1
|
Wu NC, Quevedo R, Nurse M, Hezaveh K, Liu H, Sun F, Muffat J, Sun Y, Simmons CA, McGaha TL, Prinos P, Arrowsmith CH, Ailles L, D'Arcangelo E, McGuigan AP. The use of a multi-metric readout screen to identify EHMT2/G9a-inhibition as a modulator of cancer-associated fibroblast activation state. Biomaterials 2024; 314:122879. [PMID: 39395244 DOI: 10.1016/j.biomaterials.2024.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression, including mediating tumour cell invasion via their pro-invasive secretory profile and ability to remodel the extracellular matrix (ECM). Given that reduced CAF abundance in tumours correlates with improved outcomes in various cancers, we set out to identify epigenetic targets involved in CAF activation in regions of tumour-stromal mixing with the goal of reducing tumour aggressiveness. Using the GLAnCE (Gels for Live Analysis of Compartmentalized Environments) platform, we performed an image-based, phenotypic screen that enabled us to identify modulators of CAF abundance and the capacity of CAFs to induce tumour cell invasion. We identified EHMT2 (also known as G9a), an enzyme that targets the methylation of histone 3 lysine 9 (H3K9), as a potent modulator of CAF abundance and CAF-mediated tumour cell invasion. Transcriptomic and functional analysis of EHMT2-inhibited CAFs revealed EHMT2 participated in driving CAFs towards a pro-invasive phenotype and mediated CAF hyperproliferation, a feature typically associated with activated fibroblasts in tumours. Our study suggests that EHMT2 regulates CAF state within the tumour microenvironment by impacting CAF activation, as well as by magnifying the pro-invasive effects of these activated CAFs on tumour cell invasion through promoting CAF hyperproliferation.
Collapse
Affiliation(s)
- Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Nurse
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Haijiao Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Fumao Sun
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Elisa D'Arcangelo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Hezaveh K, Shinde RS, Klötgen A, Halaby MJ, Lamorte S, Ciudad MT, Quevedo R, Neufeld L, Liu ZQ, Jin R, Grünwald BT, Foerster EG, Chaharlangi D, Guo M, Makhijani P, Zhang X, Pugh TJ, Pinto DM, Co IL, McGuigan AP, Jang GH, Khokha R, Ohashi PS, O’Kane GM, Gallinger S, Navarre WW, Maughan H, Philpott DJ, Brooks DG, McGaha TL. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 2022; 55:324-340.e8. [PMID: 35139353 PMCID: PMC8888129 DOI: 10.1016/j.immuni.2022.01.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.
Collapse
Affiliation(s)
- Kebria Hezaveh
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,These authors contributed equally,Present address: Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceutical R&D, Astra Zeneca, Gothenburg, 431 50, Sweden
| | - Rahul S. Shinde
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,These authors contributed equally,Present address: Immunology, Microenvironment, and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andreas Klötgen
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Marie Jo Halaby
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Luke Neufeld
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhe Qi Liu
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Barbara T. Grünwald
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Danica Chaharlangi
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mengdi Guo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Priya Makhijani
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xin Zhang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Trevor J. Pugh
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada,The Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Devanand M. Pinto
- National Research Council, Human Health Therapeutics, Halifax, NS B3H 3Z1, Canada
| | - Ileana L. Co
- Institute of Biomedical Engineering, The University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Alison P. McGuigan
- Institute of Biomedical Engineering, The University of Toronto, Toronto, ON M5S 3G9, Canada,Department of Chemical Engineering and Applied Chemistry, The University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Gun Ho Jang
- The Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada,Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Pamela S. Ohashi
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Grainne M. O’Kane
- The Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada,Division of Medical Oncology, Department of Medicine, The University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Steven Gallinger
- The Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada,Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, ON M5S 1A8, Canada,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - William W. Navarre
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Dana J. Philpott
- Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David G. Brooks
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada,Department of Immunology, The University of Toronto, Toronto, ON M5S 1A8, Canada,Lead contact,Correspondence:
| |
Collapse
|