1
|
Tan Y, Zhang L, Deng S. Programmable DNA barcode-encoded exponential amplification reaction for the multiplex detection of miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1649-1658. [PMID: 38414433 DOI: 10.1039/d3ay02215c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Multiple analysis of miRNAs is essential for the early diagnosis and monitoring of diseases. Here, a programmable, multiplex, and sensitive approach was developed for one-pot detection of miRNAs by melting temperature encoded sequences and exponential isothermal amplification (E-EXPAR). In the presence of target miRNAs, the corresponding templates initiate the cycles of nicking and polymerization/displacement, generating numerous barcode strands with unique encoding sequences. Subsequently, generated barcode strands hybridize with fluorescent probes and quench the fluorophore by a triplet of G base through a photo-induced electron transfer mechanism. Finally, a melting curve analysis is performed to quantify miRNAs by calculating the rate of fluorescence change at the corresponding melting temperature. Based on this, miRNA-21, miRNA-9, and miRNA-122 were detected with the detection limits of 3.3 fM, 2.9 fM, and 1.7 fM, respectively. This E-EXPAR was also employed to simultaneously detect three miRNAs in biological samples, showing consistent results with RT-qPCR. Overall, this study provides a programmable and universal platform for multiplex analysis of miRNAs, and holds great promise as an alternative to the multiplex analysis in clinical diagnostics and prognostics for nucleic acid detection.
Collapse
Affiliation(s)
- Yuqian Tan
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Yang Y, Shi Y, Zhang X, Li G. MNAzyme catalyzed signal amplification-mediated lateral flow biosensor for portable and sensitive detection of mycotoxin in food samples. Anal Bioanal Chem 2024; 416:1057-1067. [PMID: 38117324 DOI: 10.1007/s00216-023-05096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Here, an enzyme-free lateral flow aptasensor was designed by target-induced strand-displacement effect and followed by the activation of multi-component nucleic acid enzyme (MNAzyme)-mediated cleavage to enable rapid and portable ochratoxin A (OTA) detection. The substrate was prepared as an oligonucleotide strand modified with magnetic beads (MB) and human chorionic gonadotropin (hCG). The interaction of OTA with the aptamer induces the release of blocking DNA, which hybridized with three separated subunits of DNA, forming a sequence-specific MNAzyme catalytic core. This core subsequently initiated an enzyme-free MNAzyme cleavage reaction in the presence of the Mg2+ cofactor, cleaving a special substrate and releasing both the incomplete MNAzyme catalytic core and hCG-DNA probe. The incomplete MNAzyme catalytic core was then recognized by substrates once again, triggering a cascade recycling cleavage and resulting in the generation of a larger number of hCG-DNA probes. After magnetic enrichment, the free hCG-DNA probes flow through the pregnancy test strip (PTS) to the T line, generating a colorimetric readout that unequivocally confirms the presence of the target OTA. This work leverages the efficient enzyme-free cleavage amplification of MNAzyme and the PTS-based portable detection device, presenting a biosensing strategy with significant potential for sensitive and portable OTA detection. This method exhibited remarkable sensitivity and selectivity for OTA detection, boasting a detection limit of 5 nM. The present study successfully demonstrated the practical application of this method on real samples, offering a viable alternative for rapid and portable detection of mycotoxins.
Collapse
Affiliation(s)
- Yan Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiao Tong University, Lanzhou, 730070, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
3
|
Takemura S, Shimada N, Maruyama A. Malachite green-derivatized cationic comb-type copolymer acts as a photoresponsive artificial chaperone. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2463-2482. [PMID: 37787160 DOI: 10.1080/09205063.2023.2265127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Molecular chaperones play vital roles in various physiological reactions by regulating the folding and assembly of biomacromolecules. We have demonstrated that cationic comb-type copolymers exhibit chaperone activity for anionic biomolecules including DNA and ionic peptide via the formation of soluble interpolyelectrolyte complexes. The development of smart artificial chaperones that can be spatiotemporally controlled by a remotely guided signal would expand the functions of artificial chaperones. Herein, to enable photocontrol of chaperone activity, a cationic comb-type copolymer bearing malachite green as a photoresponsive unit was designed. We first prepared a series of carboxylic acid derivatives of malachite green identified a derivative that could be quickly and quantitatively converted to the cationic form from the nonionic form by photoirradiation. This derivative was conjugated to the cationic comb-type copolymer, poly(allylamine)-graft-poly(ethylene glycol) through a condensation reaction. Upon photoirradiation, the copolymer bearing 9 mol% malachite green enhanced the membrane disruptive activity of acidic peptide E5 and induced morphological changes in liposomes. This demonstration of photoresponsive activation of chaperoning activity of a copolymer suggests that the installation of carboxyl derivatives of malachite green will impart photoresponsiveness to various materials including biopolymers.
Collapse
Affiliation(s)
- Seiya Takemura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Niu R, Chen X, Sun Z, Wang L, Wang Z, Zhang C, Ding D, Yang J, Wang Y, Luo Y. A smart TESTER for reliable discrimination of cancer-derived small extracellular vesicles. Anal Chim Acta 2023; 1276:341636. [PMID: 37573115 DOI: 10.1016/j.aca.2023.341636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
Cancer-derived small extracellular vesicles (csEVs) are crucial liquid biopsy indicators that reflect the presence and progression of many malignancies. However, reliable discrimination of csEVs remains a great challenge owing to the interference from normal sEVs (nsEVs) and low abundance in the early stages of cancer. In this work, we developed a Two-Elements Selectively Triggered csEVs Recognization (TESTER) strategy for selective identification of csEVs from the complex clinical body fluid samples. This method was based on the MNAzyme-controlled synchronous recognition to EpCAM and CD63 proteins on the membrane of csEVs. Efficient recognition to csEVs via EpCAM aptamer and CD63 aptamer prompted the release of Partzyme A and Partzyme B probes to induce a MNAzyme structure formation, resulting in the cyclic cleavage of substrate chain to produce cascade fluorescence signal amplification. The detection threshold of the developed TESTER approach for csEVs in complicated biological samples was 72 particles μL-1, accomplishing the highly sensitive and selective quantification of csEVs. At the same time, we successfully constructed a new platform for bimolecular simultaneous recognition, which provides a good idea for the construction of bimolecular-activated detection switch in the future.
Collapse
Affiliation(s)
- Ruyan Niu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiaohui Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Chong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Dan Ding
- College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China.
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China.
| | - Yang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing, 400044, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, PR China.
| |
Collapse
|
5
|
Liu H, Li Y, Du S, Wang C, Li Y, Cao R, Shi W, Liu S, He J. Studies on the Effect of Lipofectamine and Cell-Penetrating Peptide on the Properties of 10-23 DNAzyme. Molecules 2023; 28:molecules28093942. [PMID: 37175352 PMCID: PMC10179765 DOI: 10.3390/molecules28093942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cationic polymeric materials and cell-penetrating peptides (CPPs) were often used as the delivery vectors in the evaluation of nucleic acid therapeutics. 10-23 DNAzyme is a kind of potential antisense therapeutics by catalytic cleavage of the disease-related RNAs. Here, lipofectamine 2000 and Tat peptide were evaluated for their effect on the catalytic activity of 10-23 DNAzyme, with the observed rate constant, thermal stability, CD spectra, and PAGE analysis, with a duplex DNA mimicking DNAzyme-substrate as a control. It was shown that the cationic carriers had a negative effect on the catalytic performance of the 10-23 DNAzyme. Significantly, the destabilizing effect of the cationic carriers on the duplex formation was noteworthy, as a duplex formation is an essential prerequisite in the silencing mechanisms of antisense and RNAi.
Collapse
Affiliation(s)
- Huanhuan Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Yuexiang Li
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Ruiyuan Cao
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Shihui Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| |
Collapse
|
6
|
Hao J, Wang J, Dong Y, Yang J, Wang Z, Zhao X, Zeng T, Zhao X, Liang H, Li J. Homogeneous, Simple, and Direct Analysis of Exosomal PD-L1 via Aptamer-Bivalent-Cholesterol-Anchor Assembly of DNAzyme (ABCzyme) for Tumor Immunotherapy. Anal Chem 2023; 95:6854-6862. [PMID: 37027485 DOI: 10.1021/acs.analchem.2c05461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Breakthroughs in immune checkpoint inhibitor (ICI) therapy have revolutionized clinical tumor therapy. Immunohistochemistry (IHC) analysis of PD-L1 in tumor tissue has been used to predict the response to tumor immunotherapy, but the results are not reproducible, and IHC is invasive and cannot be used to monitor the dynamic changes in PD-L1 expression during treatment. Monitoring the expression level of the PD-L1 protein on exosomes (exosomal PD-L1) is promising for both tumor diagnosis and tumor immunotherapy. Here, we established an aptamer-bivalent-cholesterol-anchor assembly of DNAzyme (ABCzyme) analytical strategy that can directly detect exosomal PD-L1 with a minimum lower limit of detection of 5.21 pg/mL. In this way, we found that the levels of exosomal PD-L1 are significantly elevated in the peripheral blood of patients with progressive disease. The precise analysis of exosomal PD-L1 by the proposed ABCzyme strategy provides a potentially convenient method for the dynamic monitoring of tumor progression in patients who receive immunotherapy and proves to be a potential and effective liquid biopsy method for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Hao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junyi Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jingyao Yang
- The Department of Hyperbaric Oxygen, Xingcheng Special Service Sanatorium of Strategic Support Force, Liaoning 125105, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxin Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tian Zeng
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
7
|
Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosens Bioelectron 2022; 212:114423. [DOI: 10.1016/j.bios.2022.114423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
|
8
|
Wang J, Shimada N, Maruyama A. Cationic Copolymer-Augmented DNA Hybridization Chain Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39396-39403. [PMID: 35975327 DOI: 10.1021/acsami.2c11548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various DNA assembly techniques and structures have emerged with the continuous progress of DNA nanotechnology. DNA hybridization chain reaction (HCR) is a representative example owing to isothermal and enzyme-free features. However, HCR is time consuming and is inhibited by nucleases present in biological samples. Herein, we demonstrated that a cationic copolymer, poly(l-lysine)-graft-dextran (PLL-g-Dex), significantly facilitated HCR and increased its initiator sensitivity by 40-fold. PLL-g-Dex promoted the generation of HCR products with high molecular weight by accelerating the initiation and the subsequent growth steps of HCR. Moreover, PLL-g-Dex protected the HCR system from nucleases, permitting HCR in the presence of serum components. Addition of PLL-g-Dex is a universal and efficient strategy that does not require optimization of the reactor setup or DNA sequences, thus laying a solid foundation for the wider application of HCR.
Collapse
Affiliation(s)
- Jun Wang
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama 226-8501, Japan
| |
Collapse
|
9
|
Label-free detection of HPV mRNA with an artificial chaperone-enhanced MNAzyme (ACEzyme)-based electrochemical sensor. Biosens Bioelectron 2022; 221:114352. [PMID: 35690559 DOI: 10.1016/j.bios.2022.114352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Nucleic acid biosensors for point-of-care (POC) diagnostic applications are highly desirable. The ability to detect DNA and RNA in a simple, rapid, affordable and portable format leads to a range of important applications for early screening in the field of disease monitoring and management. Herein, we report the development of an isothermal, label-free electrochemical biosensor that was designed on the basis of target-driven MNAzyme cleavage activity. Hybridization with HPV mRNA, a model nucleic acid target, activated MNAzyme and initiated the cleavage of immobilized hairpin substrates, leading to changes in the electrochemical signal. Under optimal conditions, a detection limit of 2.6 pM was obtained with an incubation time of 60 min. Furthermore, an artificial chaperone-enhanced MNAzyme (ACEzyme) system was integrated to an electrochemical biosensor for the first time. The analytical performance of the biosensor was enhanced, and the detection time was significantly reduced by the addition of PLL-g-Dex, which exhibits nucleic acid chaperone-like activity. A detection limit of 0.88 pM was obtained with a threefold decrease in incubation time without prior amplification. The proposed biosensing platform shows the advantages of simple fabrication and operation, good selectivity in the presence of single-base mismatch, and excellent versatility in a complex mixture of total RNA. We believe that this isothermal, label-free, and protein-free nucleic acid analysis platform could provide foundations for the further development of a universal nucleic acid biosensing platform for clinical application.
Collapse
|
10
|
Nucleic acid-based fluorescent sensor systems: a review. Polym J 2022. [DOI: 10.1038/s41428-022-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Gao S, Wu R, Zhang Q. A novel strategy for programmable DNA tile self-assembly with a DNAzyme-mediated DNA cross circuit. NEW J CHEM 2022. [DOI: 10.1039/d1nj06012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed strategy promotes the controllability and modularization of trigger elements, realizes programmable molecular self-assembly, and has broad applications for the construction of DNA nanodevices.
Collapse
Affiliation(s)
- Siqi Gao
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Zhou Y, Zheng Y, Zhu X, Chai Y, Yuan R. Modular engineering of gold-silver nanocluster supermolecular structure endow strong electrochemiluminescence for ultrasensitive bioanalysis. Biosens Bioelectron 2021; 190:113449. [PMID: 34166944 DOI: 10.1016/j.bios.2021.113449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
Here, the gold-silver nanocluster supramolecular network (AuAg NCs) is synthesized by the assembly of Au nanoclusters (Au NCs) and Ag NCs via host-guest complexation between 6-aza-2-thiothymine as the stabilizer of Au NCs and L-arginine as the stabilizer of Ag NCs in solution, whose electrochemiluminescence (ECL) emission is not only exceptionally stronger than that of discrete monometallic NCs, but also more significant than that of agminated monometallic NCs. The dramatically enhanced ECL emission of self-assembled AuAg NCs originates from the synergistic effect of aggregation-induced enhancement and silver effect in gold catalysis. As a proof of concept, the self-assembled AuAg NCs is successfully applied in the ultrasensitive detection of breast cancer biomarker microRNAs-21 (miR-21), which guides a new pathway for creating high-quality nano-optical elements in chemical sensors, biological imaging, and lightemitting devices.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuzhu Zheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaochun Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
13
|
Fang C, Ouyang P, Yang Y, Qing Y, Han J, Shang W, Chen Y, Du J. MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy. BIOSENSORS-BASEL 2021; 11:bios11070222. [PMID: 34356693 PMCID: PMC8301874 DOI: 10.3390/bios11070222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA) system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary base pairing and the padlock probe forms a closed circular template under the action of ligase; this circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving fluorescence intensity amplification. The RCA-MNAzyme system has dual signal amplification and presents a sensing platform that demonstrates broad prospects in the analysis and detection of nucleic acids.
Collapse
|
14
|
Hanpanich O, Saito K, Shimada N, Maruyama A. One-step isothermal RNA detection with LNA-modified MNAzymes chaperoned by cationic copolymer. Biosens Bioelectron 2020; 165:112383. [PMID: 32729508 PMCID: PMC7836245 DOI: 10.1016/j.bios.2020.112383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
RNA detection permits early diagnosis of several infectious diseases and cancers, which prevent propagation of diseases and improve treatment efficacy. However, standard technique for RNA detection such as reverse transcription-quantitative polymerase chain reaction has complicated procedure and requires well-trained personnel and specialized lab equipment. These shortcomings limit the application for point-of-care analysis which is critical for rapid and effective disease management. The multicomponent nucleic acid enzymes (MNAzymes) are one of the promising biosensors for simple, isothermal and enzyme-free RNA detection. Herein, we demonstrate simple yet effective strategies that significantly enhance analytical performance of MNAzymes. The addition of the cationic copolymer and structural modification of MNAzyme significantly enhanced selectivity and activity of MNAzymes by 250 fold and 2,700 fold, respectively. The highly simplified RNA detection system achieved a detection limit of 73 fM target concentration without additional amplification. The robustness of MNAzyme in the presence of non-target RNA was also improved. Our finding opens up a route toward the development of an alternative rapid, sensitive, isothermal, and protein-free RNA diagnostic tool, which expected to be of great clinical significance.
Collapse
Affiliation(s)
- Orakan Hanpanich
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Ken Saito
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan.
| |
Collapse
|
15
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
16
|
Rudeejaroonrung K, Hanpanich O, Saito K, Shimada N, Maruyama A. Cationic copolymer enhances 8–17 DNAzyme and MNAzyme activities. Biomater Sci 2020; 8:3812-3818. [DOI: 10.1039/d0bm00428f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cationic copolymer acts as a chaperone to facilitate multiple strand assembly and enhance nucleic acid enzyme activities.
Collapse
Affiliation(s)
| | - Orakan Hanpanich
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Ken Saito
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Naohiko Shimada
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Atsushi Maruyama
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|