1
|
Adly HA, El-Okby AWY, Yehya AA, El-Shamy AA, Galhom RA, Hashem MA, Ahmed MF. Circumferential Esophageal Reconstruction Using a Tissue-engineered Decellularized Tunica Vaginalis Graft in a Rabbit Model. J Pediatr Surg 2024; 59:1486-1497. [PMID: 38692944 DOI: 10.1016/j.jpedsurg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Pediatric surgeons have faced esophageal reconstruction challenges for decades owing to a variety of congenital and acquired conditions. This work aimed to introduce a reproducible and efficient approach for creating tissue-engineered esophageal tissue using bone marrow mesenchymal stem cells (BMSCs) cultured in preconditioned mediums seeded on a sheep decellularized tunica vaginalis (DTV) scaffold for partial reconstruction of a rabbit's esophagus. METHODS DTV was performed using SDS and Triton X-100 solutions. The decellularized grafts were employed alone (DTV group) or after recellularization with BMSCs cultured for 10 days in preconditioned mediums (RTV group) for reconstructing a 3 cm segmental defect in the cervical esophagus of rabbits (n = 20) after the decellularization process was confirmed. Rabbits were observed for one month, after which they were euthanized, and the reconstructed esophagi were harvested for histological analysis. RESULTS Six rabbits in the DTV group and eight rabbits in the RTV group survived until the end of the one-month study period. Despite histological examination demonstrating that both grafts completely repaired the esophageal defect, the RTV graft demonstrated a histological structure similar to that of the normal esophagus. The reconstructed esophagi in the RTV group revealed the arrangement of the different layers of the esophageal wall with the formation of newly formed blood vessels and Schwann-like cells. CONCLUSION DTV xenograft is a novel scaffold that promotes cell adhesion and differentiation and might be effectively utilized for regenerating esophageal tissue, paving the way for future clinical trials in pediatric patients.
Collapse
Affiliation(s)
- Hassan A Adly
- Pediatric Surgery Unit, General Surgery Department, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt.
| | - Abdel-Wahab Y El-Okby
- Department of Pediatric Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Abdel-Aziz Yehya
- Department of Pediatric Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed A El-Shamy
- Pediatric Surgery Unit, General Surgery Department, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Rania A Galhom
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Tissue Culture Lab, Center of Excellence of Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Human Anatomy and Embryology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mohamed A Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud F Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
3
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Godefroy W, Faivre L, Sansac C, Thierry B, Allain JM, Bruneval P, Agniel R, Kellouche S, Monasson O, Peroni E, Jarraya M, Setterblad N, Braik M, Even B, Cheverry S, Domet T, Albanese P, Larghero J, Cattan P, Arakelian L. Development and qualification of clinical grade decellularized and cryopreserved human esophagi. Sci Rep 2023; 13:18283. [PMID: 37880340 PMCID: PMC10600094 DOI: 10.1038/s41598-023-45610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.
Collapse
Affiliation(s)
- William Godefroy
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France.
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Caroline Sansac
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Paris, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Olivier Monasson
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Elisa Peroni
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Mohamed Jarraya
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint-Louis Plateforme Technologique Centre, Université Paris Cité - Inserm - CNRS, Paris, France
| | - Massymissa Braik
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Benjamin Even
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Sophie Cheverry
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
| | - Patricia Albanese
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Centre MEARY de Thérapie Cellulaire Et Génique, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Pierre Cattan
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| |
Collapse
|
5
|
Hashem MA, Metwally E, Mahmoud YK, Helal IE, Ahmed MF. Reconstruction of a partial esophageal defect using tunica vaginalis and buccal mucosa autograft: an experimental study in mongrel dogs. J Vet Med Sci 2023; 85:344-357. [PMID: 36709969 PMCID: PMC10076192 DOI: 10.1292/jvms.22-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In veterinary clinics, esophageal reconstruction is essential in many clinical situations. In this study, two autografts, the tunica vaginalis (TV) and the buccal mucosa (BM), were proposed to reconstruct a semi-circumferential cervical esophageal defect in dogs. This study aimed to verify whether these two grafts could successfully patch esophageal defects. Twelve male mongrel dogs were divided into two groups. Following cervical esophagoplasty, the defective area was patched with either a TV or a BM graft. Comprehensive clinical, serum biochemical, and histological analyses were performed to evaluate the two grafts. Throughout the study (120 days), the dogs survived the procedure well with minor complications. The lumen of the patched areas was covered with mucosa, with slight scar retraction. Compared with that of the natural esophagus, the average relative luminal diameter was not significantly decreased. Importantly, the measured cortisol and inflammatory marker levels returned to the preoperative levels after 14 days. Although histological examination revealed that both grafts repaired the esophageal defect with complete re-epithelialization, the BM graft showed a histological structure similar to that of the natural esophagus. Both grafts effectively repaired the esophageal defect with minor complications; therefore, both are recommended as promising low-cost clinical alternatives for cervical esophagoplasty in dogs.
Collapse
Affiliation(s)
- Mohamed A Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasmina K Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim E Helal
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud F Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Mansour RN, Karimizade A, Enderami SE, Abasi M, Talebpour Amiri F, Jafarirad A, Mellati A. The effect of source animal age, decellularization protocol, and sterilization method on bovine acellular dermal matrix as a scaffold for wound healing and skin regeneration. Artif Organs 2023; 47:302-316. [PMID: 36161305 DOI: 10.1111/aor.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Healing the full-thickness skin wounds has remained a challenge. One of the most frequently used grafts for skin regeneration is xenogeneic acellular dermal matrices (ADMs), including bovine ADMs. This study investigated the effect of the source animal age, enzymatic versus non-enzymatic decellularization protocols, and gamma irradiation versus ethylene oxide (EO) sterilization on the scaffold. METHODS ADMs were prepared using the dermises of fetal bovine or calf skins. All groups were decellularized through chemical and mechanical methods, unless T-FADM samples, in which an enzymatic step was added to the decellularization protocol. All groups were sterilized with ethylene oxide (EO), except G-FADM which was sterilized using gamma irradiation. The scaffolds were characterized through scanning electron microscopy, differential scanning calorimetry, tensile test, MTT assay, DNA quantification, and real-time PCR. The performance of the ADMs in wound treatment was also evaluated macroscopically and histologically. RESULTS All ADMs were effectively decellularized. In comparison to FADM (EO-sterilized fetal ADM), morphological, and mechanical properties of G-FADM, T-FADM, and CADM (EOsterilized calf ADM) were changed to different extents. In addition, the CADM and G-FADM were thermally more stable than the FADM and T-FADM. Although all ADMs were noncytotoxic, the wounds of the FADM, T-FADM, and G-FADM groups were contracted to almost 30.0% of the original area on day 7, significantly faster than the CADM (17.5% ± 1.7) and control (12.2% ± 1.59) groups. However, by day 21, all ADMs were mostly closed except for the untreated group (60.1 ± 1.8). CONCLUSION Altogether, fetal source and EO-sterilized samples performed better than calf source and gamma-sterilized samples unless in some mechanical properties. There was no added value in using enzymatic treatment during the decellularization process. Our results suggest that the age, decellularization, and sterilization methods of animal source should be selected based on the clinical requirements.
Collapse
Affiliation(s)
- Reyhaneh Nassiri Mansour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Abdolreza Jafarirad
- Department of Surgery, Zare Psychiatry and Burn Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
8
|
Hannon E, Pellegrini M, Scottoni F, Durkin N, Shibuya S, Lutman R, Proctor TJ, Hutchinson JC, Arthurs OJ, Phylactopoulos DE, Maughan EF, Butler CR, Eaton S, Lowdell MW, Bonfanti P, Urbani L, De Coppi P. Lessons learned from pre-clinical testing of xenogeneic decellularized esophagi in a rabbit model. iScience 2022; 25:105174. [PMID: 36217545 PMCID: PMC9547295 DOI: 10.1016/j.isci.2022.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022] Open
Abstract
Decellularization of esophagi from several species for tissue engineering is well described, but successful implantation in animal models of esophageal replacement has been challenging. The purpose of this study was to assess feasibility and applicability of esophageal replacement using decellularized porcine esophageal scaffolds in a new pre-clinical model. Following surgical replacement in rabbits with a vascularizing muscle flap, we observed successful anastomoses of decellularized scaffolds, cues of early neovascularization, and prevention of luminal collapse by the use of biodegradable stents. However, despite the success of the surgical procedure, the long-term survival was limited by the fragility of the animal model. Our results indicate that transplantation of a decellularized porcine scaffold is possible and vascular flaps may be useful to provide a vascular supply, but long-term outcomes require further pre-clinical testing in a different large animal model.
Collapse
Affiliation(s)
- Edward Hannon
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Paediatric Surgery, Leeds Children’s Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Marco Pellegrini
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Federico Scottoni
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Pediatric Surgery, Regina Margherita Children’s Hospital, Turin 10126, Italy
| | - Natalie Durkin
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Soichi Shibuya
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Roberto Lutman
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Toby J. Proctor
- Centre for Cell, Gene and Tissue Therapies, Royal Free Hospital & University College London, London NW3 2PF, UK
| | - J. Ciaran Hutchinson
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Owen J. Arthurs
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Demetra-Ellie Phylactopoulos
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Elizabeth F. Maughan
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Charing Cross Airway Service, Department of Otolaryngology, Charing Cross Hospital, Imperial Healthcare NHS Trust, London W6 8RF, UK
| | - Colin R. Butler
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,ENT Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark W. Lowdell
- Centre for Cell, Gene and Tissue Therapies, Royal Free Hospital & University College London, London NW3 2PF, UK
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London NW1 1AT, UK,Institute of Immunity & Transplantation, University College London, London NW3 2PP, UK
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK,Faculty of Life Sciences and Medicine, King’s College London, London SE5 8AF, UK
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK,Corresponding author
| |
Collapse
|
9
|
Barbon S, Biccari A, Stocco E, Capovilla G, D’Angelo E, Todesco M, Sandrin D, Bagno A, Romanato F, Macchi V, De Caro R, Agostini M, Merigliano S, Valmasoni M, Porzionato A. Bio-Engineered Scaffolds Derived from Decellularized Human Esophagus for Functional Organ Reconstruction. Cells 2022; 11:cells11192945. [PMID: 36230907 PMCID: PMC9563623 DOI: 10.3390/cells11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70–98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix–cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2–6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Andrea Biccari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Giovanni Capovilla
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Marco Agostini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-96-40-160
| | - Stefano Merigliano
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Michele Valmasoni
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| |
Collapse
|
10
|
Ozcakir E, Celik F, Guler S, Avci Z, Kaya M. The Use of Acellular Matrices Obtained by the Esophagus, Intestine, and Trachea for Esophageal Wall Repair: an Experimental Study on a Rat Model. Indian J Surg 2022. [DOI: 10.1007/s12262-022-03542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Drochon A, Lesieur R, Durand M. Fluid dynamics characterisation of a rotating bioreactor for tissue engineering. Med Eng Phys 2022; 105:103831. [DOI: 10.1016/j.medengphy.2022.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
|
12
|
Orozco-Vega A, Montes-Rodríguez MI, Luévano-Colmenero GH, Barros-Gómez J, Muñoz-González PU, Flores-Moreno M, Delgadillo-Holtfort I, Vega-González A, Rojo FJ, Guinea GV, Mendoza-Novelo B. Decellularization of porcine esophageal tissue at three diameters and the bioscaffold modification with EETs-ECM gel. J Biomed Mater Res A 2022; 110:1669-1680. [PMID: 35703732 DOI: 10.1002/jbm.a.37416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022]
Abstract
Damaged complex modular organs repair is a current clinical challenge in which one of the primary goals is to keep their biological response. An interesting case of study it is the porcine esophagus since it is a tubular muscular tissue selected as raw material for tissue engineering. The design of esophageal constructs can draw on properties of the processed homologous extracellular matrix (ECM). In this work, we report the decellularization of multilayered esophagus tissue from 1-, 21- and 45-days old piglets through the combination of reversible alkaline swelling and detergent perfusion. The bioscaffolds were characterized in terms of their residual composition and tensile mechanical properties. The biological response to esophageal submucosal derived bioscaffolds modified with ECM gel containing epoxyeicosatrienoic acids (EETs) was then evaluated. Results suggest that the composition (laminin, fibronectin, and sulphated glycosaminoglycans/sGAG) depends on the donor age: a better efficiency of the decellularization process combined with a higher retention of sGAG and fibronectin is observed in piglet esophageal scaffolds. The heterogeneity of this esophageal ECM is maintained, which implied the preservation of anisotropic tensile properties. Coating of bioscaffolds with ECM gel is suitable for carrying esophageal epithelial cells and EETs. Bioactivity of EETs-ECM gel modified esophageal submucosal bioscaffolds is observed to promote neovascularization and antiinflammatory after rabbit full-thickness esophageal defect replacement.
Collapse
Affiliation(s)
- Adriana Orozco-Vega
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico
| | - Metzeri I Montes-Rodríguez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico.,Hospital Gineco-Pediatra No 48, Centro Médico Nacional del Bajío, UMAE, Instituto Mexicano del Seguro Social, León, Gto, Mexico
| | - Guadalupe H Luévano-Colmenero
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico.,Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria, Gto, Mexico
| | - Jimena Barros-Gómez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico
| | | | | | | | - Arturo Vega-González
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | | |
Collapse
|
13
|
Xu R, Fang X, Wu S, Wang Y, Zhong Y, Hou R, Zhang L, Shao L, Pang Q, Zhang J, Cui X, Zuo R, Yao L, Zhu Y. Development and Prospect of Esophageal Tissue Engineering. Front Bioeng Biotechnol 2022; 10:853193. [PMID: 35252159 PMCID: PMC8892191 DOI: 10.3389/fbioe.2022.853193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, patients with esophageal cancer, especially advanced patients, usually use autologous tissue for esophageal alternative therapy. However, an alternative therapy is often accompanied by serious complications such as ischemia and leakage, which seriously affect the prognosis of patients. Tissue engineering has been widely studied as one of the ideal methods for the treatment of esophageal cancer. In view of the complex multi-layer structure of the natural esophagus, how to use the tissue engineering method to design the scaffold with structure and function matching with the natural tissue is the principle that the tissue engineering method must follow. This article will analyze and summarize the construction methods, with or without cells, and repair effects of single-layer scaffold and multi-layer scaffold. Especially in the repair of full-thickness and circumferential esophageal defects, the flexible design method and the binding force between the layers of the scaffold are very important. In short, esophageal tissue engineering technology has broad prospects and plays a more and more important role in the treatment of esophageal diseases.
Collapse
Affiliation(s)
- Rui Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Xinnan Fang
- School of Medicine, Ningbo University, Ningbo, China
| | - Shengqian Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiyin Wang
- School of Medicine, Ningbo University, Ningbo, China
| | - Yi Zhong
- School of Medicine, Ningbo University, Ningbo, China
| | - Ruixia Hou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Ruixia Hou,
| | - Libing Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Lei Shao
- School of Medicine, Ningbo University, Ningbo, China
| | - Qian Pang
- School of Medicine, Ningbo University, Ningbo, China
| | - Jian Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xiang Cui
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Rongyue Zuo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Liwei Yao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
15
|
Decellularised extracellular matrix-based biomaterials for repair and regeneration of central nervous system. Expert Rev Mol Med 2022; 23:e25. [PMID: 34994341 PMCID: PMC9884794 DOI: 10.1017/erm.2021.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS), consisting of the brain and spinal cord, regulates the mind and functions of the organs. CNS diseases, leading to changes in neurological functions in corresponding sites and causing long-term disability, represent one of the major public health issues with significant clinical and economic burdens worldwide. In particular, the abnormal changes in the extracellular matrix under various disease conditions have been demonstrated as one of the main factors that can alter normal cell function and reduce the neuroregeneration potential in damaged tissue. Decellularised extracellular matrix (dECM)-based biomaterials have been recently utilised for CNS applications, closely mimicking the native tissue. dECM retains tissue-specific components, including proteoglycan as well as structural and functional proteins. Due to their unique composition, these biomaterials can stimulate sensitive repair mechanisms associated with CNS damages. Herein, we discuss the decellularisation of the brain and spinal cord as well as recellularisation of acellular matrix and the recent progress in the utilisation of brain and spinal cord dECM.
Collapse
|
16
|
Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Kim SD, Kim IG, Tran HN, Cho H, Janarthanan G, Noh I, Chung EJ. Three-Dimensional Printed Design of Antibiotic-Releasing Esophageal Patches for Antimicrobial Activity Prevention. Tissue Eng Part A 2021; 27:1490-1502. [PMID: 33847168 DOI: 10.1089/ten.tea.2020.0268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pharyngoesophageal defects can cause exposure to various bacterial flora and severe inflammation. We fabricated a biodegradable polycaprolactone (PCL) patch composed of both thin film and three-dimensional (3D) printed lattice, and then investigated the efficacy of pharyngoesophageal reconstruction by using 3D printed antibiotic-releasing PCL patches that inhibited early inflammation by sustained tetracycline (TCN) release from both thin PCL films and printed rods implanted in esophageal partial defects. PCL was 3D printed in lattice form on a presolution casted PCL thin film at ∼100 μm resolution. TCN was loaded onto the PCL-printed patches by 3D printing a mixture of TCN and PCL particles melted at 100°C. TCN exhibited sustained release in vitro for over 1 month. After loading TCN, the patches showed decreased tensile strength and Young's modulus, and less than 20% TCN was slowly released from the 2.5% TCN-loaded PCL patches over 150 days. Cytotoxicity tests of extract solutions from patch samples demonstrated excellent in vitro cell compatibility. Antibiotic-releasing PCL patches were then transplanted into partial esophageal defects in rats. Microcomputed tomography analysis revealed no leak of orally injected contrast agent in the entire esophagus. Tissue remodeling was examined through histological responses of M1 and M2 macrophages. In particular, the 1% and 3% TCN patch groups exhibited significant muscle layer regeneration by desmin immunostaining. Further histological and immunofluorescence analyses revealed that the 1% and 3% TCN patch groups exhibited the best esophageal regeneration according to reepithelialization, neovascularization, and elastin texture around the implanted sites. Our antibiotic-releasing patch successfully consolidates the regenerative potential of esophageal muscle and mucosa and the antibacterial activity of TCN for 3D esophageal reconstruction. Impact statement Anastomosis site leakage and necrosis after pharyngoesophageal transplantation inevitably causes mortality because the mediastinum and neck compartments become contaminated. Herein, we present antibiotic-releasing pharyngoesophageal patch that prevents saliva leakage and has an antimicrobial effect. We have demonstrated antibiotic release profile and mechanical properties for esophageal transplantation. Upon esophageal transplantation of antibiotic-releasing polycaprolactone patches, antimicrobial effects and muscle regeneration around the graft sites were clearly identified in the group containing 1% and 3% of tetracycline. The esophageal graft led to the remarkable recovery throughout reepithelialization, neovascularization, and elastin texture of around the implanted sites. We believe that current system is capable of various applications that require antibacterial in vivo.
Collapse
Affiliation(s)
- Seong Dong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, National Medical Center, Seoul, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hao Nguyen Tran
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Jones BC, Shibuya S, Durkin N, De Coppi P. Regenerative medicine for childhood gastrointestinal diseases. Best Pract Res Clin Gastroenterol 2021; 56-57:101769. [PMID: 35331401 DOI: 10.1016/j.bpg.2021.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Several paediatric gastrointestinal diseases result in life-shortening organ failure. For many of these conditions, current therapeutic options are suboptimal and may not offer a cure. Regenerative medicine is an inter-disciplinary field involving biologists, engineers, and clinicians that aims to produce cell and tissue-based therapies to overcome organ failure. Exciting advances in stem cell biology, materials science, and bioengineering bring engineered gastrointestinal cell and tissue therapies to the verge of clinical trial. In this review, we summarise the requirements for bioengineered therapies, the possible sources of the various cellular and non-cellular components, and the progress towards clinical translation of oesophageal and intestinal tissue engineering to date.
Collapse
Affiliation(s)
- Brendan C Jones
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Soichi Shibuya
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie Durkin
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
19
|
Lin S, He Y, Tao M, Wang A, Ao Q. Fabrication and evaluation of an optimized xenogenic decellularized costal cartilage graft: preclinical studies of a novel biocompatible prosthesis for rhinoplasty. Regen Biomater 2021; 8:rbab052. [PMID: 34584748 PMCID: PMC8473975 DOI: 10.1093/rb/rbab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
On account of the poor biocompatibility of synthetic prosthesis, millions of rhinoplasty recipients have been forced to choose autologous costal cartilage as grafts, which suffer from limited availability, morbidity at the donor site and prolonged operation time. Here, as a promising alternative to autologous costal cartilage, we developed a novel xenogeneic costal cartilage and explored its feasibility as a rhinoplasty graft for the first time. Adopting an improved decellularization protocol, in which the ionic detergent was substituted by trypsin, the resulting decellularized graft was confirmed to preserve more structural components and better mechanics, and eliminate cellular components effectively. The in vitro and in vivo compatibility experiments demonstrated that the decellularized graft showed excellent biocompatibility and biosecurity. Additionally, the functionality assessment of rhinoplasty was performed in a rabbit model, and the condition of grafts after implantation was comprehensively evaluated. The optimized graft exhibited better capacity to reduce the degradation rate and maintain the morphology, in comparison to the decellularized costal cartilage prepared by conventional protocol. These findings indicate that this optimized graft derived from decellularized xenogeneic costal cartilage provides a new prospective for future investigations of rhinoplasty prosthesis and has great potential for clinical application.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Plastic Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 11004, China
- Department of Tissue Engineering, China Medical University, 77 Puhe Road, Shenyang 110112, China
| | - Yuanjia He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang 110033, China
| | - Meihan Tao
- Department of Tissue Engineering, China Medical University, 77 Puhe Road, Shenyang 110112, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, 77 Puhe Road, Shenyang 110112, China
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, 24 Yihuan Street, Chengdu 610065, China
| |
Collapse
|
20
|
Hou N, Xu X, Lv D, Lu Y, Li J, Cui P, Ma R, Luo X, Tang Y, Zheng Y. Tissue-engineered esophagus: recellular esophageal extracellular matrix based on perfusion-decellularized technique and mesenchymal stem cells. Biomed Mater 2021; 16. [PMID: 34384057 DOI: 10.1088/1748-605x/ac1d3d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Perfusion-decellularization was an interesting technique to generate a natural extracellular matrix (ECM) with the complete three-dimensional anatomical structure and vascular system. In this study, the esophageal ECM (E-ECM) scaffold was successfully constructed by perfusion-decellularized technique through the vascular system for the first time. And the physicochemical and biological properties of the E-ECM scaffolds were evaluated. The bone marrow mesenchymal stem cells (BMSCs) were induced to differentiate into myocytesin vitro. E-ECM scaffolds reseeded with myocytes were implanted into the greater omenta to obtain recellular esophageal ECM (RE-ECM), a tissue-engineered esophagus. The results showed that the cells of the esophagi were completely and uniformly removed after perfusion. E-ECM scaffolds retained the original four-layer organizational structure and vascular system with excellent biocompatibility. And the E-ECM scaffolds had no significant difference in mechanical properties comparing with fresh esophagi,p> 0.05. Immunocytochemistry showed positive expression ofα-sarcomeric actin, suggesting that BMSCs had successfully differentiated into myocytes. Most importantly, we found that in the RE-ECM muscularis, the myocytes regenerated linearly and continuously and migrated to the deep, and the tissue vascularization was obvious. The cell survival rates at 1 week and 2 weeks were 98.5 ± 3.0% and 96.4 ± 4.6%, respectively. It was demonstrated that myocytes maintained the ability for proliferation and differentiation for at least 2 weeks, and the cell activity was satisfactory in the RE-ECM. It follows that the tissue-engineered esophagus based on perfusion-decellularized technique and mesenchymal stem cells has great potential in esophageal repair. It is proposed as a promising alternative for reconstruction of esophageal defects in the future.
Collapse
Affiliation(s)
- Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.,Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoli Xu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China.,Department of Otorhinolaryngology, University-Town Hospital, Chongqing Medical University, Chongqing Municipality, People's Republic of China
| | - Die Lv
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Yanqing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Pengcheng Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiaoming Luo
- Department of Biomedical Science, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Ying Tang
- Department of Pathology, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Yun Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
21
|
Vasanthan KS, Srinivasan V, Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regen Med 2021; 16:775-802. [PMID: 34427104 DOI: 10.2217/rme-2021-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of tissue engineering involves regeneration and repair of damaged tissue and organs using various combinations of cells, growth factors and scaffolds. The extracellular matrix (ECM) forms the integral part of the scaffold to induce cell proliferation thereby leading to new tissue formation. Decellularization technique provides decellularized ECM (dECM), free of cells while preserving the in vivo biomolecules. In this review, we focus on the detailed methodology of diverse decellularization techniques for various organs of different animals, and the biomedical applications employing the dECM. A culmination of different methods of decellularization is optimized, which offers a suitable microenvironment mimicking the native in vivo topography for in vitro organ regeneration. A detailed assessment of the dECM provides information on the microarchitecture, presence of ECM proteins, biocompatibility and cell proliferation. dECM has also been processed as scaffolds and drug-delivery vehicles, and utilized for regeneration.
Collapse
Affiliation(s)
- Kirthanashri S Vasanthan
- Amity Institute of Molecular Medicine & Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Deepti Pandita
- Delhi Pharmaceutical Science & Research University, Government of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
22
|
Nazeer MA, Karaoglu IC, Ozer O, Albayrak C, Kizilel S. Neovascularization of engineered tissues for clinical translation: Where we are, where we should be? APL Bioeng 2021; 5:021503. [PMID: 33834155 PMCID: PMC8024034 DOI: 10.1063/5.0044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration in vitro; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies. The article first presents a detailed description of the steps in neovascularization and the roles of extracellular matrix elements such as GFs in angiogenesis. It then delves into decellularization, cell, and GF-based strategies employed thus far for therapeutic angiogenesis, with a particularly detailed examination of different methods by which GFs are delivered in biomaterial scaffolds. Finally, interdisciplinary approaches involving advancement in biomaterials science and current state of technological development in fabrication techniques are critically evaluated, and a list of remaining challenges is presented that need to be solved for successful translation to the clinics.
Collapse
Affiliation(s)
| | | | - Onur Ozer
- Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Cem Albayrak
- Authors to whom correspondence should be addressed: and
| | - Seda Kizilel
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
23
|
Model L, Wiesel O. A narrative review of esophageal tissue engineering and replacement: where are we? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:910. [PMID: 34164544 PMCID: PMC8184476 DOI: 10.21037/atm-20-3906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-gap esophageal defects, whether congenital or acquired, are very difficult to manage. Any significant surgical peri-esophageal dissection that is performed to allow for potential stretching of two ends of a defect interrupts the esophageal blood supply and leads to complications such as leak and stricture, even in the youngest, healthiest patients. The term “congenital” applied to these defects refers mainly to long-gap esophageal atresia (LGA). Causes of acquired long-segment esophageal disruption include recurrent leaks and fistulae after primary repair, refractory GERD, caustic ingestions, cancer, and strictures. 5,000–10,000 patients per year in the US require esophageal replacement. Gastric, colonic, and jejunal pull-up surgeries are fraught with high rates of both short and long term complications thus creating a space for a better option. Since the 1970’s many groups around the world have been unsuccessfully attempting esophageal replacement with tissue-engineered grafts in various animal models. But, recent advances in these models are now combining novel technologic advances in materials bioscience, stem-cell therapies, and transplantation and are showing increasing promise to human translational application. Transplantation has been heretofore unsuccessful, but given modern improvements in transplant microsurgery and immunosuppressive medications, pioneering trials in animal models are being undertaken now. These rapidly evolving medical innovations will be reviewed here.
Collapse
Affiliation(s)
- Lynn Model
- Department of Pediatric Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Ory Wiesel
- Department of Thoracic Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA
| |
Collapse
|
24
|
Schizas D, Frountzas M, Sgouromallis E, Spartalis E, Mylonas KS, Papaioannou TG, Dimitroulis D, Nikiteas N. Esophageal defect repair by artificial scaffolds: a systematic review of experimental studies and proportional meta-analysis. Dis Esophagus 2021; 34:5917398. [PMID: 33016317 DOI: 10.1093/dote/doaa104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The traditional technique of gastrointestinal reconstruction of the esophagus after esophagectomy presents plenty of complications. Hence, tissue engineering has been introduced as an effective artificial alternative with potentially fewer complications. Three types of esophageal scaffolds have been used in experimental studies so far. The aim of our meta-analysis is to present the postoperative outcomes after esophageal replacement with artificial scaffolds and the investigation of possible factors that affect these outcomes. METHODS The present proportional meta-analysis was designed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and A MeaSurement Tool to Assess systematic Reviews guidelines. We searched Medline, Scopus, Clinicaltrials.gov, EMBASE, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases from inception until February 2020. RESULTS Overall, 32 studies were included that recruited 587 animals. The pooled morbidity after esophageal scaffold implantation was 53.4% (95% CI = 36.6-70.0%). The pooled survival interval was 111.1 days (95% CI = 65.5-156.8 days). Graft stenosis (46%), postoperative dysphagia (15%), and anastomotic leak (12%) were the most common complications after esophageal scaffold implantation. Animals that underwent an implantation of an artificial scaffold in the thoracic part of their esophagus presented higher survival rates than animals that underwent scaffold implantation in the cervical or abdominal part of their esophagus (P < 0.001 and P = 0.011, respectively). CONCLUSION Tissue engineering seems to offer an effective alternative for the repair of esophageal defects in animal models. Nevertheless, issues like graft stenosis and lack of motility of the esophageal scaffolds need to be addressed in future experimental studies before scaffolds can be tested in human trials.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.,Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece
| | - Maximos Frountzas
- First Propaedeutic Department of Surgery, Medical School, National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, Greece.,Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece
| | - Emmanouil Sgouromallis
- Third Department of Surgery, Athens General Hospital "Georgios Gennimatas", Athens, Greece.,Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece
| | | | - Konstantinos S Mylonas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Theodore G Papaioannou
- First Department of Cardiology, Biomedical Engineering Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece.,Second Propedeutic Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece.,Second Propedeutic Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
25
|
Zhou XB, Xu SW, Ye LP, Mao XL, Chen YH, Wu JF, Cai Y, Wang Y, Wang L, Li SW. Progress of esophageal stricture prevention after endoscopic submucosal dissection by regenerative medicine and tissue engineering. Regen Ther 2021; 17:51-60. [PMID: 33997185 PMCID: PMC8100352 DOI: 10.1016/j.reth.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) has been widely accepted as an effective treatment for early esophageal cancer. However, post-ESD esophageal stricture remains a thorny issue. We herein review many strategies for preventing post-ESD esophageal stricture, as well as discuss their strengths and weaknesses. These strategies include pharmacological prophylaxis, esophageal stent and tissue engineering and regenerative medicine treatment. In this review, we summarize these studies and discuss the underlying progress and future directions of tissue engineering and regenerative medicine treatment.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- ADSC, Autologous adipose-derived stem cells
- ASGS, autologous skin graft surgery
- ChST15, carbohydrate sulfotransferase 15
- EBD, endoscopic balloon dilation
- ECM, extracellular matrix
- ESD, endoscopic submucosal dissection
- Endoscopic submucosal dissection
- Esophageal stricture
- FCMS, fully covered metal stent
- OMECs, oral mucosal epithelial cell sheets
- PGAs, polyglycolic acid sheet
- PIPAAm, poly(N-isopropylacrylamide)
- Regenerative medicine
- SESCNs, superficial esophageal squamous cell neoplasms
- SIS, small intestinal submucosa
- SeMS, self-expandable metal stents
- TA, triamcinolone acetonide
- TS-PGA, triamcinolone-soaked polyglycolic acid sheet
- Tissue engineering
- Tβ4, Thymosin β4
- ccESTD, complete circular endoscopic submucosal tunnel dissection
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Shi-Wen Xu
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Xin-Li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jian-Fen Wu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Yue Cai
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Yi Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Li Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| |
Collapse
|
26
|
Kanetaka K, Eguchi S. Regenerative medicine for the upper gastrointestinal tract. Regen Ther 2020; 15:129-137. [PMID: 33426211 PMCID: PMC7770370 DOI: 10.1016/j.reth.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The main surgical strategy for gastrointestinal tract malignancy is en bloc resection, which consists of not only resection of the involved organs but also simultaneous resection of the surrounding or adjacent mesenteries that contain lymph vessels and nodes. After resection of the diseased organs, the defect of the gastrointestinal conduit is replaced with organs located downstream, such as the stomach and jejunum. However, esophageal and gastric reconstruction using these natural substitutes is associated with a diminished quality of life due to the loss of the reserve function, damage to the antireflux barrier, and dumping syndrome. Thus, replacement of the deficit after resection with the patient's own regenerated tissue to compensate for the lost function and tissue using regenerative medicine will be an ideal treatment. Many researchers have been trying to construct artificial organs through tissue engineering techniques; however, none have yet succeeded in growing a whole organ because of the complicated functions these organs perform, such as the processing and absorption of nutrients. While exciting results have been reported with regard to tissue engineering techniques concerning the upper gastrointestinal tract, such as the esophagus and stomach, most of these achievements have been observed in animal models, and few successful approaches in the clinical setting have been reported for the replacement of mucosal defects. We review the recent progress in regenerative medicine in relation to the upper gastrointestinal tract, such as the esophagus and stomach. We also focus on the functional capacity of regenerated tissue and its role as a culture system to recapitulate the mechanisms underlying infectious disease. With the emergence of technology such as the fabrication of decellularized constructs, organoids and cell sheet medicine, collaboration between gastrointestinal surgery and regenerative medicine is expected to help establish novel therapeutic modalities in the future.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Tissue Engineering and Regenerative Therapeutics in Gastrointestinal Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
27
|
Park H, Kim IG, Wu Y, Cho H, Shin J, Park SA, Chung E. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and
3D
printing polycaprolactone scaffolds using a rat model. Head Neck 2020; 43:833-848. [DOI: 10.1002/hed.26540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanaro Park
- Department of Otorhinolaryngology‐Head & Neck Surgery Samsung Changwon Hospital, Sungkyunkwan University School of Medicine Changwon South Korea
| | - In Gul Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Yanru Wu
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Hana Cho
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Jung‐Woog Shin
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Su A Park
- Department of Nature‐Inspired Nanoconvergence Systems Korea Institute of Machinery and Materials Daejeon Republic of Korea
| | - Eun‐Jae Chung
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| |
Collapse
|
28
|
Use of bioactive extracellular matrix fragments as a urethral bulking agent to treat stress urinary incontinence. Acta Biomater 2020; 117:156-166. [PMID: 33035698 DOI: 10.1016/j.actbio.2020.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022]
Abstract
Injection of urethral bulking agents is a low-risk, minimally invasive surgical procedure to treat stress urinary incontinence (SUI). In this study, we developed a promising injectable bulking agent comprising extracellular matrix fragments of adipose-derived stem cell sheets (ADSC ECM) and investigated its effectiveness in urethral bulking therapy. The structural integrity and proteins of ADSC sheet ECM were well retained in decellularized ADSC ECM fragments. To locate transplanted ADSC ECM fragments, they were labeled with ultrasmall super-paramagnetic iron oxide nanoparticles, which enabled in vivo monitoring after implantation in a SUI rat model for up to 4 weeks. When ADSC ECM fragments were injected into the rat urethra, they became fully integrated with the surrounding tissue within 1 week. Four weeks after transplantation, host cells had regenerated within the ADSC ECM fragment injection area. Moreover, new smooth muscle tissue had formed around the ADSC ECM fragments, as confirmed by positive staining of myosin. These results indicate that injection of ECM fragments may be a promising minimally invasive approach for treating SUI.
Collapse
|
29
|
Ha DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, Lee SW, Kim HJ, Cho JH, Cho DW. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials 2020; 266:120477. [PMID: 33120198 DOI: 10.1016/j.biomaterials.2020.120477] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/26/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Radiation esophagitis, the most common acute adverse effect of radiation therapy, leads to unwanted consequences including discomfort, pain, an even death. However, no direct cure exists for patients suffering from this condition, with the harmful effect of ingestion and acid reflux on the damaged esophageal mucosa remaining an unresolved problem. Through the delivery of the hydrogel with stent platform, we aimed to evaluate the regenerative capacity of a tissue-specific decellularized extracellular matrix (dECM) hydrogel on damaged tissues. For this, an esophagus-derived dECM (EdECM) was developed and shown to have superior biofunctionality and rheological properties, as well as physical stability, potentially providing a better microenvironment for tissue development. An EdECM hydrogel-loaded stent was sequentially fabricated using a rotating rod combined 3D printing system that showed structural stability and protected a loaded hydrogel during delivery. Finally, following stent implantation, the therapeutic effect of EdECM was examined in a radiation esophagitis rat model. Our findings demonstrate that EdECM hydrogel delivery via a stent platform can rapidly resolve an inflammatory response, thus promoting a pro-regenerative microenvironment. The results suggest a promising therapeutic strategy for the treatment of radiation esophagitis.
Collapse
Affiliation(s)
- Dong-Heon Ha
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; EDmicBio, Inc., South Korea
| | - Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jae Yeon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; Department of Companion Animal Health, Daegu Haany University, Gyeongsan, South Korea
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jungbin Yoon
- Center for Rapid Prototyping based 3D Tissue/Organ Printing, Pohang University of Science and Technology, Pohang, South Korea
| | - Tugce Sen
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea; Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, South Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Ho Cho
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, South Korea; CNU Biomed Center, Chonnam National University Hwasun Hospital, Hwason, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea; Center for Rapid Prototyping based 3D Tissue/Organ Printing, Pohang University of Science and Technology, Pohang, South Korea; Postech-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang, South Korea; Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
30
|
Farhat W, Chatelain F, Marret A, Faivre L, Arakelian L, Cattan P, Fuchs A. Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials 2020; 267:120465. [PMID: 33129189 DOI: 10.1016/j.biomaterials.2020.120465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
In esophageal pathologies, such as esophageal atresia, cancers, caustic burns, or post-operative stenosis, esophageal replacement is performed by using parts of the gastrointestinal tract to restore nutritional autonomy. However, this surgical procedure most often does not lead to complete functional recovery and is instead associated with many complications resulting in a decrease in the quality of life and survival rate. Esophageal tissue engineering (ETE) aims at repairing the defective esophagus and is considered as a promising therapeutic alternative. Noteworthy progress has recently been made in the ETE research area but strong challenges remain to replicate the structural and functional integrity of the esophagus with the approaches currently being developed. Within this context, 3D bioprinting is emerging as a new technology to facilitate the patterning of both cellular and acellular bioinks into well-organized 3D functional structures. Here, we present a comprehensive overview of the recent advances in tissue engineering for esophageal reconstruction with a specific focus on 3D bioprinting approaches in ETE. Current biofabrication techniques and bioink features are highlighted, and these are discussed in view of the complexity of the native esophagus that the designed substitute needs to replace. Finally, perspectives on recent strategies for fabricating other tubular organ substitutes via 3D bioprinting are discussed briefly for their potential in ETE applications.
Collapse
Affiliation(s)
- Wissam Farhat
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - François Chatelain
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Auriane Marret
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Lionel Faivre
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Lousineh Arakelian
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Pierre Cattan
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Digestive, Hôpital Saint-Louis, Paris, France
| | - Alexandra Fuchs
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France.
| |
Collapse
|
31
|
Marzaro M, Algeri M, Tomao L, Tedesco S, Caldaro T, Balassone V, Contini AC, Guerra L, Federici D’Abriola G, Francalanci P, Caristo ME, Lupoi L, Boskoski I, Bozza A, Astori G, Pozzato G, Pozzato A, Costamagna G, Dall’Oglio L. Successful muscle regeneration by a homologous microperforated scaffold seeded with autologous mesenchymal stromal cells in a porcine esophageal substitution model. Therap Adv Gastroenterol 2020; 13:1756284820923220. [PMID: 32523626 PMCID: PMC7257852 DOI: 10.1177/1756284820923220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Since the esophagus has no redundancy, congenital and acquired esophageal diseases often require esophageal substitution, with complicated surgery and intestinal or gastric transposition. Peri-and-post-operative complications are frequent, with major problems related to the food transit and reflux. During the last years tissue engineering products became an interesting therapeutic alternative for esophageal replacement, since they could mimic the organ structure and potentially help to restore the native functions and physiology. The use of acellular matrices pre-seeded with cells showed promising results for esophageal replacement approaches, but cell homing and adhesion to the scaffold remain an important issue and were investigated. METHODS A porcine esophageal substitute constituted of a decellularized scaffold seeded with autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) was developed. In order to improve cell seeding and distribution throughout the scaffolds, they were micro-perforated by Quantum Molecular Resonance (QMR) technology (Telea Electronic Engineering). RESULTS The treatment created a microporous network and cells were able to colonize both outer and inner layers of the scaffolds. Non seeded (NSS) and BM-MSCs seeded scaffolds (SS) were implanted on the thoracic esophagus of 4 and 8 pigs respectively, substituting only the muscle layer in a mucosal sparing technique. After 3 months from surgery, we observed an esophageal substenosis in 2/4 NSS pigs and in 6/8 SS pigs and a non-practicable stricture in 1/4 NSS pigs and 2/8 SS pigs. All the animals exhibited a normal weight increase, except one case in the SS group. Actin and desmin staining of the post-implant scaffolds evidenced the regeneration of a muscular layer from one anastomosis to another in the SS group but not in the NSS one. CONCLUSIONS A muscle esophageal substitute starting from a porcine scaffold was developed and it was fully repopulated by BM-MSCs after seeding. The substitute was able to recapitulate in shape and function the original esophageal muscle layer.
Collapse
Affiliation(s)
| | - Mattia Algeri
- Hemato-Oncology, Ospedale Pediatrico Bambino
Gesù, Roma, Italy
| | - Luigi Tomao
- Hemato-Oncology, Ospedale Pediatrico Bambino
Gesù, Roma, Italy
| | | | - Tamara Caldaro
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Valerio Balassone
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Anna Chiara Contini
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Luciano Guerra
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | | | | | - Angela Bozza
- LTCA, ULSS 8 Berica, Vicenza, Italy,Laboratorio di Terapie Cellulari Avanzate,
Vicenza, Italy
| | - Giuseppe Astori
- LTCA, ULSS 8 Berica, Vicenza, Italy,Laboratorio di Terapie Cellulari Avanzate,
Vicenza, Italy
| | | | | | - Guido Costamagna
- Digestive Endoscopy Unit, Fondazione
Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luigi Dall’Oglio
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| |
Collapse
|
32
|
Nam H, Jeong HJ, Jo Y, Lee JY, Ha DH, Kim JH, Chung JH, Cho YS, Cho DW, Lee SJ, Jang J. Multi-layered Free-form 3D Cell-printed Tubular Construct with Decellularized Inner and Outer Esophageal Tissue-derived Bioinks. Sci Rep 2020; 10:7255. [PMID: 32350326 PMCID: PMC7190629 DOI: 10.1038/s41598-020-64049-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
The incidences of various esophageal diseases (e.g., congenital esophageal stenosis, tracheoesophageal fistula, esophageal atresia, esophageal cancer) are increasing, but esophageal tissue is difficult to be recovered because of its weak regenerative capability. There are no commercialized off-the-shelf alternatives to current esophageal reconstruction and regeneration methods. Surgeons usually use ectopic conduit tissues including stomach and intestine, presumably inducing donor site morbidity and severe complications. To date, polymer-based esophageal substitutes have been studied as an alternative. However, the fabrication techniques are nearly limited to creating only cylindrical outer shapes with the help of additional apparatus (e.g., mandrels for electrospinning) and are unable to recapitulate multi-layered characteristic or complex-shaped inner architectures. 3D bioprinting is known as a suitable method to fabricate complex free-form tubular structures with desired pore characteristic. In this study, we developed a extrusion-based 3D printing technique to control the size and the shape of the pore in a single extrusion process, so that the fabricated structure has a higher flexibility than that fabricated in the conventional process. Based on this suggested technique, we developed a bioprinted 3D esophageal structure with multi-layered features and converged with biochemical microenvironmental cues of esophageal tissue by using decellularizedbioinks from mucosal and muscular layers of native esophageal tissues. The two types of esophageal tissue derived-decellularized extracellular matrix bioinks can mimic the inherent components and composition of original tissues with layer specificity. This structure can be applied to full-thickness circumferential esophageal defects and esophageal regeneration.
Collapse
Affiliation(s)
- Hyoryung Nam
- Department of Creative IT Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, Iksan-daero, Iksan, Jeollabuk-do, Republic of Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Yeon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - Dong-Heon Ha
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - Ji Hyun Kim
- Department of Surgery, Collage of Medicine, The Catholic University of Korea, Banpo-daero, Seoul, Republic of Korea
| | - Jae Hee Chung
- Department of Surgery, Collage of Medicine, The Catholic University of Korea, Banpo-daero, Seoul, Republic of Korea
| | - Young-Sam Cho
- Department of Mechanical Engineering, Wonkwang University, Iksan-daero, Iksan, Jeollabuk-do, Republic of Korea
- Department of Mechanical and Design Engineering, Wonkwang University, Iksan-daero, Iksan, Jeollabuk-do, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, Iksan-daero, Iksan, Jeollabuk-do, Republic of Korea.
- Department of Mechanical and Design Engineering, Wonkwang University, Iksan-daero, Iksan, Jeollabuk-do, Republic of Korea.
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
33
|
Pisani S, Croce S, Chiesa E, Dorati R, Lenta E, Genta I, Bruni G, Mauramati S, Benazzo A, Cobianchi L, Morbini P, Caliogna L, Benazzo M, Avanzini MA, Conti B. Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering. Int J Mol Sci 2020; 21:ijms21051764. [PMID: 32143536 PMCID: PMC7084816 DOI: 10.3390/ijms21051764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Aim of work was to locate a simple, reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited, namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size, pore orientation, porosity, and pore distribution were produced using two different techniques, such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity, seeding efficiency, and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method, as these conditions successfully improved the cellularization of polymeric patches. Furthermore, the investigation provided interesting information on patches’ stability in physiological simulating experimental conditions. Considering the in vitro results, it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover, the protocol turned out to be simple, repeatable, and reproducible.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (L.C.)
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
- Correspondence:
| | - Elisa Lenta
- Department of Paediatric Oncoaematology, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (E.L.); (M.A.A.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Simone Mauramati
- Department of Surgery, Otolaryngologist section, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.B.)
| | - Alberto Benazzo
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (L.C.)
| | - Patrizia Morbini
- Department of Diagnostic Medicine, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Laura Caliogna
- Orthopaedic and Traumatology, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marco Benazzo
- Department of Surgery, Otolaryngologist section, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.B.)
| | - Maria Antonietta Avanzini
- Department of Paediatric Oncoaematology, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (E.L.); (M.A.A.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| |
Collapse
|
34
|
Nayakawde NB, Methe K, Banerjee D, Berg M, Premaratne GU, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access 2020; 9:22-36. [PMID: 32117597 PMCID: PMC7047253 DOI: 10.1089/biores.2019.0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Decellularization of esophagus was studied using three different protocols. The sodium deoxycholate/DNase-I (SDC/DNase-I) method was the most successful as evidenced by histology and DNA quantification of the acellular scaffolds. Acellular scaffolds were further analyzed and compared with native tissue by histology, quantitative analysis of DNA, and extracellular matrix (ECM) proteins. Histologically, the SDC/DNase-I protocol effectively produced scaffold with preserved structural architecture similar to native tissue architecture devoid of any cell nucleus. ECM proteins, such as collagen, elastin, and glycosaminoglycans were present even after detergent-enzymatic decellularization. Immunohistochemical analysis of acellular scaffold showed weak expression of Gal 1, 3 Gal epitope compared with native tissue. For performing recellularization, human amnion-derived mesenchymal stem cells (MSCs) and epithelial cells were seeded onto acellular esophagus in a perfusion–rotation bioreactor. In recellularized esophagus, immunohistochemistry showed infiltration of MSCs from adventitia into the muscularis externa and differentiation of MSCs into the smooth muscle actin and few endothelial cells (CD31). Our study demonstrates successful preparation and characterization of a decellularized esophagus with reduced load of Gal 1, 3 Gal epitope with preserved architecture and ECM proteins similar to native tissue. Upon subsequent recellularization, xenogeneic acellular esophagus also supported stem cell growth and partial differentiation of stem cells. Hence, the current study offers the hope for preparing a tissue-engineered esophagus in vitro which can be transplanted further into pigs for further in vivo evaluation.
Collapse
Affiliation(s)
- Nikhil B Nayakawde
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ketaki Methe
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Debashish Banerjee
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Berg
- Department of Otolaryngology, Head and Neck Surgery, and Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Goditha U Premaratne
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Olausson
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Transplantation Surgery, Sahlgrenska Academy at Gothenburg University and the Sahlgrenska Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
35
|
Arakelian L, Caille C, Faivre L, Corté L, Bruneval P, Shamdani S, Flageollet C, Albanese P, Domet T, Jarraya M, Setterblad N, Kellouche S, Larghero J, Cattan P, Vanneaux V. A clinical-grade acellular matrix for esophageal replacement. J Tissue Eng Regen Med 2019; 13:2191-2203. [PMID: 31670903 DOI: 10.1002/term.2983] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022]
Abstract
In pathologies of the esophagus such as esophageal atresia, cancers, and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon and are associated with high morbidity, mortality, and poor functional results. To overcome these problems, tissue engineering methods are developed to create a substitute with scaffolds and cells. The aim of this study was to develop a simple and safe decellularization process in order to obtain a clinical grade esophageal extracellular matrix. Following the decontamination step, porcine esophagi were decellularized in a bioreactor with sodium dodecyl sulfate and ethylenediaminetetraacetic acid for 3 days and were rinsed with deionized water. DNA was eliminated by a 3-hr DNase treatment. To remove any residual detergent, the matrix was then incubated with an absorbing resin. The resulting porcine esophageal matrix was characterized by the assessment of the efficiency of the decellularization process (DNA quantification), evaluation of sterility and absence of cytotoxicity, and its composition and biomechanical properties, as well as the possibility to be reseeded with mesenchymal stem cells. Complete decellularization with the preservation of the general structure, composition, and biomechanical properties of the native esophageal matrix was obtained. Sterility was maintained throughout the process, and the matrix showed no cytotoxicity. The resulting matrix met clinical grade criteria and was successfully reseeded with mesenchymal stem cells..
Collapse
Affiliation(s)
- Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Clémentine Caille
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Laurent Corté
- MAT-Centre des Matériaux, MINES ParisTech, PSL Research University, CNRS UMR 7633, France.,Laboratoire Matière Molle et Chimie, ESPCI Paris, PSL Research University, CNRS UMR 7167, Paris, France
| | - Patrick Bruneval
- Department of Pathology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Sara Shamdani
- Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Camille Flageollet
- Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Patricia Albanese
- Laboratoire CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Mohamed Jarraya
- Banque des Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- Technological Core facility of the Hematology Institute, Université Paris-Diderot and Inserm, Hôpital Saint-Louis, Paris, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| | - Pierre Cattan
- Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France.,Department of Digestive Surgery, St-Louis Hospital-Paris 7 University, Paris, France
| | - Valérie Vanneaux
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.,Institut de Recherche Saint Louis, INSERM, CIC-BT1427 and UMR-U976, Hôpital St-Louis, Paris, France
| |
Collapse
|
36
|
Kim IG, Wu Y, Park SA, Cho H, Choi JJ, Kwon SK, Shin JW, Chung EJ. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Tissue Eng Part A 2019; 25:1478-1492. [DOI: 10.1089/ten.tea.2018.0277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Su A. Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jun Jae Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Fenelon M, Maurel DB, Siadous R, Gremare A, Delmond S, Durand M, Brun S, Catros S, Gindraux F, L'Heureux N, Fricain JC. Comparison of the impact of preservation methods on amniotic membrane properties for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109903. [PMID: 31500032 DOI: 10.1016/j.msec.2019.109903] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Human amniotic membrane (hAM) is considered as an attractive biological scaffold for tissue engineering. For this application, hAM has been mainly processed using cryopreservation, lyophilization and/or decellularization. However, no study has formally compared the influence of these treatments on hAM properties. The aim of this study was to develop a new decellularization-preservation process of hAM, and to compare it with other conventional treatments (fresh, cryopreserved and lyophilized). The hAM was decellularized (D-hAM) using an enzymatic method followed by a detergent decellularization method, and was then lyophilized and gamma-sterilized. Decellularization was assessed using DNA staining and quantification. D-hAM was compared to fresh (F-hAM), cryopreserved (C-hAM) and lyophilized/gamma-sterilized (L-hAM) hAM. Their cytotoxicity on human bone marrow mesenchymal stem cells (hBMSCs) and their biocompatibility in a rat subcutaneous model were also evaluated. The protocol was effective as judged by the absence of nuclei staining and the residual DNA lower than 50 ng/mg. Histological staining showed a disruption of the D-hAM architecture, and its thickness was 84% lower than fresh hAM (p < 0.001). Despite this, the labeling of type IV and type V collagen, elastin and laminin were preserved on D-hAM. Maximal force before rupture of D-hAM was 92% higher than C-hAM and L-hAM (p < 0.01), and D-hAM was 37% more stretchable than F-hAM (p < 0.05). None of the four hAM were cytotoxic, and D-hAM was the most suitable scaffold for hBMSCs proliferation. Finally, D-hAM was well integrated in vivo. In conclusion, this new hAM decellularization process appears promising for tissue engineering applications.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France.
| | - Delphine B Maurel
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Robin Siadous
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Agathe Gremare
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Samantha Delmond
- CHU Bordeaux, CIC 1401, 33000 Bordeaux, France; Inserm, CIC 1401, 33000 Bordeaux, France
| | - Marlène Durand
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, CIC 1401, 33000 Bordeaux, France; Inserm, CIC 1401, 33000 Bordeaux, France
| | - Stéphanie Brun
- University hospital, Gynecology-Obstetrics Service, F-33076 Bordeaux, France
| | - Sylvain Catros
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
| | - Florelle Gindraux
- Orthopedic, Traumatology & Plastic Surgery Department, University Hospital of Besançon, Besançon, France; Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France
| | - Nicolas L'Heureux
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, Laboratory BioTis, UMR 1026, F-33076 Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
| |
Collapse
|
38
|
Biological properties of a bionic scaffold for esophageal tissue engineering research. Colloids Surf B Biointerfaces 2019; 179:208-217. [PMID: 30959233 DOI: 10.1016/j.colsurfb.2019.03.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 12/26/2022]
Abstract
Polyurethane is a good matrix material with wide application prospects in tissue engineering because of its adjustable and mechanical properties. A novel biodegradable crosslinked poly(ester urethane) (CPU) with flexible poly(caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) components has been synthesized using a ferric iron catalyst in our laboratory. In the present study, to promote the interaction between the CPU material and cells, the material was superficially modified by silk fibroin (SF) grafting using an aminolysis and glutaraldehyde crosslinking method to achieve a biocompatible material, CPU-SF. Considering the esophageal-specific architecture, three types of scaffolds were fabricated. S1 was a CPU-SF channel (200 μm in diameter and 30 μm in depth with 30 μm of wall thickness) to support muscle regeneration; S2 was the decellularized matrix of the esophageal mucosa/submucosa obtained by enzyme treatment; and S3 was a combination of S1 and S2, aiming to promote esophageal regeneration with histological structure and function. The biological properties and functions of the materials and scaffolds were investigated by qualitative and quantitative analyses using scanning electron microscopy, immunofluorescence staining, cell adhesion and proliferation measurements, and western blotting technology. The results showed that esophageal smooth muscle cells (SMCs) and epithelial cells (ECs) were very well supported by the scaffolds. In particular, SMCs exhibited guided directional growth and ECs infiltrated the acellular mucosa with retained biological functions when co-cultured on the composite scaffold S3. These findings suggest that the composite bionic scaffold will be a good alternative for esophageal replacement.
Collapse
|
39
|
Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. PLoS One 2019; 14:e0211339. [PMID: 30849123 PMCID: PMC6408002 DOI: 10.1371/journal.pone.0211339] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Various strategies have been attempted to replace esophageal defects with natural or artificial substitutes using tissue engineering. However, these methods have not yet reached clinical application because of the high risks related to their immunogenicity or insufficient biocompatibility. In this study, we developed a scaffold-free structure with a mixture of cell types using bio-three-dimensional (3D) printing technology and assessed its characteristics in vitro and in vivo after transplantation into rats. Normal human dermal fibroblasts, human esophageal smooth muscle cells, human bone marrow-derived mesenchymal stem cells, and human umbilical vein endothelial cells were purchased and used as a cell source. After the preparation of multicellular spheroids, esophageal-like tube structures were prepared by bio-3D printing. The structures were matured in a bioreactor and transplanted into 10-12-week-old F344 male rats as esophageal grafts under general anesthesia. Mechanical and histochemical assessment of the structures were performed. Among 4 types of structures evaluated, those with the larger proportion of mesenchymal stem cells tended to show greater strength and expansion on mechanical testing and highly expressed α-smooth muscle actin and vascular endothelial growth factor on immunohistochemistry. Therefore, the structure with the larger proportion of mesenchymal stem cells was selected for transplantation. The scaffold-free structures had sufficient strength for transplantation between the esophagus and stomach using silicon stents. The structures were maintained in vivo for 30 days after transplantation. Smooth muscle cells were maintained, and flat epithelium extended and covered the inner surface of the lumen. Food had also passed through the structure. These results suggested that the esophagus-like scaffold-free tubular structures created using bio-3D printing could hold promise as a substitute for the repair of esophageal defects.
Collapse
|
40
|
Mallis P, Chachlaki P, Katsimpoulas M, Stavropoulos-Giokas C, Michalopoulos E. Optimization of Decellularization Procedure in Rat Esophagus for Possible Development of a Tissue Engineered Construct. Bioengineering (Basel) 2018; 6:bioengineering6010003. [PMID: 30586900 PMCID: PMC6466343 DOI: 10.3390/bioengineering6010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Current esophageal treatment is associated with significant morbidity. The gold standard therapeutic strategies are stomach interposition or autografts derived from the jejunum and colon. However, severe adverse reactions, such as esophageal leakage, stenosis and infection, accompany the above treatments, which, most times, are life threating. The aim of this study was the optimization of a decellularization protocol in order to develop a proper esophageal tissue engineered construct. Methods: Rat esophagi were obtained from animals and were decellularized. The decellularization process involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS) buffers for 6 h each, followed by incubation in a serum medium. The whole process involved two decellularization cycles. Then, a histological analysis was performed. In addition, the amounts of collagen, sulphated glycosaminoglycans and DNA content were quantified. Results: The histological analysis revealed that only the first decellularization cycle was enough to produce a cellular and nuclei free esophageal scaffold with a proper extracellular matrix orientation. These results were further confirmed by biochemical quantification. Conclusions: Based on the above results, the current decellularization protocol can be applied successfully in order to produce an esophageal tissue engineered construct.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Panagiota Chachlaki
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| |
Collapse
|
41
|
Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun 2018; 9:4286. [PMID: 30327457 PMCID: PMC6191423 DOI: 10.1038/s41467-018-06385-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes. Combining decellularised scaffolds with patient-derived cells holds promise for bioengineering of functional tissues. Here the authors develop a two-stage approach to engineer an oesophageal graft that retains the structural organisation of native oesophagus.
Collapse
|