1
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
de Haas AM, Stolk DA, Schetters STT, Goossens-Kruijssen L, Keuning E, Ambrosini M, Boon L, Kalay H, Storm G, van der Vliet HJ, de Gruijl TD, van Kooyk Y. Vaccination with DC-SIGN-Targeting αGC Liposomes Leads to Tumor Control, Irrespective of Suboptimally Activated T-Cells. Pharmaceutics 2024; 16:581. [PMID: 38794243 PMCID: PMC11124829 DOI: 10.3390/pharmaceutics16050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer vaccines have emerged as a potent strategy to improve cancer immunity, with or without the combination of checkpoint blockade. In our investigation, liposomal formulations containing synthetic long peptides and α-Galactosylceramide, along with a DC-SIGN-targeting ligand, Lewis Y (LeY), were studied for their anti-tumor potential. The formulated liposomes boosted with anti-CD40 adjuvant demonstrated robust invariant natural killer (iNKT), CD4+, and CD8+ T-cell activation in vivo. The incorporation of LeY facilitated the targeting of antigen-presenting cells expressing DC-SIGN in vitro and in vivo. Surprisingly, mice vaccinated with LeY-modified liposomes exhibited comparable tumor reduction and survival rates to those treated with untargeted counterparts despite a decrease in antigen-specific CD8+ T-cell responses. These results suggest that impaired induction of antigen-specific CD8+ T-cells via DC-SIGN targeting does not compromise anti-tumor potential, hinting at alternative immune activation routes beyond CD8+ T-cell activation.
Collapse
Affiliation(s)
- Aram M. de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dorian A. Stolk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sjoerd T. T. Schetters
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Laura Goossens-Kruijssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eelco Keuning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- LIPOSOMA BV, Meerpaalweg 5, 1332 BB Almere, The Netherlands
| | | | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gert Storm
- LIPOSOMA BV, Meerpaalweg 5, 1332 BB Almere, The Netherlands
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- LAVA Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
5
|
Wu Y, Feng L. Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy. Expert Opin Drug Deliv 2023; 20:323-333. [PMID: 36634017 DOI: 10.1080/17425247.2023.2168640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cancer vaccine represents a promising strategy toward personalized immunotherapy, and its therapeutic potency highly relies on the specificity of tumor antigens. Among these extensively studied tumor antigens, neoantigens, a type of short synthetic peptides derived from random somatic mutations, have been shown to be able to elicit tumor-specific antitumor immune response for tumor suppression. However, challenges remain in the efficient and safe delivery of neoantigens to antigen-presenting cells inside lymph nodes for eliciting potent and sustained antitumor immune responses. The rapid advance of biomaterials including various nanomaterials, injectable hydrogels, and macroscopic scaffolds has been found to hold great promises to facilitate the construction of efficient cancer vaccines attributing to their high loading and controllable release capacities. AREAS COVERED In this review, we will summarize and discuss the recent advances in the utilization of different types of biomaterials to construct neoantigen-based cancer vaccines, followed by a simple perspective on the future development of such biomaterial-assisted cancer neoantigen vaccination and personalized immunotherapy. EXPERT OPINION These latest progresses in biomaterial-assisted cancer vaccinations have shown great promises in boosting substantially potentiated tumor-specific antitumor immunity to suppress tumor growth, thus preventing tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Yumin Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, PR China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, PR China
| |
Collapse
|
6
|
Jiang S, Nan F, Zhang S, Zhang X, Li Z, Yu Z, Liu F, Li J, Zhou X, Niu D, Wang H, Zhang X, Liu W, Yang X, Wang Y, Wang B. CRM197-conjugated multi antigen dominant epitope for effective human cytomegalovirus vaccine development. Int J Biol Macromol 2022; 224:79-93. [DOI: 10.1016/j.ijbiomac.2022.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
7
|
Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines (Basel) 2022; 10:vaccines10020196. [PMID: 35214655 PMCID: PMC8877108 DOI: 10.3390/vaccines10020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.
Collapse
|
8
|
Ye T, Li F, Ma G, Wei W. Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Adv Drug Deliv Rev 2021; 177:113927. [PMID: 34403752 DOI: 10.1016/j.addr.2021.113927] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
In recent years, personalized cancer vaccines have gained increasing attention as emerging immunotherapies with the capability to overcome interindividual differences and show great benefits for individual patients in the clinic due to the highly tailored vaccine formulations. A large number of materials have been studied as delivery vectors to enhance the therapeutic performance of personalized cancer vaccines, including artificial materials, engineered microorganisms, cells and cell derivatives. These delivery vectors with distinct features are employed to change antigen biodistributions and to facilitate antigen uptake, processing and presentation, improving the strength, velocity, and duration of the immune response when delivered by different strategies. Here, we provide an overview of personalized cancer vaccine delivery vectors, describing their materials, physicochemical properties, delivery strategies and challenges for clinical transformation.
Collapse
|