1
|
Mortaja M, Cheng MM, Ali A, Lesperance J, Hingorani DV, Allevato MM, Dhawan K, Camargo MF, McKay RR, Adams SR, Gutkind JS, Advani SJ. Tumor-Targeted Cell-Penetrating Peptides Reveal That Monomethyl Auristatin E Temporally Modulates the Tumor Immune Microenvironment. Molecules 2024; 29:5618. [PMID: 39683778 PMCID: PMC11643828 DOI: 10.3390/molecules29235618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment. ACPPs are biosensing peptides consisting of a drug-conjugated polycationic cell-penetrating peptide masked by an autoinhibitory polyanionic peptide through an interlinking peptide linker. Since tumors overexpress MMPs, ACPP tumor-targeting is achieved using an MMP cleavable linker. Monomethyl auristatin E (MMAE) is a potent anti-tubulin and common drug payload in antibody drug conjugates; however there are limited pre-clinical studies on how this clinically effective drug modulates the interplay of cancer cells and the immune system. Here, we report the versatility of ACPP conjugates in syngeneic murine cancer models and interrogate how MMAE temporally alters the tumor immune microenvironment. We show that cRGD-ACPP-MMAE preferentially delivered MMAE to tumors in murine models. Targeted cRGD-ACPP-MMAE demonstrated anti-tumor kill activity that activated the innate and adaptive arms of the immune system. Understanding how targeted MMAE engages tumors can optimize MMAE tumor kill activity and inform rational combinations with other cancer therapeutics.
Collapse
Affiliation(s)
- Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Marcus M. Cheng
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Alina Ali
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Jacqueline Lesperance
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Dina V. Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Mike M. Allevato
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
| | - Kanika Dhawan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Maria F. Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Rana R. McKay
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Stephen R. Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Sunil J. Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Wang C, Wang B, Zhang Q, Zhang S. Tumor microenvironment-responsive cell-penetrating peptides: Design principle and precision delivery. Colloids Surf B Biointerfaces 2024; 242:114100. [PMID: 39024717 DOI: 10.1016/j.colsurfb.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Cell-penetrating peptides (CPPs) are promising vehicles for intracellular delivery of different cargoes. Although various CPPs are designed for targeted delivery of nanomedicines and anticancer drugs, their clinical approval is hampered by a lack of selectivity. In recent years, new approaches have been explored to address this drawback, and distinct strategies for tumor microenvironment (TME)-responsive activation have been developed. In this review, we first introduce the cellular uptake mechanisms of CPPs. We next extensively discuss the design principles and precision delivery of TME-responsive CPPs. Nine kinds of single stimulus-responsive CPPs, five kinds of multiple stimuli-responsive CPPs, three kinds of TME-responsive targeting CPPs, and two kinds of reversibly activatable CPPs (RACPPs) are systemically summarized. Then, TME-responsive CPPs for nanomedical applications are further discussed. Finally, we describe the translational applications of TME-responsive CPPs for anticancer drug delivery. These commentaries provide an insight into the design of next-generation activatable CPPs (ACPPs) for selective delivery of nanomedicines and anticancer drugs.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Hingorani DV. An overview of site-specific methods for achieving antibody drug conjugates with homogenous drug to antibody ratio. Expert Opin Biol Ther 2024; 24:31-36. [PMID: 38247196 DOI: 10.1080/14712598.2024.2305266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) have emerged as a potent tool in cancer treatment, where cytotoxic drugs are linked to antibodies targeting specific antigens. While conventional ADC synthesis methods have seen success as commercials therapeutics, there is a growing interest in next-generation ADCs, looking at homogeneity of the drug-to-antibody ratio. AREAS COVERED The article provides a high-level overview for achieving said homogeneity by site-directed conjugations via encompassing engineered amino acids, enzyme-mediated strategies, peptide sequences, affinity peptides, and beyond. As the field rapidly evolves with multiple ADCs in clinical trials and the advent of biosimilars, the article explores the benefits and challenges in both conventional and non-platform ADC technologies. EXPERT OPINION The choice of site selection approach must be based on multiple criteria as discussed in this report. Two ADCs made from conjugation to engineered cysteines have been approved by regulatory agencies which have contributed to the excitement in this space. For the others, though successful as proof-of-concept, the true test of merit will be determined as these technologies advance into the clinic. The promise of improving the therapeutics index and decreasing toxicities will continue to drive progress in this area.
Collapse
|
5
|
Fornieles G, Núñez MI, Expósito J. Matrix Metalloproteinases and Their Inhibitors as Potential Prognostic Biomarkers in Head and Neck Cancer after Radiotherapy. Int J Mol Sci 2023; 25:527. [PMID: 38203696 PMCID: PMC10778974 DOI: 10.3390/ijms25010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Head and neck cancer (HNC) is among the ten most frequent tumours, with 5-year survival rates varying from 30% to 70% depending on the stage and location of the tumour. HNC is traditionally known as head and neck squamous cell carcinoma (HNSCC), since 90% arises from epithelial cells. Metastasis remains a major cause of mortality in patients with HNSCC. HNSCC patients with metastatic disease have an extremely poor prognosis with a survival rate of less than a year. Matrix metalloproteinases (MMPs) have been described as biomarkers that promote cell migration and invasion. Radiotherapy is widely used to treat HNSCC, being a determining factor in the alteration of the tumour's biology and microenvironment. This review focuses on analysing the current state of the scientific literature on this topic. Although few studies have focused on the role of these proteinases in HNC, some authors have concluded that radiotherapy alters the behaviour of MMPs and tissue inhibitors of metalloproteinases (TIMPs). Therefore, more research is needed to understand the roles played by MMPs and their inhibitors (TIMPs) as prognostic biomarkers in patients with HNC and their involvement in the response to radiotherapy.
Collapse
Affiliation(s)
- Gabriel Fornieles
- Doctoral Programme in Clinical Medicine and Public Health, University of Granada, 18012 Granada, Spain;
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Expósito
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Radiation Oncology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
6
|
Proietto M, Crippa M, Damiani C, Pasquale V, Sacco E, Vanoni M, Gilardi M. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Front Oncol 2023; 13:1164535. [PMID: 37188201 PMCID: PMC10175698 DOI: 10.3389/fonc.2023.1164535] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Heterogeneity describes the differences among cancer cells within and between tumors. It refers to cancer cells describing variations in morphology, transcriptional profiles, metabolism, and metastatic potential. More recently, the field has included the characterization of the tumor immune microenvironment and the depiction of the dynamics underlying the cellular interactions promoting the tumor ecosystem evolution. Heterogeneity has been found in most tumors representing one of the most challenging behaviors in cancer ecosystems. As one of the critical factors impairing the long-term efficacy of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive metastasizing, and recurrence. We review the role of the main models and the emerging single-cell and spatial genomic technologies in our understanding of tumor heterogeneity, its contribution to lethal cancer outcomes, and the physiological challenges to consider in designing cancer therapies. We highlight how tumor cells dynamically evolve because of the interactions within the tumor immune microenvironment and how to leverage this to unleash immune recognition through immunotherapy. A multidisciplinary approach grounded in novel bioinformatic and computational tools will allow reaching the integrated, multilayered knowledge of tumor heterogeneity required to implement personalized, more efficient therapies urgently required for cancer patients.
Collapse
Affiliation(s)
- Marco Proietto
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Martina Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Chiara Damiani
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Valentina Pasquale
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Sacco
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Vanoni
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Salk Cancer Center, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
7
|
Yang Y, Wang S, Ma P, Jiang Y, Cheng K, Yu Y, Jiang N, Miao H, Tang Q, Liu F, Zha Y, Li N. Drug conjugate-based anticancer therapy - Current status and perspectives. Cancer Lett 2023; 552:215969. [PMID: 36279982 DOI: 10.1016/j.canlet.2022.215969] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Drug conjugates are conjugates comprising a tumor-homing carrier tethered to a cytotoxic agent via a linker that are designed to deliver an ultra-toxic payload directly to the target cancer cells. This strategy has been successfully used to increase the therapeutic efficacy of cytotoxic agents and reduce their toxic side effects. Drug conjugates are being developed worldwide, with the potential to revolutionize current cancer treatment strategies. Antibody-drug conjugates (ADCs) have developed rapidly, and 14 of them have received market approval since the first approval event by the Food and Drug Administration in 2000. However, there are some limitations in the use of antibodies as carriers. Other classes of drug conjugates are emerging, such as targeted drugs conjugated with peptides (peptide-drug conjugates, PDCs) and polymers (polymer-drug conjugates, PolyDCs) with the remaining constructs similar to those of ADCs. These novel drug conjugates are gaining attention because they overcome the limitations of ADCs. This review summarizes the current state and advancements in knowledge regarding the design, constructs, and clinical efficacy of different drug conjugates.
Collapse
Affiliation(s)
- Yuqi Yang
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shuhang Wang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yue Yu
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiyu Tang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- First Affiliated Hospital of China Medical University, Shenyang, 110002, China
| | - Yan Zha
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Ning Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
9
|
Hingorani DV, Allevato MM, Camargo MF, Lesperance J, Quraishi MA, Aguilera J, Franiak-Pietryga I, Scanderbeg DJ, Wang Z, Molinolo AA, Alvarado D, Sharabi AB, Bui JD, Cohen EEW, Adams SR, Gutkind JS, Advani SJ. Monomethyl auristatin antibody and peptide drug conjugates for trimodal cancer chemo-radio-immunotherapy. Nat Commun 2022; 13:3869. [PMID: 35790753 PMCID: PMC9256669 DOI: 10.1038/s41467-022-31601-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Locally advanced cancers remain therapeutically challenging to eradicate. The most successful treatments continue to combine decades old non-targeted chemotherapies with radiotherapy that unfortunately increase normal tissue damage in the irradiated field and have systemic toxicities precluding further treatment intensification. Therefore, alternative molecularly guided systemic therapies are needed to improve patient outcomes when applied with radiotherapy. In this work, we report a trimodal precision cytotoxic chemo-radio-immunotherapy paradigm using spatially targeted auristatin warheads. Tumor-directed antibodies and peptides conjugated to radiosensitizing monomethyl auristatin E (MMAE) specifically produce CD8 T cell dependent durable tumor control of irradiated tumors and immunologic memory. In combination with ionizing radiation, MMAE sculpts the tumor immune infiltrate to potentiate immune checkpoint inhibition. Here, we report therapeutic synergies of targeted cytotoxic auristatin radiosensitization to stimulate anti-tumor immune responses providing a rationale for clinical translational of auristatin antibody drug conjugates with radio-immunotherapy combinations to improve tumor control.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael M Allevato
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria F Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacqueline Lesperance
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maryam A Quraishi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ida Franiak-Pietryga
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel J Scanderbeg
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhiyong Wang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alfredo A Molinolo
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Ezra E W Cohen
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Luo D, Wang X, Walker E, Springer S, Ramamurthy G, Burda C, Basilion JP. Targeted Chemoradiotherapy of Prostate Cancer Using Gold Nanoclusters with Protease Activatable Monomethyl Auristatin E. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14916-14927. [PMID: 35316026 PMCID: PMC9153066 DOI: 10.1021/acsami.1c23780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combined radiotherapy (RT) and chemotherapy are prescribed to patients with advanced prostate cancer (PCa) to increase their survival; however, radiation-related side effects and systematic toxicity caused by chemotherapeutic drugs are unavoidable. To improve the precision and efficacy of concurrent RT and chemotherapy, we have developed a PCa-targeted gold nanocluster radiosensitizer conjugated with a highly potent cytotoxin, monomethyl auristatin E, PSMA-AuNC-MMAE, for RT and chemotherapy of PCa. This approach resulted in enhanced uptake of NCs by PSMA-positive cancer cells, targeted chemotherapy, and increased efficacy of RT both in vitro and in vivo. In addition, the combination of gold and MMAE further increased the efficacy of either of the agents delivered alone or simultaneously but not covalently linked. The PSMA-AuNC-MMAE conjugates improve the specificity and efficacy of radiation and chemotherapy, potentially reducing the toxicity of each therapy and making this an attractive avenue for clinical treatment of advanced PCa.
Collapse
|
11
|
Zhao T, Liang C, Zhao Y, Xue X, Ma Z, Qi J, Shen H, Yang S, Zhang J, Jia Q, Du Q, Cao D, Xiang B, Zhang H, Qi X. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. J Nanobiotechnology 2022; 20:177. [PMID: 35366888 PMCID: PMC8976966 DOI: 10.1186/s12951-022-01383-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Small interfering RNA (siRNA) is utilized as a potent agent for cancer therapy through regulating the expression of genes associated with tumors. While the widely application of siRNAs in cancer treatment is severely limited by their insufficient biological stability and its poor ability to penetrate cell membranes. Targeted delivery systems hold great promise to selectively deliver loaded drug to tumor site and reduce toxic side effect. However, the elevated tumor interstitial fluid pressure and efficient cytoplasmic release are still two significant obstacles to siRNA delivery. Co-delivery of chemotherapeutic drugs and siRNA represents a potential strategy which may achieve synergistic anticancer effect. Herein, we designed and synthesized a dual pH-responsive peptide (DPRP), which includes three units, a cell-penetrating domain (polyarginine), a polyanionic shielding domain (ehG)n, and an imine linkage between them. Based on the DPRP surface modification, we developed a pH-responsive liposomal system for co-delivering polo-like kinase-1 (PLK-1) specific siRNA and anticancer agent docetaxel (DTX), D-Lsi/DTX, to synergistically exhibit anti-tumor effect.
Results
In contrast to the results at the physiological pH (7.4), D-Lsi/DTX lead to the enhanced penetration into tumor spheroid, the facilitated cellular uptake, the promoted escape from endosomes/lysosomes, the improved distribution into cytoplasm, and the increased cellular apoptosis under mildly acidic condition (pH 6.5). Moreover, both in vitro and in vivo study indicated that D-Lsi/DTX had a therapeutic advantage over other control liposomes. We provided clear evidence that liposomal system co-delivering siPLK-1 and DTX could significantly downregulate expression of PLK-1 and inhibit tumor growth without detectable toxic side effect, compared with siPLK-1-loaded liposomes, DTX-loaded liposomes, and the combinatorial administration.
Conclusion
These results demonstrate great potential of the combined chemo/gene therapy based on the multistage pH-responsive codelivery liposomal platform for synergistic tumor treatment.
Graphical Abstract
Collapse
|
12
|
Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022; 11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment. According to the process of nanosystems entering the body, they can be classified into three categories. The first segment is to enhance the accumulation and permeation of nanosystems to tumor cells through extracellular microenvironment stimulation. The second segment is to improve cellular internalization from extracellular to intracellular via active targeting. The third segment is to enhance the intracellular retention of therapeutics by subcellular localization. The major factors in the delivery can be utilized to develop multifunctional nanosystems for strengthening the tumor therapy. Ultimately, the key challenges and prospective in the emerging research frontier are thoroughly outlined. This review is expected to provide inspiring ideas, promising strategies and potential pathways for developing advanced anticancer nanosystems in clinical practice.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Toukh 13736 Egypt
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan Hubei 430070 P. R. China
| |
Collapse
|
13
|
Hingorani DV, Camargo MF, Quraishi MA, Adams SR, Advani SJ. Tumor Activated Cell Penetrating Peptides to Selectively Deliver Immune Modulatory Drugs. Pharmaceutics 2021; 13:pharmaceutics13030365. [PMID: 33801967 PMCID: PMC8000974 DOI: 10.3390/pharmaceutics13030365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/15/2023] Open
Abstract
Recent advances in immunotherapy have revolutionized cancer therapy. Immunotherapies can engage the adaptive and innate arms of the immune system. Therapeutics targeting immune checkpoint inhibitors (i.e., CTLA-4; PD-1, and PD-L1) have shown efficacy for subsets of cancer patients by unleashing an adaptive antitumor immune response. Alternatively, small molecule immune modulators of the innate immune system such as toll-like receptor (TLR) agonists are being developed for cancer therapy. TLRs function as pattern recognition receptors to microbial products and are also involved in carcinogenesis. Reisquimod is a TLR 7/8 agonist that has antitumor efficacy. However, systemic delivery free resiquimod has proven to be challenging due to toxicity of nonspecific TLR 7/8 activation. Therefore, we developed a targeted peptide-drug conjugate strategy for systemic delivery of resiquimod. We designed an activatable cell penetrating peptide to deliver resiquimod specifically to the tumor tissue while avoiding normal tissues. The activatable cell penetrating peptide (ACPP) scaffold undergoes enzymatic cleavage by matrix metalloproteinases 2/9 in the extracellular matrix followed by intracellular lysosomal cathepsin B mediated release of the free resiquimod. Importantly, when conjugated to ACPP; the tumor tissue concentration of resiquimod was more than 1000-fold greater than that of surrounding non-cancerous tissue. Moreover, systemic ACPP-resiquimod delivery produced comparable therapeutic efficacy to localized free resiquimod in syngeneic murine tumors. These results highlight a precision peptide-drug conjugate delivery.
Collapse
Affiliation(s)
- Dina V. Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.V.H.); (M.F.C.); (M.A.Q.)
| | - Maria F. Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.V.H.); (M.F.C.); (M.A.Q.)
| | - Maryam A. Quraishi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.V.H.); (M.F.C.); (M.A.Q.)
| | - Stephen R. Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sunil J. Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.V.H.); (M.F.C.); (M.A.Q.)
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +85-8822-6046; Fax: +85-8822-5568
| |
Collapse
|
14
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Xia W, Shangguan X, Li M, Wang Y, Xi D, Sun W, Fan J, Shao K, Peng X. Ex vivo identification of circulating tumor cells in peripheral blood by fluorometric "turn on" aptamer nanoparticles. Chem Sci 2020; 12:3314-3321. [PMID: 34164101 PMCID: PMC8179407 DOI: 10.1039/d0sc05112h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
The detection of the circulating tumor cells (CTCs) detached from solid tumors has emerged as a burgeoning topic for cancer diagnosis and treatment. The conventional CTC enrichment and identification mainly rely on the specific binding of the antibodies on the capture interface of the magnetic nanoparticles with the corresponding biomarkers on the cell membranes. However, these methods could easily generate false-negative results due to the extremely low concentration of CTCs and the internal heterogeneity of the tumor cells. Herein, with the aim of selectively identifying CTCs and improving the detection accuracy in peripheral blood, we designed the fluorometric "turn on" Au nanoparticles (DHANs) with the modification of a tumor-targeted moiety, dehydroascorbic acid (DHA) and a fluorometric aptamer, which could be "switched-on" by an over-expressed intracellular protein, namely hypoxia-inducible factor-1α (HIF 1α). This novel nanoformulated detection platform demonstrated the great capacity for visualizing various CTCs in peripheral blood with significantly improved detection efficiency and sensitivity. As a result, the nanoplatform has a great potential to be further applied for CTC detection in vitro or in vivo, which holds promise for extensive CTC studies.
Collapse
Affiliation(s)
- Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaoyan Shangguan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
- School of Biological Engineering, Dalian Polytechnic University Ganjingzi District Dalian 116034 PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Dongmei Xi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
16
|
Kurrikoff K, Vunk B, Langel Ü. Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opin Biol Ther 2020; 21:361-370. [PMID: 32938243 DOI: 10.1080/14712598.2021.1823368] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In this review, recent developments and applications with cell-penetrating peptides (CPP) are discussed. CPPs are widely used tools for the delivery of various macromolecular therapeutics, such as proteins and nucleic acids. AREAS COVERED The current review focuses on recent important advances and reports that demonstrate high clinical and translational potential. Most important clinical developments have occurred with the CPP-drug conjugate approaches that target various protein-protein interactions, and these have been highlighted subsequently. Most of the applications are targeting cancer, but recently, noteworthy advances have taken place in the field of antisense oligonucleotides and muscular dystrophies, lung targeting, and trans-BBB targeting. EXPERT OPINION Successful applications and clinical development with the drug conjugate approaches are discussed. On the other hand, the reasons of why the nanoparticle approaches are not as far in development are analyzed.
Collapse
Affiliation(s)
- Kaido Kurrikoff
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Birgit Vunk
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Ülo Langel
- University of Tartu, Institute of Technology, Tartu, Estonia.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|