1
|
Kussauer S, Dilk P, Elleisy M, Michaelis C, Lichtwark S, Rimmbach C, David R, Jung J. Heart rhythm in vitro: measuring stem cell-derived pacemaker cells on microelectrode arrays. Front Cardiovasc Med 2024; 11:1200786. [PMID: 38450366 PMCID: PMC10915086 DOI: 10.3389/fcvm.2024.1200786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cardiac arrhythmias have markedly increased in recent decades, highlighting the urgent need for appropriate test systems to evaluate the efficacy and safety of new pharmaceuticals and the potential side effects of established drugs. Methods The Microelectrode Array (MEA) system may be a suitable option, as it provides both real-time and non-invasive monitoring of cellular networks of spontaneously active cells. However, there is currently no commercially available cell source to apply this technology in the context of the cardiac conduction system (CCS). In response to this problem, our group has previously developed a protocol for the generation of pure functional cardiac pacemaker cells from mouse embryonic stem cells (ESCs). In addition, we compared the hanging drop method, which was previously utilized, with spherical plate-derived embryoid bodies (EBs) and the pacemaker cells that are differentiated from these. Results We described the application of these pacemaker cells on the MEA platform, which required a number of crucial optimization steps in terms of coating, dissociation, and cell density. As a result, we were able to generate a monolayer of pure pacemaker cells on an MEA surface that is viable and electromechanically active for weeks. Furthermore, we introduced spherical plates as a convenient and scalable method to be applied for the production of induced sinoatrial bodies. Conclusion We provide a tool to transfer modeling and analysis of cardiac rhythm diseases to the cell culture dish. Our system allows answering CCS-related queries within a cellular network, both under baseline conditions and post-drug exposure in a reliable and affordable manner. Ultimately, our approach may provide valuable guidance not only for cardiac pacemaker cells but also for the generation of an MEA test platform using other sensitive non-proliferating cell types.
Collapse
Affiliation(s)
- Sophie Kussauer
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Patrick Dilk
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Moustafa Elleisy
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Claudia Michaelis
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Sarina Lichtwark
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Christian Rimmbach
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Julia Jung
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Zhang W, Wang F, Yin L, Tang Y, Wang X, Huang C. Cadherin-5 facilitated the differentiation of human induced pluripotent stem cells into sinoatrial node-like pacemaker cells by regulating β-catenin. J Cell Physiol 2024; 239:212-226. [PMID: 38149479 DOI: 10.1002/jcp.31161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of β-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of β-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
3
|
Roshanravan N, Ghaffari S, Bastani S, Pahlavan S, Asghari S, Doustvandi MA, Jalilzadeh- Razin S, Dastouri M. Human cardiac organoids: A recent revolution in disease modeling and regenerative medicine. J Cardiovasc Thorac Res 2023; 15:68-72. [PMID: 37654821 PMCID: PMC10466470 DOI: 10.34172/jcvtr.2023.31830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/02/2023] Open
Abstract
Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac organoid culture technologies are bringing about significant advances in organ research and allows for the establishment of tissue regeneration and disease modeling. The present review provides an overview of the recent advances in human cardiac organoid platforms in disease biology and for cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bastani
- Department of Immunology, Leiden University Medical Science, Leiden, Netherlands
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samira Asghari
- University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sepideh Jalilzadeh- Razin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Dastouri
- Ankara University Biotechnology Institute and SISBIYOTEK Advanced Research Unit, Gumusdere Yerleskesi, Kecioren, Ankara, Turkey
| |
Collapse
|
4
|
Zhang C, Sun Y, Chen Z. An Efficient and Reproducible Method for the Isolation and Culture of Primary Cardiomyocytes from Adult Zebrafish. Zebrafish 2023. [PMID: 37262192 DOI: 10.1089/zeb.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Zebrafish is a popular animal model in regeneration studies due to their ability to regenerate the heart. Primary cardiomyocytes could be an alternative tool for studying the intrinsic mechanisms of cardiovascular disease in vitro. Thus, our objective is to develop an efficient protocol to isolate primary cardiomyocytes from zebrafish hearts. Low concentration of digestive enzyme (0.5 mg/mL collagenase type II) was utilized in our protocol to obtain single-cell suspension. The ventricles were fragmented, mechanically pipetted, and constantly shaken to ensure adequate contact between the tissues and the enzyme. Preplating the cell suspension onto culture plates for 2 h helped remove cardiac fibroblasts. The purity of isolated cells was validated by flow cytometry analysis of transgenic zebrafish with cardiomyocyte-specific expression of enhanced green fluorescent protein (EGFP) or endothelial cell-specific expression of mCherry. Quantitative real-time PCR analysis revealed a high level of the purity, with cardiac fibroblasts, endothelial cells, and epicardial cell markers scarcely detected in the purified cells. Altogether, this study established a reproducible protocol for isolating primary cardiomyocytes with high purity and activity from adult zebrafish hearts that can be cultured in vitro for up to 4 weeks. This protocol provides a valuable tool for studying the intrinsic mechanisms of cardiovascular disease in vitro using primary cardiomyocytes.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyi Sun
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyue Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
6
|
Kahn-Krell A, Pretorius D, Guragain B, Lou X, Wei Y, Zhang J, Qiao A, Nakada Y, Kamp TJ, Ye L, Zhang J. A three-dimensional culture system for generating cardiac spheroids composed of cardiomyocytes, endothelial cells, smooth-muscle cells, and cardiac fibroblasts derived from human induced-pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:908848. [PMID: 35957645 PMCID: PMC9361017 DOI: 10.3389/fbioe.2022.908848] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiomyocytes (CMs), endothelial cells (ECs), smooth-muscle cells (SMCs), and cardiac fibroblasts (CFs) differentiated from human induced-pluripotent stem cells (hiPSCs) are the fundamental components of cell-based regenerative myocardial therapy and can be used as in-vitro models for mechanistic studies and drug testing. However, newly differentiated hiPSC-CMs tend to more closely resemble fetal CMs than the mature CMs of adult hearts, and current techniques for improving CM maturation can be both complex and labor-intensive. Thus, the production of CMs for commercial and industrial applications will require more elementary methods for promoting CM maturity. CMs tend to develop a more mature phenotype when cultured as spheroids in a three-dimensional (3D) environment, rather than as two-dimensional monolayers, and the activity of ECs, SMCs, and CFs promote both CM maturation and electrical activity. Here, we introduce a simple and reproducible 3D-culture-based process for generating spheroids containing all four cardiac-cell types (i.e., cardiac spheroids) that is compatible with a wide range of applications and research equipment. Subsequent experiments demonstrated that the inclusion of vascular cells and CFs was associated with an increase in spheroid size, a decline in apoptosis, an improvement in sarcomere maturation and a change in CM bioenergetics.
Collapse
Affiliation(s)
- Asher Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J. Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States,Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Jianyi Zhang,
| |
Collapse
|
7
|
Matsui T, Shinozawa T. Human Organoids for Predictive Toxicology Research and Drug Development. Front Genet 2021; 12:767621. [PMID: 34790228 PMCID: PMC8591288 DOI: 10.3389/fgene.2021.767621] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organoids are three-dimensional structures fabricated in vitro from pluripotent stem cells or adult tissue stem cells via a process of self-organization that results in the formation of organ-specific cell types. Human organoids are expected to mimic complex microenvironments and many of the in vivo physiological functions of relevant tissues, thus filling the translational gap between animals and humans and increasing our understanding of the mechanisms underlying disease and developmental processes. In the last decade, organoid research has attracted increasing attention in areas such as disease modeling, drug development, regenerative medicine, toxicology research, and personalized medicine. In particular, in the field of toxicology, where there are various traditional models, human organoids are expected to blaze a new path in future research by overcoming the current limitations, such as those related to differences in drug responses among species. Here, we discuss the potential usefulness, limitations, and future prospects of human liver, heart, kidney, gut, and brain organoids from the viewpoints of predictive toxicology research and drug development, providing cutting edge information on their fabrication methods and functional characteristics.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
8
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
10
|
Jackson AO, Rahman GA, Yin K, Long S. Enhancing Matured Stem-Cardiac Cell Generation and Transplantation: A Novel Strategy for Heart Failure Therapy. J Cardiovasc Transl Res 2020; 14:556-572. [PMID: 33258081 DOI: 10.1007/s12265-020-10085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) remains one of the major causes of morbidity and mortality worldwide. Recent studies have shown that stem cells (SCs) including bone marrow mesenchymal stem (BMSC), embryonic bodies (EB), embryonic stem (ESC), human induced pluripotent stem (hiPSC)-derived cardiac cells generation, and transplantation treated myocardial infarction (MI) in vivo and in human. However, the immature phenotypes compromise their clinical application requiring immediate intervention to improve stem-derived cardiac cell (S-CCs) maturation. Recently, an unbiased multi-omic analysis involving genomics, transcriptomics, epigenomics, proteomics, and metabolomics identified specific strategies for the generation of matured S-CCs that may enhance patients' recovery processes upon transplantation. However, these strategies still remain undisclosed. Here, we summarize the recently discovered strategies for the matured S-CC generation. In addition, cardiac patch formation and transplantation that accelerated HF recuperation in clinical trials are discussed. A better understanding of this work may lead to efficient generation of matured S-CCs for regenerative medicine. Graphical abstract.
Collapse
Affiliation(s)
- Ampadu O Jackson
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.,International College, University of South China, Hengyang, 421001, Hunan Province, China.,Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Ganiyu A Rahman
- Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
11
|
Elkhenany H, Elkodous MA, Newby SD, El-Derby AM, Dhar M, El-Badri N. Tissue Engineering Modalities and Nanotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-55359-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zhou H, Liu LP, Fang M, Li YM, Zheng YW. A potential ex vivo infection model of human induced pluripotent stem cell-3D organoids beyond coronavirus disease 2019. Histol Histopathol 2020; 35:1077-1082. [PMID: 32339250 DOI: 10.14670/hh-18-223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) outbreak began in the city of Wuhan, whereupon it rapidly spread throughout China and subsequently across the world. Rapid transmission of COVID-19 has caused wide-spread panic. Many established medications have been used to treat the disease symptoms; however, no specific drugs or vaccines have been developed. Organoids derived from human induced pluripotent stem cells (iPSCs) may serve as suitable infection models for ex vivo mimicking of the viral life cycle and drug screening. Human iPSC-3D organoids, self-organised tissues with multiple cell environments, have a similar structure and function as real human organs; hence, these organoids allow greater viral infection efficiency, mimic the natural host-virus interactions, and are suitable for long-term experimentation. Here, we suggest the use of a functional human iPSC-organoid that could act as a reliable and feasible ex vivo infection model for investigation of the virus. This approach will provide much needed insight into the underlying molecular dynamics of COVID-19 for the development of novel treatment and prevention strategies.
Collapse
Affiliation(s)
- Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Fang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan. .,School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan.,Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,School of Biotechnology and Healt Sciences, Wuyi University, Jiangmen, Guandong, P.R. China
| |
Collapse
|
13
|
Müller-Ruch U, Skorska A, Lemcke H, Steinhoff G, David R. GLP: A requirement in cell therapies - perspectives for the cardiovascular field. Adv Drug Deliv Rev 2020; 165-166:96-104. [PMID: 32305352 DOI: 10.1016/j.addr.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
In biomedical research, enormous progress is being made and new candidates for putative medicinal products emerge. However, most published preclinical data are not conducted according to the standard Good Laboratory Practice (GLP). GLP is mandatory for preclinical analysis of Advanced Therapy Medicinal Products (ATMP) and thereby a prerequisite for planning and conduction of clinical trials. Not inconsiderable numbers of clinical trials are terminated earlier or fail - do inadequate testing strategies or missing specialized assays during the preclinical development contribute to this severe complex of problems? Unfortunately, there is also a lack of access to GLP testing results and OECD (Organisation for Economic Co-operation and Development) GLP guidelines are not yet adjusted to ATMP specialties. Ultimately, GLP offers possibilities to generate reliable and reproducible data. Therefore, this review elucidates different GLP aspects in drug development, speculates on reasons of putative low GLP acceptance in the scientific community and mentions solution proposals.
Collapse
|
14
|
Case Report on: Very Early Afterdepolarizations in HiPSC-Cardiomyocytes-An Artifact by Big Conductance Calcium Activated Potassium Current (I bk,Ca). Cells 2020; 9:cells9010253. [PMID: 31968557 PMCID: PMC7017352 DOI: 10.3390/cells9010253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent an unlimited source of human CMs that could be a standard tool in drug research. However, there is concern whether hiPSC-CMs express all cardiac ion channels at physiological level and whether they might express non-cardiac ion channels. In a control hiPSC line, we found large, “noisy” outward K+ currents, when we measured outward potassium currents in isolated hiPSC-CMs. Currents were sensitive to iberiotoxin, the selective blocker of big conductance Ca2+-activated K+ current (IBK,Ca). Seven of 16 individual differentiation batches showed a strong initial repolarization in the action potentials (AP) recorded from engineered heart tissue (EHT) followed by very early afterdepolarizations, sometimes even with consecutive oscillations. Iberiotoxin stopped oscillations and normalized AP shape, but had no effect in other EHTs without oscillations or in human left ventricular tissue (LV). Expression levels of the alpha-subunit (KCa1.1) of the BKCa correlated with the presence of oscillations in hiPSC-CMs and was not detectable in LV. Taken together, individual batches of hiPSC-CMs can express sarcolemmal ion channels that are otherwise not found in the human heart, resulting in oscillating afterdepolarizations in the AP. HiPSC-CMs should be screened for expression of non-cardiac ion channels before being applied to drug research.
Collapse
|
15
|
Pang L, Sager P, Yang X, Shi H, Sannajust F, Brock M, Wu JC, Abi-Gerges N, Lyn-Cook B, Berridge BR, Stockbridge N. Workshop Report: FDA Workshop on Improving Cardiotoxicity Assessment With Human-Relevant Platforms. Circ Res 2019; 125:855-867. [PMID: 31600125 PMCID: PMC6788760 DOI: 10.1161/circresaha.119.315378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.
Collapse
Affiliation(s)
- Li Pang
- From the Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration (L.P.)
| | | | - Xi Yang
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (X.Y.)
| | - Hong Shi
- Discovery Toxicology, Bristol-Myers Squibb (BMS) Company (H.S.)
| | - Frederick Sannajust
- Safety & Exploratory Pharmacology Department, SALAR Division, Merck & Co (F.S.)
| | | | - Joseph C Wu
- Stanford University School of Medicine, Stanford Cardiovascular Institute (J.C.W.)
| | | | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (B.L.-C.)
| | - Brian R Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health (B.R.B.)
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (N.S.)
| |
Collapse
|
16
|
News & Views. Altern Lab Anim 2019; 47:110-112. [PMID: 31690081 DOI: 10.1177/0261192919885576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zuppinger C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front Cardiovasc Med 2019; 6:87. [PMID: 31294032 PMCID: PMC6606697 DOI: 10.3389/fcvm.2019.00087] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) cell culture is often mentioned in the context of regenerative medicine, for example, for the replacement of ischemic myocardium with tissue-engineered muscle constructs. Additionally, 3D cell culture is used, although less commonly, in basic research, toxicology, and drug development. These applications have recently benefited from innovations in stem cell technologies allowing the mass-production of hiPSC-derived cardiomyocytes or other cardiovascular cells, and from new culturing methods including organ-on-chip and bioprinting technologies. On the analysis side, improved sensors, computer-assisted image analysis, and data collection techniques have lowered the bar for switching to 3D cell culture models. Nevertheless, 3D cell culture is not as widespread or standardized as traditional cell culture methods using monolayers of cells on flat surfaces. The many possibilities of 3D cell culture, but also its limitations, drawbacks and methodological pitfalls, are less well-known. This article reviews currently used cardiovascular 3D cell culture production methods and analysis techniques for the investigation of cardiotoxicity, in drug development and for disease modeling.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Department of Biomedical Research, Bern University Hospital, Bern, Switzerland
| |
Collapse
|