1
|
Dias MF, Cruz-Cazarim ELC, Pittella F, Baião A, Pacheco AC, Sarmento B, Fialho SL. Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration. Drug Deliv Transl Res 2025:10.1007/s13346-024-01772-x. [PMID: 39751765 DOI: 10.1007/s13346-024-01772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss. Age-related Macular Degeneration is a primary cause of vision loss and blindness in the elderly, impacting around 20% of those over 50 years old. This complex disease is also closely related to oxidative stress in retina. In this review, we explore the challenge of treating retinal diseases, alternatives and possibilities of enhancing the effectiveness of therapies using co-delivery systems containing both antiangiogenic and antioxidant therapeutic agents. Despite recent proposals potential, the lack of extensive clinical studies on the long-term outcomes and optimal combinations of therapies means that the full risk profile and effectiveness of combined therapy are not yet completely understood. These factors must be carefully considered and managed by healthcare providers to optimize treatment outcomes and ensure patient safety.
Collapse
Affiliation(s)
- Marina F Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil
| | - Estael L C Cruz-Cazarim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Ana Baião
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Catarina Pacheco
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Bruno Sarmento
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Liu C, Su W, Jiang X, Lv Y, Kong F, Chen Q, Zhang Q, Zhang H, Liu Y, Li X, Xu X, Chen Y, Qu D. A Sustainable Retinal Drug Co-Delivery for Boosting Therapeutic Efficacy in wAMD: Unveiling Multifaceted Evidence and Synergistic Mechanisms. Adv Healthc Mater 2024; 13:e2303659. [PMID: 38386849 DOI: 10.1002/adhm.202303659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Sustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days. A single intravitreal injection of Bor/PT-M@TRG yields substantial reductions in choroidal neovascularization (CNV, a hallmark feature of wAMD) progression and mitigates oxidative stress-induced damage in vivo. Combinational PF&TMP regulates the "reactive oxygen species/nuclear factor erythroid-2-related factor 2/heme oxygenase-1" pathway and blocks the "hypoxia inducible factor-1α/vascular endothelial growth factor" signaling in retina, synergistically cutting off the loop of CNV formation. Utilizing fluorescence resonance energy transfer and liquid chromatography-mass spectrometry techniques, they present compelling multifaceted evidence of sustainable retinal codelivery spanning formulations, ARPE-19 cells, in vivo eye balls, and ex vivo section/retina-choroid complex cell levels. Such codelivery approach is elucidated as the key driving force behind the exceptional therapeutic outcomes of Bor/PT-M@TRG. These findings highlight the significance of sustainable retinal drug codelivery and rational combination for effective treatment of wAMD.
Collapse
Affiliation(s)
- Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Qin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, P. R. China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xinrong Xu
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, P. R. China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| |
Collapse
|
3
|
Parashar R, Vyas A, Sah AK, Hemnani N, Thangaraju P, Suresh PK. Recent Updates on Nanocarriers for Drug Delivery in Posterior Segment Diseases with Emphasis on Diabetic Retinopathy. Curr Diabetes Rev 2024; 20:e171023222282. [PMID: 37855359 DOI: 10.2174/0115733998240053231009060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023]
Abstract
In recent years, various conventional formulations have been used for the treatment and/or management of ocular medical conditions. Diabetic retinopathy, a microvascular disease of the retina, remains the leading cause of visual disability in patients with diabetes. Currently, for treating diabetic retinopathy, only intraocular, intravitreal, periocular injections, and laser photocoagulation are widely used. Frequent administration of these drugs by injections may lead to serious complications, including retinal detachment and endophthalmitis. Although conventional ophthalmic formulations like eye drops, ointments, and suspensions are available globally, these formulations fail to achieve optimum drug therapeutic profile due to immediate nasolacrimal drainage, rapid tearing, and systemic tearing toxicity of the drugs. To achieve better therapeutic outcomes with prolonged release of the therapeutic agents, nano-drug delivery materials have been investigated. These nanocarriers include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), dendrimers, nanofibers, in-situ gel, vesicular carriers, niosomes, and mucoadhesive systems, among others. The nanocarriers carry the potential benefits of site-specific delivery and controlled and sustained drug release profile. In the present article, various nanomaterials explored for treating diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Ravi Parashar
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Amber Vyas
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Abhishek K Sah
- Department of Pharmacy, Shri Govindram Seksariya Institute of Technology & Science (SGSITS), 23-Park Road, Indore, 452003 (M.P.), India
| | - Narayan Hemnani
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | | | - Preeti K Suresh
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| |
Collapse
|
4
|
Shafiq M, Rafique M, Cui Y, Pan L, Do CW, Ho EA. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers. J Control Release 2023; 362:446-467. [PMID: 37640109 DOI: 10.1016/j.jconrel.2023.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Presently, different types of eye diseases, such as glaucoma, myopia, infection, and dry eyes are treated with topical eye drops. However, due to ocular surface barriers, eye drops require multiple administrations, which may cause several risks, thereby necessitating additional strategies. Some of the key characteristics of an ideal ocular drug delivery system are as follows: (a) good penetration into cornea, (b) high drug retention in the ocular tissues, (c) targetability to the desired regions of the eye, and (d) good bioavailability. It is worthy to note that the corneal epithelial tight junctions hinder the permeation of therapeutics through the cornea. Therefore, it is necessary to design nanocarriers that can overcome these barriers and enhance drug penetration into the inner parts of the eye. Moreover, intelligent multifunctional nanocarriers can be designed to include cavities, which may help encapsulate sufficient amount of the drug. In addition, nanocarriers can be modified with the targeting moieties. Different types of nanocarriers have been developed for ocular drug delivery applications, including emulsions, liposomes, micelles, and nanoparticles. However, these formulations may be rapidly cleared from the eye. The therapeutic use of the nanoparticles (NPs) is also hindered by the non-specific adsorption of proteins on NPs, which may limit their interaction with the cellular moieties or other targeted biological factors. Functional drug delivery systems (DDS), which can offer targeted ocular drug delivery while avoiding the non-specific protein adsorption could exhibit great potential. This could be further realized by the on-demand DDS, which can respond to the stimuli in a spatio-temporal fashion. The cell-mediated DDS offer another valuable platform for ophthalmological drug delivery.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingkun Cui
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Waterloo, Canada; Waterloo Institute for Nanotechnology, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| |
Collapse
|
5
|
Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla K, Kidron H, Terasaki T, Urtti A. Selective drug delivery to the retinal cells: Biological barriers and avenues. J Control Release 2023; 361:1-19. [PMID: 37481214 DOI: 10.1016/j.jconrel.2023.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tatu Lajunen
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Madhushree Bhattacharya
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Arto Urtti
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland.
| |
Collapse
|
6
|
Chang W, Shen J, Liu Z, Chen Q. Application of organic nanocarriers for intraocular drug delivery. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:259-266. [PMID: 37476937 PMCID: PMC10409895 DOI: 10.3724/zdxbyxb-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
The application of intraocular drug delivery is usually limited due to special anatomical and physiological barriers, and the elimination mechanisms in the eye. Organic nano-drug delivery carriers exhibit excellent adhesion, permeability, targeted modification and controlled release abilities to overcome the obstacles and improve the efficiency of drug delivery and bioavailability. Solid lipid nanoparticles can entrap the active components in the lipid structure to improve the stability of drugs and reduce the production cost. Liposomes can transport hydrophobic or hydrophilic molecules, including small molecules, proteins and nucleic acids. Compared with linear macromolecules, dendrimers have a regular structure and well-defined molecular mass and size, which can precisely control the molecular shape and functional groups. Degradable polymer materials endow nano-delivery systems a variety of size, potential, morphology and other characteristics, which enable controlled release of drugs and are easy to modify with a variety of ligands and functional molecules. Organic biomimetic nanocarriers are highly optimized through evolution of natural particles, showing better biocompatibility and lower toxicity. In this article, we summarize the advantages of organic nanocarriers in overcoming multiple barriers and improving the bioavailability of drugs, and highlight the latest research progresses on the application of organic nanocarriers for treatment of ocular diseases.
Collapse
Affiliation(s)
- Wanwan Chang
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
7
|
Zhai Z, Zhou Y, Korovich AG, Hall BA, Yoon HY, Yao Y, Zhang J, Bortner MJ, Roman M, Madsen LA, Edgar KJ. Synthesis and Characterization of Multi-Reducing-End Polysaccharides. Biomacromolecules 2023. [PMID: 37262428 DOI: 10.1021/acs.biomac.3c00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and regioselective modification of polysaccharide chains can provide many useful natural-based materials and help us illuminate fundamental structure-property relationships of polysaccharide derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for regioselective decoration such as imine formation. However, all natural polysaccharides, whether they are branched or not, have only one reducing end per chain, which means that only one aldehyde-reactive substituent can be added. We introduce a new approach to selective functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing ends to each polysaccharide molecule. Herein, we reduce the approach to practice using amide formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-reducing-end polysaccharides (MREPs). This new family of derivatives creates the potential for designing polysaccharide-based materials with many potential applications, including in hydrogels, block copolymers, prodrugs, and as reactive intermediates for other derivatives.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrew G Korovich
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A Hall
- GlycoMIP, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hu Young Yoon
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yimin Yao
- Department of Chemical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Junchen Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael J Bortner
- Department of Chemical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Department of Sustainable Biomaterials, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A Madsen
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Jung HY, Kim B, Jeon MH, Kim Y. Reversible Near-Infrared Fluorescence Photoswitching in Aqueous Media by Diarylethene: Toward High-Accuracy Live Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103523. [PMID: 35023602 DOI: 10.1002/smll.202103523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Fluorescence imaging is an indispensable tool in modern biological research, allowing simple and inexpensive color-coded visualizations of real-time events in living cells and animals, as well as of fixed states of ex vivo specimens. The accuracy of fluorescence imaging in living systems is, however, impeded by autofluorescence, light scattering, and limited penetration depth of light. Nevertheless, the clinical use of fluorescence imaging is expected to grow along with advances in imaging equipment, and will increasingly demand high-accuracy probes to avoid false-positive results in disease detection. To this end, a water-soluble and relatively safe diarylethene (DAE)-based reversible near-infrared (NIR) fluorescence photoswitch for living systems is prepared here. Furthermore, to facilitate excellent switching performance, the photoirradiation results obtained is compared using three different visible light sources to turn on NIR fluorescence through cycloreversion of DAE. While photoswitching using 589 nm light leads to slightly higher cell viability, fluorescence quenching efficiency and fatigue resistance are higher when 532 nm light with low photobleaching is used in both aqueous solution and living systems. The authors anticipate that their reversible NIR fluorescence photoswitch mediated by DAE can be beneficial for fluorescence imaging in aqueous media requiring accurate detection, such as in the autofluorescence-rich living environment.
Collapse
Affiliation(s)
- Hye-Youn Jung
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Boram Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Min Ho Jeon
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Yoonkyung Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Bioscience Major, KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| |
Collapse
|