, the hollow structure of microcapsules (MC) is fabricated. Subsequently, armor-piercing MC, known as Fucoidan/S-Nitrosoglutathione/Melanin@MC (FGM@MC) is obtained, using a layer-by-layer (LBL) self-assembly method. Utilizing near-infrared (NIR) light as a trigger, the FGM@MC demonstrated photothermal thrombolysis at the site of thrombus due to its stable and outstanding photothermal properties. Simultaneously, photothermal stimulation leads to the release of a significant amount of nitric oxide from the FGM@MC, resulting in cavitation effects for mechanical thrombolysis. In vivo experiments confirmed the stable release of nitric oxide under NIR light irradiation. Treatment of femoral vein thrombosis in rats revealed that the thrombolytic effectiveness of FGM@MC+NIR (53.71%) is comparable to that of UK (59.70%). Notably, FGM@MC does not interfere with the coagulation function of rats and exhibits a favorable safety profile. In conclusion, this study demonstrates that the drug-free armor-piercing microcapsule has significant potential in the treatment of thrombosis, offering a safe and effective alternative to traditional thrombolytic therapies.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zhicheng Qian
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Renqiang Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
8
|
Huang Y, Wang J, Guo Y, Shen L, Li Y. Fibrinogen binding to activated platelets and its biomimetic thrombus-targeted thrombolytic strategies. Int J Biol Macromol 2024; 274:133286. [PMID: 38908635 DOI: 10.1016/j.ijbiomac.2024.133286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Thrombosis is associated with various fatal arteriovenous syndromes including ischemic stroke, myocardial infarction, and pulmonary embolism. However, current clinical thrombolytic treatment strategies still have many problems in targeting and safety to meet the thrombolytic therapy needs. Understanding the molecular mechanism that underlies thrombosis is critical in developing effective thrombolytic strategies. It is well known that platelets play a central role in thrombosis and the binding of fibrinogen to activated platelets is a common pathway in the process of clot formation. Based on this, a concept of biomimetic thrombus-targeted thrombolytic strategy inspired from fibrinogen binding to activated platelets in thrombosis was proposed, which could selectively bind to activated platelets at a thrombus site, thus enabling targeted delivery and local release of thrombolytic agents for effective thrombolysis. In this review, we first summarized the main characteristics of platelets and fibrinogen, and then introduced the classical molecular mechanisms of thrombosis, including platelet adhesion, platelet activation and platelet aggregation through the interactions of activated platelets with fibrinogen. In addition, we highlighted the recent advances in biomimetic thrombus-targeted thrombolytic strategies which inspired from fibrinogen binding to activated platelets in thrombosis. The possible future directions and perspectives in this emerging area are briefly discussed.
Collapse
Affiliation(s)
- Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China.
| | - Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China
| | - Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China
| | - Lingyue Shen
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stoma-tology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, PR China.
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China.
| |
Collapse
|
9
|
Zhu L, Zhong W, Meng X, Yang X, Zhang W, Tian Y, Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J Nanobiotechnology 2024; 22:424. [PMID: 39026255 PMCID: PMC11256638 DOI: 10.1186/s12951-024-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xuchen Meng
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenchuan Zhang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yayuan Tian
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
10
|
Sarfati P, De La Taille T, Portioli C, Spanò R, Lalatonne Y, Decuzzi P, Chauvierre C. REVIEW: "ISCHEMIC STROKE: From Fibrinolysis to Functional Recovery" Nanomedicine: emerging approaches to treat ischemic stroke. Neuroscience 2024; 550:102-113. [PMID: 38056622 DOI: 10.1016/j.neuroscience.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Stroke is responsible for 11% of all deaths worldwide, the majority of which are caused by ischemic strokes, thus making the need to urgently find safe and effective therapies. Today, these can be cured either by mechanical thrombectomy when the thrombus is accessible, or by intravenous injection of fibrinolytics. However, the latter present several limitations, such as potential severe side effects, few eligible patients and low rate of partial and full recovery. To design safer and more effective treatments, nanomedicine appeared in this medical field a few decades ago. This review will explain why nanoparticle-based therapies and imaging techniques are relevant for ischemic stroke management. Then, it will present the different nanoparticle types that have been recently developed to treat this pathology. It will also study the various targeting strategies used to bring nanoparticles to the stroke site, thereby limiting side effects and improving the therapeutic efficacy. Finally, this review will present the few clinical studies testing nanomedicine on stroke and discuss potential causes for their scarcity.
Collapse
Affiliation(s)
- Pierre Sarfati
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Thibault De La Taille
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Yoann Lalatonne
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F-93009 Bobigny, France
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cédric Chauvierre
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France.
| |
Collapse
|
11
|
Huerta MÁ, Tejada MÁ, Nieto FR. Fucoidan as a Promising Drug for Pain Treatment: Systematic Review and Meta-Analysis. Mar Drugs 2024; 22:290. [PMID: 39057399 PMCID: PMC11277653 DOI: 10.3390/md22070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic effects. We performed a systematic review and meta-analysis to quantify the analgesic effects of pretreatment with fucoidan reported in the available preclinical studies. In addition, we summarized the articles which have studied the therapeutic effects of fucoidan in pathological pain at preclinical and clinical levels. The results of this systematic review reveal that pretreatment with fucoidan is a powerful tool which reduces neutrophil infiltration by 70-90% at early time points. This meta-analysis showed that preventative treatment with fucoidan produced a significant pain reduction. In addition, several preclinical studies have observed that fucoidan treatment reduces the pain that is associated with various pathologies. Finally, fucoidan has also been tested in several clinical trials, with some degree of analgesic efficacy, but they were mostly small pilot studies. Considering all the above information, it can be concluded that fucoidan is not only a preclinical tool for studying the role of neutrophils in pain but also a promising therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Á. Tejada
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Francisco R. Nieto
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
12
|
Abid J, Khalil FMA, Saeed S, Khan SU, Iqbal I, Khan SU, Anthony S, Shahzad R, Koerniati S, Naz F. Nano revolution in cardiovascular health: Nanoparticles (NPs) as tiny titans for diagnosis and therapeutics. Curr Probl Cardiol 2024; 49:102466. [PMID: 38369205 DOI: 10.1016/j.cpcardiol.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) are known as life-threatening illnessescaused by severe abnormalities in the cardiovascular system. They are a leading cause of mortality and morbidity worldwide.Nanotechnology integrated substantialinnovations in cardiovascular diagnostic and therapeutic at the nanoscale. This in-depth analysis explores cutting-edge methods for diagnosing CVDs, including nanotechnological interventions and crucial components for identifying risk factors, developing treatment plans, and monitoring patients' progress with chronic CVDs.Intensive research has gone into making nano-carriers that can image and treat patients. To improve the efficiency of treating CVDs, the presentreview sheds light on a decision-tree-based solution by investigating recent and innovative approaches in CVD diagnosis by utilizing nanoparticles (NPs). Treatment choices for chronic diseases like CVD, whose etiology might take decades to manifest, are very condition-specific and disease-stage-based. Moreover, thisreview alsobenchmarks the changing landscape of employing NPs for targeted and better drug administration while examining the limitations of various NPs in CVD diagnosis, including cost, space, time, and complexity. To better understand and treatment of cardiovascular diseases, the conversation moves on to the nano-cardiovascular possibilities for medical research.We also focus on recent developments in nanoparticle applications, the ways they might be helpful, and the medical fields where they may find future use. Finally, this reviewadds to the continuing conversation on improved diagnosis and treatment approaches for cardiovascular disorders by discussing the obstacles and highlighting the revolutionary effects of nanotechnology.
Collapse
Affiliation(s)
- Junaid Abid
- Department of Food Science and Technology, University of Haripur, Pakistan; State Key Laboratory of Food nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, College of Science and Arts, Department of Biology, MohayilAsirAbha, 61421, Saudi Arabia
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, QLD, 4111, Australia
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Imran Iqbal
- Department of PLR, Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Sri Koerniati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Farkhanda Naz
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China
| |
Collapse
|
13
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
14
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
15
|
Li J, Lu K, Sun S, Peng J, Zhao L. Long-circulating nanoparticles as passive targeting nanocarriers for the treatment of thrombosis. NANOSCALE 2024; 16:6132-6141. [PMID: 38444355 DOI: 10.1039/d4nr00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thrombosis is the major cause of cardiovascular diseases. Only a small subset of patients could benefit from thrombolytic therapy due to the high bleeding risk brought about by the repeated administration of thrombolytic drugs. Nanoparticles with targeting ligands have been developed as nanocarriers of thrombolytic drugs to deliver the drug to the thrombus through active targeting. However, the passive targeting effect of nanoparticles on the thrombus is yet to be investigated. Herein, we prepared silica cross-linked micelles (SCLMs) with a long blood circulation half-life as drug carriers to target the thrombus through passive targeting. Compared with SCLMs modified with an active targeting ligand cRGD, the SCLMs exhibited similar targeting behavior to the thrombus in vivo. Loaded with the thrombolytic drug tirofiban, the passive targeting SCLMs showed a comparable therapeutic effect to cRGD-modified SCLMs in a mice model with pulmonary embolism and arterial thrombosis.
Collapse
Affiliation(s)
- Junyao Li
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Shaokai Sun
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
16
|
Sun M, Liu C, Liu J, Wen J, Hao T, Chen D, Shen Y. A microthrombus-driven fixed-point cleaved nanosystem for preventing post-thrombolysis recurrence via inhibiting ferroptosis. J Control Release 2024; 367:587-603. [PMID: 38309306 DOI: 10.1016/j.jconrel.2024.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Thrombus-induced cardiovascular diseases threaten human health. Current treatment strategies often rely on urokinase plasminogen activator (uPA) for its efficacy, yet it has such limiting factors as short half-life, lack of thrombus targeting, and systemic side effects leading to unintended bleeding. In addition, thrombolytic interventions can trigger inflammation-induced damage at thrombus sites, which affects endothelial function. To address these challenges, Fer-1/uPA@pep-CREKA-Lipo (Fu@pep-CLipo) has been developed. This system achieves precise and efficient thrombolysis while enhancing the thrombus microenvironment and mitigating ischemia-reperfusion injury, with exceptional thrombus targeting ability via the strong affinity of the Cys-Arg-Glu-Lys-Ala (CREKA) peptide for fibrin. The Cys-Nle-TPRSFL-DSPE (pep) could respond to the thrombus microenvironment and fixed-point cleavage. The uPA component linked to the liposome surface is strategically cleaved upon exposure to abundant thrombin at thrombus sites. Importantly, the inclusion of Fer-1 within Fu@pep-CLipo contributes to reactive oxygen species (ROS) scavenging and significantly improves the thrombus microenvironment. This innovative approach not only achieves highly efficient and precise thrombolysis but also positively influences the expression of eNOS protein while suppressing inflammatory factors like TNF-α and IL-6. This dual action contributes to improved thrombus inflammatory microenvironment and mitigated ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Mengjuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Ji Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Jing Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Tianjiao Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Long Mian Da Dao, Nanjing 211198, China.
| |
Collapse
|
17
|
Mao Y, Ren J, Yang L. Advances of nanomedicine in treatment of atherosclerosis and thrombosis. ENVIRONMENTAL RESEARCH 2023; 238:116637. [PMID: 37482129 DOI: 10.1016/j.envres.2023.116637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Myocardial ischemia originated from AS is the main cause of cardiovascular diseases, one of the major factors contributing to the global disease burden. AS is typically quiescent until occurrence of plaque rupture and thrombosis, leading to acute coronary syndrome and sudden death. Currently, clinical diagnostic techniques suffer from major pitfalls including lack of accuracy and specificity, which makes it rather difficult for drugs to directly target plaques to achieve therapeutic effect. Therefore, how to accurately diagnose and effectively intervene vulnerable AS plaques to achieve accurate delivery of drugs has become an urgent and evolving clinical problem. With the rapid development of nanomedicine and nanomaterials, nanotechnology has shown unique advantages in monitoring vulnerable plaques and thrombus and improving drug efficacy. Recent studies have shown that application of nanoparticle drug delivery system can booster the safety and effectiveness of drug therapy, and molecular imaging technology and nanomedicine also exhibit high clinical application potentials in disease diagnosis. Therefore, nanotechnology provides another promising avenue for diagnosis and treatment of AS and thrombosis, and has shown excellent performance in the development of targeted drug therapy and biomaterials. In this review, the research progress, challenges and prospects of nanotechnology in AS and thrombosis are discussed, expecting to provide new ideas for the prevention, diagnosis and treatment of AS and thrombosis.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, China.
| |
Collapse
|
18
|
Kim S, Jo H, Lee S, Yang M, Jun H, Lee Y, Kim GW, Lee D. Targeted echogenic and anti-inflammatory polymeric prodrug nanoparticles for the management of renal ischemia/reperfusion injury. J Control Release 2023; 363:574-584. [PMID: 37797890 DOI: 10.1016/j.jconrel.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Ischemia/reperfusion (IR) injury is an inevitable pathological event occurring when blood is resupplied to the tissues after a period of ischemia. One of major causes of IR injury is the overproduction of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), which mediates the expression of various inflammatory cytokines to exacerbate tissue damages. The overproduced H2O2 could therefore serve as a diagnostic and therapeutic biomarker of IR injury. In this study, poly(boronated methacrylate) (pBMA) nanoparticles were developed as nanotheranostic agents for renal IR injury, which not only generate CO2 bubbles to enhance the ultrasound contrast but also provide potent preventive effects in a H2O2-triggered manner. The surface of pBMA nanoparticles was decorated with taurodeoxycholic acid (TUDCA) that binds P-selectin overexpressed in inflamed tissues. In the mouse model of renal IR injury, TUDCA-coated pBMA (T-pBMA) nanoparticles preferentially accumulated in the injured kidney and markedly enhanced the ultrasound contrast. T-pBMA nanoparticles also effectively prevented renal IR injury by scavenging H2O2 and suppressing the expression of inflammatory cytokines. Treatment progress of IR injury could be also monitored by echogenic T-pBMA nanoparticles. Given their targeting ability, excellent H2O2-responsiveness, anti-inflammatory activity and H2O2-triggered echogenicity, T-pBMA nanoparticles have excellent translational potential for the management of various H2O2-related diseases including IR injury.
Collapse
Affiliation(s)
- Sooyeon Kim
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hanui Jo
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Suyeon Lee
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Manseok Yang
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hayoung Jun
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Youngjong Lee
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Gi-Wook Kim
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54097, Republic of Korea
| | - Dongwon Lee
- Department of Nanobiotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
19
|
Li F, Shao H, Zhou G, Wang B, Xu Y, Liang W, Chen L. The recent applications of nanotechnology in the diagnosis and treatment of common cardiovascular diseases. Vascul Pharmacol 2023; 152:107200. [PMID: 37500029 DOI: 10.1016/j.vph.2023.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Almost a third of all fatalities may be attributed to cardiovascular disease (CVD), making it a primary cause of mortalities worldwide. Better diagnostic tools and secure, non-invasive imaging techniques are needed to offer accurate information on CVD progression. Several elements contribute to the success of CVD personalized therapy, and two of the most crucial are accurate diagnosis and early detection. The therapy options available for conditions with a pathogenesis that unfold over decades, such as CVD, are very condition-specific and disease-stage based. Nanotechnology is increasingly being used as a therapeutic tool in the biomedical area, where they are used in various contexts, including diagnostics, biosensing, and drug administration. This review article provides an overview of the most recent applications of nanotechnology in the detection and management of prevalent CVDs.
Collapse
Affiliation(s)
- Feize Li
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China.
| | - Haibin Shao
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Guoer Zhou
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bingzhu Wang
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Lin Chen
- Department of Cardiology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China.
| |
Collapse
|
20
|
Liu CH, Jheng PR, Rethi L, Godugu C, Lee CY, Chen YT, Nguyen HT, Chuang EY. P-Selectin mediates targeting of a self-assembling phototherapeutic nanovehicle enclosing dipyridamole for managing thromboses. J Nanobiotechnology 2023; 21:260. [PMID: 37553670 PMCID: PMC10408148 DOI: 10.1186/s12951-023-02018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chandraiah Godugu
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, India
| | - Ching Yi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Main Branch and School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, 700000, Viet Nam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
21
|
Guo R, Deng M, Li J, He X, He P, Liu H, Ye Y, Mo Z, He X, Li M, He Q. Depriving Tumor Cells of Ways to Metastasize: Ferroptosis Nanotherapy Blocks Both Hematogenous Metastasis and Lymphatic Metastasis. NANO LETTERS 2023; 23:3401-3411. [PMID: 37036326 DOI: 10.1021/acs.nanolett.3c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Blood and lymph are two main pathways of tumor metastasis; however, hematogenous metastasis and lymphatic metastasis are difficult to inhibit simultaneously. Ferroptosis provides a new breakthrough for metastasis inhibition, but how to effectively trigger ferroptosis in tumor cells remains a major challenge. Metastatic tumor cells are prone to ferroptosis in blood, while they may be protected from ferroptosis in lymph. In this study, a nanoplatform DA/RSL3 was constructed for the intracellular codelivery of the polyunsaturated arachidonic acid (AA) and the GPX4 inhibitor RSL3, which could not only induce ferroptosis but also alleviate ferroptosis resistance. As a result, DA/RSL3 effectively triggered ferroptosis in tumor cells, thereby impairing the ability of tumor cells to metastasize in both blood and lymph. Furthermore, a fucoidan blocking strategy was proposed to maximize the efficacy of DA/RSL3. Fu+DA/RSL3 showed excellent efficacy in 4T1 tumor-bearing mice. This ferroptosis nanotherapy is promising for metastatic cancer treatment.
Collapse
Affiliation(s)
- Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Miao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxia Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ziyi Mo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Toljan K, Ashok A, Labhasetwar V, Hussain MS. Nanotechnology in Stroke: New Trails with Smaller Scales. Biomedicines 2023; 11:biomedicines11030780. [PMID: 36979759 PMCID: PMC10045028 DOI: 10.3390/biomedicines11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| | - M. Shazam Hussain
- Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| |
Collapse
|
23
|
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023; 12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 12/14/2022]
Abstract
A thrombus is a blood clot that forms in the lumen of an artery or vein, restricting blood flow and causing clinical symptoms. Thrombosis is associated with many life-threatening cardiovascular diseases. However, current clinical therapeutic technologies still have many problems in targeting, enrichment, penetration, and safety to meet the thrombosis treatment needs. Therefore, researchers devote themselves to developing nanosystems loaded with antithrombotic drugs to address this paradox in recent years. Herein, the existing thrombosis treatment technologies are first reviewed; and then, their advantages and disadvantages are outlined based on a brief discussion of thrombosis's definition and formation mechanism. Furthermore, the need and application cases for introducing nanotechnology are discussed, focusing on thrombus-specific targeted ligand modification technology and microenvironment-triggered responsive drug release technology. Then, nanomaterials that can be used to design antithrombotic nanotherapeutic systems are summarized. Moreover, a variety of drug delivery technologies driven by nanomotors in thrombosis therapy is also introduced. Last of all, a prospective discussion on the future development of nanotechnology for thrombosis therapy is highlighted.
Collapse
Affiliation(s)
- Shuyin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
24
|
Jeon C, Jun H, Kim S, Song N, Yang M, Lim C, Lee D. Clot-Targeted Antithrombotic Liposomal Nanomedicine Containing High Content of H 2O 2-Activatable Hybrid Prodrugs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8999-9009. [PMID: 36749947 DOI: 10.1021/acsami.2c20750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liposomes have been extensively explored as drug carriers, but their clinical translation has been hampered by their low drug-loading content and premature leakage of drug payloads. It was reasoned that vesicle-forming prodrugs could be incorporated into the lipid bilayer at a high molar fraction and therefore serve as a therapeutic agent as well as a structural component in liposomal nanomedicine. Boronated retinoic acid (BORA) was developed as a prodrug, which can self-assemble with common lipids to form liposomes at a high molar fraction (40%) and release all-trans retinoic acid (atRA) and hydroxybenzyl alcohol (HBA) simultaneously, in response to hydrogen peroxide (H2O2). Here, we report fucoidan-coated BORA-incorporated liposomes (f-BORALP) as clot-targeted antithrombotic liposomal nanomedicine with H2O2-triggered multiple therapeutic actions. In the mouse model of carotid arterial thrombosis, f-BORALP preferentially accumulated in the injured blood vessel and significantly suppressed thrombus formation, demonstrating their potential as targeted antithrombotic nanomedicine. This study also provides valuable insight into the development of vesicle-forming and self-immolative prodrugs to exploit the benefits of liposomal drug delivery.
Collapse
Affiliation(s)
- Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Hayoung Jun
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Sooyeon Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Changjin Lim
- Department of Pharmacy, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| |
Collapse
|
25
|
Nguyen AB, Iqbal O, Block RC, Mousa SA. Prevention and treatment of atherothrombosis: Potential impact of nanotechnology. Vascul Pharmacol 2023; 148:107127. [PMID: 36375733 DOI: 10.1016/j.vph.2022.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Complications with atherosclerosis can often lead to fatal clot formation and blood vessel occlusion - also known as atherothrombosis. A key component to the development of atherosclerosis and atherothrombosis is the endothelium and its ability to regulate the balance between prothrombotic and antithrombotic activities. Endothelial surface glycocalyx has a critical role in maintenance of vascular integrity. The endothelial glycocalyx, nitric oxide, prostacyclins, heparan sulfate, thrombomodulin, and tissue factor pathway inhibitor all prevent thrombosis, while P-selectin, among many other factors, favors thrombosis. However, endothelial dysfunction gives rise to the acceleration of thrombotic development and eventually the requirement of antithrombotic therapy. Most FDA-approved anticoagulant and antiplatelet therapies today carry a side effect profile of major bleed. Within the past five years, several preclinical studies using different endothelial targets and nanotechnology as a drug delivery method have emerged to target the endothelium and to enhance current antithrombosis without increasing bleed risk. While clinical studies are required, this review illustrates the proof-of-concept of nanotechnology in promoting a greater safety and efficacy profile through multiple in vitro and in vivo studies.
Collapse
Affiliation(s)
- Anthony B Nguyen
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York 12144, United States of America
| | - Omer Iqbal
- Stritch School of Medicine, Loyola University, Chicago, IL, United States of America
| | - Robert C Block
- University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York 12144, United States of America.
| |
Collapse
|
26
|
Dubashynskaya NV, Gasilova ER, Skorik YA. Nano-Sized Fucoidan Interpolyelectrolyte Complexes: Recent Advances in Design and Prospects for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24032615. [PMID: 36768936 PMCID: PMC9916530 DOI: 10.3390/ijms24032615] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The marine polysaccharide fucoidan (FUC) is a promising polymer for pharmaceutical research and development of novel drug delivery systems with modified release and targeted delivery. The presence of a sulfate group in the polysaccharide makes FUC an excellent candidate for the formation of interpolyelectrolyte complexes (PECs) with various polycations. However, due to the structural diversity of FUC, the design of FUC-based nanoformulations is challenging. This review describes the main strategies for the use of FUC-based PECs to develop drug delivery systems with improved biopharmaceutical properties, including nanocarriers in the form of FUC-chitosan PECs for pH-sensitive oral delivery, targeted delivery systems, and polymeric nanoparticles for improved hydrophobic drug delivery (e.g., FUC-zein PECs, core-shell structures obtained by the layer-by-layer self-assembly method, and self-assembled hydrophobically modified FUC particles). The importance of a complex study of the FUC structure, and the formation process of PECs based on it for obtaining reproducible polymeric nanoformulations with the desired properties, is also discussed.
Collapse
|
27
|
Evaluating the Skin Interactions and Permeation of Alginate/Fucoidan Hydrogels Per Se and Associated with Different Essential Oils. Pharmaceutics 2023; 15:pharmaceutics15010190. [PMID: 36678818 PMCID: PMC9861241 DOI: 10.3390/pharmaceutics15010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Marine polysaccharides are recognized for their biological properties and their application in the drug delivery field, favoring hydrogel-forming capacities for cutaneous application towards several dermatological conditions. Essential oils have been widely used in skin, not only for their remarkable biological properties, but also for their capacity to enhance permeation through the skin layers and to confer a pleasant scent to the formulation. In this study, menthol, L-linalool, bergamot oil, and β-pinene were incorporated in alginate/fucoidan hydrogels to evaluate their skin permeation enhancement profile and assess their influence on the skin organization. The combinations of different essential oils with the marine-based fucoidan/alginate hydrogel matrix were characterized, resulting in formulations with pseudoplastic rheological properties favorable for a uniform application in the skin. The ex vivo Franz diffusion permeation assays revealed that calcein loaded in bergamot-alginate/fucoidan hydrogel permeated more than 15 mg out of the initial 75 mg than when in linalool-alginate/fucoidan, alginate/fucoidan or hydrogel without any incorporated oil. Skin calcein retention for menthol- and pinene-alginate/fucoidan hydrogels was 15% higher than in the other conditions. Infrared micro-spectroscopic analysis through synchrotron-based Fourier Transform Infrared Microspectroscopy evidenced a symmetric shift in CH3 groups towards higher wavenumber, indicating lipids' fluidization and less lateral packing, characterized by a band at 1468 cm-1, with the bergamot-alginate/fucoidan, which contributes to enhancing skin permeation. The study highlights the effect of the composition in the design of formulations for topical or transdermal delivery systems.
Collapse
|
28
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
29
|
Russell P, Esser L, Hagemeyer CE, Voelcker NH. The potential impact of nanomedicine on COVID-19-induced thrombosis. NATURE NANOTECHNOLOGY 2023; 18:11-22. [PMID: 36536042 DOI: 10.1038/s41565-022-01270-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Extensive reports of pulmonary embolisms, ischaemic stroke and myocardial infarctions caused by coronavirus disease 2019 (COVID-19), as well as a significantly increased long-term risk of cardiovascular diseases in COVID-19 survivors, have highlighted severe deficiencies in our understanding of thromboinflammation and the need for new therapeutic options. Due to the complexity of the immunothrombosis pathophysiology, the efficacy of treatment with conventional anti-thrombotic medication is questioned. Thrombolytics do appear efficacious, but are hindered by severe bleeding risks, limiting their use. Nanomedicine can have profound impact in this context, protecting delicate (bio)pharmaceuticals from degradation en route and enabling delivery in a targeted and on demand manner. We provide an overview of the most promising nanocarrier systems and design strategies that may be adapted to develop nanomedicine for COVID-19-induced thromboinflammation, including dual-therapeutic approaches with antiviral and immunosuppressants. Resultant targeted and side-effect-free treatment may aid greatly in the fight against the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Peije Russell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
30
|
Ghose D, Swain S, Patra CN, Jena BR, Rao MEB. Advancement and Applications of Platelet-inspired Nanoparticles: A Paradigm for Cancer Targeting. Curr Pharm Biotechnol 2023; 24:213-237. [PMID: 35352648 DOI: 10.2174/1389201023666220329111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Platelet-inspired nanoparticles have ignited the possibility of new opportunities for producing similar biological particulates, such as structural cellular and vesicular components, as well as various viral forms, to improve biocompatible features that could improve the nature of biocompatible elements and enhance therapeutic efficacy. The simplicity and more effortless adaptability of such biomimetic techniques uplift the delivery of the carriers laden with cellular structures, which has created varied opportunities and scope of merits like; prolongation in circulation and alleviating immunogenicity improvement of the site-specific active targeting. Platelet-inspired nanoparticles or medicines are the most recent nanotechnology-based drug targeting systems used mainly to treat blood-related disorders, tumors, and cancer. The present review encompasses the current approach of platelet-inspired nanoparticles or medicines that have boosted the scientific community from versatile fields to advance biomedical sciences. Surprisingly, this knowledge has streamlined to development of newer diagnostic methods, imaging techniques, and novel nanocarriers, which might further help in the treatment protocol of the various diseased conditions. The review primarily focuses on the novel advancements and recent patents in nanoscience and nanomedicine that could be streamlined in the future for the management of progressive cancers and tumor targeting. Rigorous technological advancements like biomimetic stem cells, pH-sensitive drug delivery of nanoparticles, DNA origami devices, virosomes, nano cells like exosomes mimicking nanovesicles, DNA nanorobots, microbots, etc., can be implemented effectively for target-specific drug delivery.
Collapse
Affiliation(s)
- Debashish Ghose
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Suryakanta Swain
- Department of Pharmacy, School of Health Sciences, The Assam Kaziranga University, Koraikhowa, NH-37, Jorhat, 785006, Assam, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Muddana Eswara Bhanoji Rao
- Calcutta Institute of Pharmaceutical Technology and AHS, Banitabla, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
31
|
Soumya RS, Raghu KG. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J Cardiol 2023; 81:10-18. [PMID: 35210166 DOI: 10.1016/j.jjcc.2022.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/09/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Nanoparticles are exclusively suitable for studying and developing potential therapies against cardiovascular diseases (CVD) because of their size, fine-tunable properties, and ability to incorporate therapeutic and imaging modalities. Recent advancements in nanomaterials open new avenues for treating CVD. In cardiology, the use of nanoparticles and nanocarriers has gathered significant consideration owing to characteristic features such as active and passive targeting to the cardiac tissues, greater target specificity, and sensitivity. It has been reported that through the use of nanotechnology, more than 50% of CVDs can be treated efficiently. Heart-targeted nano carrier-based drug delivery is an effective and efficient approach for treating cardiac-related disorders such as atherosclerosis, hypertension, and myocardial infarction. In this review, the authors focus on nanoparticle-based therapies used in CVD and provide an outline of essential knowledge and critical concerns on polymer-based nanomaterials in treating CVD.
Collapse
Affiliation(s)
- Rema Sreenivasan Soumya
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
32
|
Li S, Zhang K, Ma Z, Zhang W, Song Z, Wang W, Han H. Biomimetic Nanoplatelets to Target Delivery Hirudin for Site-Specific Photothermal/Photodynamic Thrombolysis and Preventing Venous Thrombus Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203184. [PMID: 36344452 DOI: 10.1002/smll.202203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Due to the high recurrence rate and mortality of venous thrombosis, there is an urgent need for research on antithrombotic strategies. Because of the short half-life, poor targeting capabilities, bleeding complications, and neurotoxic effects of conventional pharmacological thrombolysis methods, it is essential to develop an alternative strategy to noninvasive thrombolysis and decrease the recurrence rate of venous thrombosis. A platelet-mimetic porphyrin-based covalent organic framework-engineered melanin nanoplatform, to target delivery of hirudin to the vein thrombus site for noninvasive thrombolysis and effective anticoagulation, is first proposed. Owing to the thrombus-hosting properties of platelet membranes, the nanoplatform can target the thrombus site and then activate hyperthermia and reactive oxygen species for thrombolysis under near-infrared light irradiation. The photothermal therapy/photodynamic therapy combo can substantially improve the effectiveness (85.7%) of thrombolysis and prevent secondary embolism of larger fragments. Afterward, the highly loaded (97%) and slow-release hirudin (14 days) are effective in preventing the recurrence of blood clots without the danger of thrombocytopenia. The described biomimetic nanostructures offer a promising option for improving the efficacy of thrombolytic therapy and reducing the risk of bleeding complications in thrombus associated diseases.
Collapse
Affiliation(s)
- Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| |
Collapse
|
33
|
FU-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
35
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of
Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:
The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
37
|
Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022; 16:885190. [PMID: 35836741 PMCID: PMC9274459 DOI: 10.3389/fncel.2022.885190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a major public health issue, corresponding to the second cause of mortality and the first cause of severe disability. Ischemic stroke is the most common type of stroke, accounting for 87% of all strokes, where early detection and clinical intervention are well known to decrease its morbidity and mortality. However, the diagnosis of ischemic stroke has been limited to the late stages, and its therapeutic window is too narrow to provide rational and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, inactivation, allergic reactions, and non-specific tissue targeting. Another problem is the limited ability of current neuroprotective agents to promote recovery of the ischemic brain tissue after stroke, which contributes to the progressive and irreversible nature of ischemic stroke and also the severity of the outcome. Fortunately, because of biomaterials’ inherent biochemical and biophysical properties, including biocompatibility, biodegradability, renewability, nontoxicity, long blood circulation time, and targeting ability. Utilization of them has been pursued as an innovative and promising strategy to tackle these challenges. In this review, special emphasis will be placed on the recent advances in the study of nanomaterials for the diagnosis and therapy of ischemic stroke. Meanwhile, nanomaterials provide much promise for neural tissue salvage and regeneration in brain ischemia, which is also highlighted.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| |
Collapse
|
38
|
Yeini E, Satchi-Fainaro R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb Res 2022; 213 Suppl 1:S22-S28. [DOI: 10.1016/j.thromres.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 10/18/2022]
|
39
|
Liu Y, Qi X, Wang Y, Li M, Yuan Q, Zhao Z. Inflammation-targeted cannabidiol-loaded nanomicelles for enhanced oral mucositis treatment. Drug Deliv 2022; 29:1272-1281. [PMID: 35467472 PMCID: PMC9045765 DOI: 10.1080/10717544.2022.2027572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most common complications of cancer chemotherapy is oral mucositis (OM), a serious kind of oral ulceration, but its effective treatment remains a serious challenge. In this study, we used deoxycholic acid and fucoidan to prepare inflammation-targeting nanomicelles (FD), because fucoidan can target inflammation due to its high binding affinity for P-selectin. The hydrophobic anti-inflammatory drug cannabidiol (CBD) was then loaded into the hydrophobic core of FD. The resulting CBD-loaded FD micelles (CBD/FD) had uniform particle size and morphology, as well as favorable serum stability. Moreover, administration of the FD micelles via intravenous injection or in situ dripping in an OM mouse model enhanced the accumulation and retention of CBD. CBD/FD also showed a better anti-inflammatory effect compared to free CBD after local or systemic administration in vivo, while they accelerated OM healing and inhibited Ly6G inflammatory cell infiltration and NF-κB nuclear transcription. Our results show that CBD/FD nanomicelles are a promising agent for OM treatment.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022; 13:20406223221076891. [PMID: 35432845 PMCID: PMC9008857 DOI: 10.1177/20406223221076891] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidan is a marine polysaccharide. In recent years, fucoidan has attracted wide-scale attention from the pharmaceutical industries due to its diverse biological activities such as lipid-lowering, anti-atherosclerosis, and anticoagulation. This review clarifies the pharmacological effects of fucoidan in the treatment of human cardiovascular and cerebrovascular diseases. Fucoidan exerts a hypolipidemic effect by increasing the reverse transport of cholesterol, inhibiting lipid synthesis, reducing lipid accumulation, and increasing lipid metabolism. Inflammation, anti-oxidation, and so on have a regulatory effect in the process of atherosclerosis endothelial cells, macrophages, smooth muscle cells, and so on; fucoidan can not only prevent thrombosis through anticoagulation and regulate platelet activation, but also promote the dissolution of formed thrombi. Fucoidan has a neuroprotective effect, and also has a positive effect on the prognosis of the cardiovascular and cerebrovascular. The prospects of applying fucoidan in cardio-cerebrovascular diseases are reviewed to provide some theoretical bases and inspirations for its full-scale development and utilization.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai,
ChinaHeping Hospital Affiliated to Changzhi Medical College, Changzhi,
China
| | - Xueli Xu
- Binzhou Inspection and Testing Center, Binzhou,
China
| | - Qiang Wei
- Marine College, Shandong University, Weihai,
China
| | - Qiong Yang
- Marine College, Shandong University, Weihai,
China
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai,
China
| | - Yuan Wang
- Marine College, Shandong University, Weihai,
China
| | - Xia Li
- Marine College, Shandong University, Weihai,
China
| | - Kai Ji
- Department of Plastic Surgery, China-Japan
Friendship Hospital, Beijing 100029, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai
264209, China
| |
Collapse
|
41
|
Manners N, Priya V, Mehata AK, Rawat M, Mohan S, Makeen HA, Albratty M, Albarrati A, Meraya AM, Muthu MS. Theranostic Nanomedicines for the Treatment of Cardiovascular and Related Diseases: Current Strategies and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040441. [PMID: 35455438 PMCID: PMC9029632 DOI: 10.3390/ph15040441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular and related diseases (CVRDs) are among the most prevalent chronic diseases in the 21st century, with a high mortality rate. This review summarizes the various nanomedicines for diagnostic and therapeutic applications in CVRDs, including nanomedicine for angina pectoris, myocarditis, myocardial infarction, pericardial disorder, thrombosis, atherosclerosis, hyperlipidemia, hypertension, pulmonary arterial hypertension and stroke. Theranostic nanomedicines can prolong systemic circulation, escape from the host defense system, and deliver theranostic agents to the targeted site for imaging and therapy at a cellular and molecular level. Presently, discrete non-invasive and non-surgical theranostic methodologies are such an advancement modality capable of targeted diagnosis and therapy and have better efficacy with fewer side effects than conventional medicine. Additionally, we have presented the recent updates on nanomedicine in clinical trials, targeted nanomedicine and its translational challenges for CVRDs. Theranostic nanomedicine acts as a bridge towards CVRDs amelioration and its management.
Collapse
Affiliation(s)
- Natasha Manners
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Manoj Rawat
- Novartis Healthcare Private Limited, Hyderabad 500078, India;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia;
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
- Correspondence: ; Tel.: +91-923-519-5928; Fax: +91-542-236-8428
| |
Collapse
|
42
|
Xie S, Mo C, Cao W, Xie S, Li S, Zhang Z, Li X. Bacteria-propelled microtubular motors for efficient penetration and targeting delivery of thrombolytic agents. Acta Biomater 2022; 142:49-59. [PMID: 35158079 DOI: 10.1016/j.actbio.2022.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/01/2022]
Abstract
Effective thrombolysis is critical to rapidly rebuild blood flow for thrombosis patients. Drug delivery systems have been developed to address inadequate pharmacokinetics of thrombolytic agents, but challenges still remain in the timely removal of blood clots regarding the dense fibrin networks. Herein, rod-shaped tubular micromotors were developed to achieve efficient penetration and thorough destruction of thrombi. By using electrospun fiber fragments as the template, urokinase (uPA)-loaded polydopamine (PDA) microtubes with surface decorated fucoidan (FuPDAuPA) were prepared at the aspect ratio of around 2. One E. coli Nissle 1917 (EcN) was assembled into one microtube to construct a FuPDAuPA@EcN hybrid micromotor through PDA adhesion and L-aspartate induction. The pharmacokinetic analysis indicates that the encapsulation of uPA into micromotors extends the half-life from 0.4 to 5.6 h and increases the bioavailability over 10 times. EcN-propelled motion elevates adsorption capacities of FuPDAuPA@EcN for more than four times compared with that of FuPDAuPA. The fucoidan-mediated targeting causes 2-fold higher thrombolysis capacity in vitro and over 10-fold higher uPA accumulation in thrombi in vivo. In the treatment of venous thrombi at mouse hindlimbs, intravenous administration of FuPDAuPA@EcN completely removed blood clots with almost full recovery of blood flows and apparently alleviated tail bleeding. It should be noted that FuPDAuPA@EcN treatment at a reduced uPA dose caused no significant difference in the blood flow rate compared with those of FuPDAuPA. The synergistic action of fucoidan-induced targeting and EcN-driven motion provides a prerequisite for promoting thrombolytic efficacy and reducing uPA dose and bleeding side effect. STATEMENT OF SIGNIFICANCE: The standard treatment to thrombosis patient is intravenous infusion of thrombolytic agents, but the associated bleeding complications and impairment of normal haemostasis greatly offset the therapeutic benefits. Drug delivery systems have been developed to address the limitations of inadequate pharmacokinetics of thrombolytic agents, but challenges still exist in less efficient penetration into dense networks for thorough destruction of thrombi. Up to now only few attempts have been made to construct nano-/micromotors for combating thrombosis and there is no single case that antithrombosis is assisted by bacteria or cells-propelled motors. Herein, bacteria-propelled microtubes were developed to carry urokinase for efficient penetration into blood clots and effective thrombolysis. The synergistic action of bacteria-driven motion and specific ligand-induced targeting holds a promising treatment strategy for life-threatening cardiovascular diseases such as thrombosis and atherosclerosis.
Collapse
|
43
|
Advanced drug delivery system against ischemic stroke. J Control Release 2022; 344:173-201. [DOI: 10.1016/j.jconrel.2022.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
44
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
45
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
46
|
Guo R, Deng M, He X, Li M, Li J, He P, Liu H, Li M, Zhang Z, He Q. Fucoidan-functionalized activated platelet-hitchhiking micelles simultaneously track tumor cells and remodel the immunosuppressive microenvironment for efficient metastatic cancer treatment. Acta Pharm Sin B 2022; 12:467-482. [PMID: 35127399 PMCID: PMC8799858 DOI: 10.1016/j.apsb.2021.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor metastasis is responsible for most mortality in cancer patients, and remains a challenge in clinical cancer treatment. Platelets can be recruited and activated by tumor cells, then adhere to circulating tumor cells (CTCs) and assist tumor cells extravasate in distant organs. Therefore, nanoparticles specially hitchhiking on activated platelets are considered to have excellent targeting ability for primary tumor, CTCs and metastasis in distant organs. However, the activated tumor-homing platelets will release transforming growth factor-β (TGF-β), which promotes tumor metastasis and forms immunosuppressive microenvironment. Therefore, a multitalent strategy is needed to balance the accurate tumor tracking and alleviate the immunosuppressive signals. In this study, a fucoidan-functionalized micelle (FD/DOX) was constructed, which could efficiently adhere to activated platelets through P-selectin. Compared with the micelle without P-selectin targeting effect, FD/DOX had increased distribution in both tumor tissue and metastasis niche, and exhibited excellent anti-tumor and anti-metastasis efficacy on 4T1 spontaneous metastasis model. In addition, due to the contribution of fucoidan, FD/DOX treatment was confirmed to inhibit the expression of TGF-β, thereby stimulating anti-tumor immune response and reversing the immunosuppressive microenvironment. The fucoidan-functionalized activated platelets-hitchhiking micelle was promising for the metastatic cancer treatment.
Collapse
|
47
|
|
48
|
Tian H, Lin L, Ba Z, Xue F, Li Y, Zeng W. Nanotechnology combining photoacoustic kinetics and chemical kinetics for thrombosis diagnosis and treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Guan Q, Dou H. Thrombus-Targeting Polymeric Nanocarriers and Their Biomedical Applications in Thrombolytic Therapy. Front Physiol 2021; 12:763085. [PMID: 34916956 PMCID: PMC8669757 DOI: 10.3389/fphys.2021.763085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Due to the high morbidity and mortality of cardiovascular diseases, there is an urgent need for research on antithrombotic strategies. In view of the short half-life, insufficient drug penetration, poor targeting capabilities, and hemorrhagic side-effects of traditional thrombus treatment methods, the combination of thrombolytic therapy and nanocarriers brought by the development of nanotechnology in recent years may provide effective solutions for these undesirable side-effects caused by insufficient targeting. Polymeric nanocarriers, based on macromolecules and various functional groups, can connect specific targeting molecules together through chemical modification to achieve the protection and targeted delivery of thrombolytic drugs. However, simple chemical molecular modifications may be easily affected by the physiological environment encountered in the circulatory system. Therefore, the modification of nanocarriers with cell membranes can provide camouflage to these platforms and help to extend their circulation time while also imparting them with the biological functions of cell membranes, thus providing them with precise targeting capabilities, among which the most important is the biological modification of platelet membranes. In addition, some nanoparticles with their own therapeutic functions have also been developed, such as polypyrrole, which can exhibit a photothermal effect to induce thrombolysis. Herein, combined with the mechanism of thrombosis and thrombolysis, we outline the recent advances achieved with thrombus-targeting nanocarriers with regard to thrombosis treatment. On this basis, the design considerations, advantages, and challenges of these thrombolytic therapies in clinical transformation are discussed.
Collapse
Affiliation(s)
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Shen M, Wang Y, Hu F, Lv L, Chen K, Xing G. Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules 2021; 26:molecules26226776. [PMID: 34833868 PMCID: PMC8619279 DOI: 10.3390/molecules26226776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
A thrombus, known as a blood clot, may form within the vascular system of the body and impede blood flow. Thrombosis is the most common underlying pathology of cardiovascular diseases, contributing to high morbidity and mortality. However, the main thrombolytic drugs (urokinase, streptokinase, etc.) have shortcomings, including a short half-life, serious side effects and a lack of targeting, that limit their clinical application. The use of nano-drug delivery systems is expected to address these problems and a variety of approaches, including biological and physical responsive systems, have been explored. In this report, recent advances in the development of targeted nano-drug delivery systems are thoroughly reviewed.
Collapse
Affiliation(s)
- Minghua Shen
- Department of Biochemistry and Molecular Biology, Yanbian University Medical College, Yanji 133002, China;
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (F.H.); (L.L.)
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (F.H.); (L.L.)
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (F.H.); (L.L.)
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (F.H.); (L.L.)
- Correspondence: (K.C.); (G.X.); Tel.: +86-10-88236456 (K.C.); +86-10-88235738 (G.X.)
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (Y.W.); (F.H.); (L.L.)
- Correspondence: (K.C.); (G.X.); Tel.: +86-10-88236456 (K.C.); +86-10-88235738 (G.X.)
| |
Collapse
|