1
|
Valeo M, Marie S, Rémy M, Menguy T, Le Coz C, Molinari M, Feuillie C, Granier F, Durrieu MC. Bioactive hydrogels based on lysine dendrigrafts as crosslinkers: tailoring elastic properties to influence hMSC osteogenic differentiation. J Mater Chem B 2024; 12:12508-12522. [PMID: 39576239 DOI: 10.1039/d4tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Dendrigrafts are multivalent macromolecules with less ordered topology and higher branching than dendrimers. Exhibiting a high density of terminal amines, poly-L-lysine dendrigrafts of the fifth generation (DGL G5) allow hydrogel formation with tailorable crosslinking density and surface modification. This work presents DGL G5 as multifunctional crosslinkers in biomimetic PEG hydrogels to favour the osteogenic differentiation of human mesenchymal stem cells (hMSCs). DGL G5 reaction with dicarboxylic-acid PEG chains yielded amide networks of variable stiffness, measured at the macro and surface nanoscale. Oscillatory rheometry and compression afforded consistent values of Young's modulus, increasing from 8 to more than 30 kPa and correlating with DGL G5 concentration. At the surface level, AFM measurements showed the same tendency but higher E values, from approximately 15 to more than 100 kPa, respectively. To promote cell adhesion and differentiation, the hydrogels were functionalised with a GRGDSPC peptide and a biomimetic of the bone morphogenetic protein 2 (BMP-2), ensuring the same grafting concentrations (between 2.15 ± 0.54 and 2.28 ± 0.23 pmols mm-2) but different hydrogel stiffness. 6 h after seeding on functionalised hydrogels in serum-less media, hMSC showed nascent adhesions on the stiffer gels and greater spreading than on glass controls with serum. After two weeks in osteogenic media, hMSC seeded on the stiffer gels showed greater spreading, more polygonal morphologies and increased levels of osteopontin, an osteoblast marker, compared to controls, which peaked on 22 kPa-gels. Together, these results demonstrate that DGL G5-PEG hydrogel bioactivity can influence the adhesion, spreading and early commitment of hMSCs.
Collapse
Affiliation(s)
- Michele Valeo
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Murielle Rémy
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Cédric Le Coz
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, ENSMAC, F-33600 Pessac, France
| | - Michael Molinari
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | | |
Collapse
|
2
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Zhu Z, Huang F, Gao M, Liu M, Zhang Y, Tang L, Wu J, Yu H, He C, Chen J, Yang Z, Chen Z, Li Y, Chen H, Lei T, Zeng F, Cui Y. Osteogenic-Like Microenvironment of Renal Interstitium Induced by Osteomodulin Contributes to Randall's Plaque Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405875. [PMID: 39225583 PMCID: PMC11516157 DOI: 10.1002/advs.202405875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Calcium oxalate (CaOx) kidney stones are common and recurrent, lacking pharmacological prevention. Randall's plaques (RPs), calcium deposits in renal papillae, serve as niduses for some CaOx stones. This study explores the role of osteogenic-like cells in RP formation resembling ossification. CaP crystals deposit around renal tubules, interstitium, and blood vessels in RP tissues. Human renal interstitial fibroblasts (hRIFs) exhibit the highest osteogenic-like differentiation potential compared to chloride voltage-gated channel Ka positive tubular epithelial cells, aquaporin 2 positive collecting duct cells, and vascular endothelial cells, echoing the upregulated osteogenic markers primarily in hRIFs within RP tissues. Utilizing RNA-seq, osteomodulin (OMD) is found to be upregulated in hRIFs within RP tissues and hRIFs following osteogenic induction. Furthermore, OMD colocalizes with CaP crystals and calcium vesicles within RP tissues. OMD can enhance osteogenic-like differentiation of hRIFs in vitro and in vivo. Additionally, crystal deposits are attenuated in mice with Omd deletion in renal interstitial fibroblasts following CaOx nephrocalcinosis induction. Mechanically, a positive feedback loop of OMD/BMP2/BMPR1A/RUNX2/OMD drives hRIFs to adopt osteogenic-like fates, by which OMD induces osteogenic-like microenvironment of renal interstitium to participate in RP formation. We identify OMD upregulation as a pathological feature of RP, paving the way for preventing CaOx stones.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Internal MedicineSection EndocrinologyYale University School of MedicineNew HavenCT06519USA
| | - Fang Huang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Meng Gao
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Minghui Liu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Youjie Zhang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Liang Tang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jian Wu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hao Yu
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Cheng He
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jinbo Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhongqing Yang
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhiyong Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yang Li
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hequn Chen
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ting Lei
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310006China
| | - Feng Zeng
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yu Cui
- Department of UrologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
4
|
Tollabi M, Poursalehi Z, Mehrafshar P, Bakhtiari R, Sarmadi VH, Tayebi L, Haramshahi SMA. Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration. Connect Tissue Res 2024; 65:343-363. [PMID: 39297793 PMCID: PMC11541888 DOI: 10.1080/03008207.2024.2396002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024]
Abstract
Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.
Collapse
Affiliation(s)
- Mohammad Tollabi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Poursalehi
- Department of Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parichehr Mehrafshar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hazrate Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Qian G, Wu T, Wang Z, Yu B, Ye J. Synergistic effects of calcium silicate/zinc silicate dual compounds and in-situinterconnected pores on promoting bone regeneration of composite scaffolds. Biomed Mater 2024; 19:035024. [PMID: 38518361 DOI: 10.1088/1748-605x/ad3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration.In vitroresults demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a great bone repair effect, as evidenced by more new bone formation and a faster scaffold biodegradation compared to the scaffold with CS alone.
Collapse
Affiliation(s)
- Guowen Qian
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| | - Zhaozhen Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510630, People's Republic of China
| | - Bo Yu
- Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Jiandong Ye
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Ren X, Tsuji H, Uchino T, Kono I, Isoshima T, Okamoto A, Nagaoka N, Ozaki T, Matsukawa A, Miyatake H, Ito Y. An osteoinductive surface by adhesive bone morphogenetic protein-2 prepared using the bioorthogonal approach for tight binding of titanium with bone. J Mater Chem B 2024; 12:3006-3014. [PMID: 38451210 DOI: 10.1039/d3tb02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.
Collapse
Affiliation(s)
- Xueli Ren
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hironori Tsuji
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Takahiko Uchino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Izumi Kono
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
7
|
Jo YK, Choi B, Zhou C, Jun SH, Cha HJ. Cell recognitive bioadhesive-based osteogenic barrier coating with localized delivery of bone morphogenetic protein-2 for accelerated guided bone regeneration. Bioeng Transl Med 2023; 8:e10493. [PMID: 37206209 PMCID: PMC10189428 DOI: 10.1002/btm2.10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Titanium mesh (Ti-mesh) for guided bone regeneration (GBR) approaches has been extensively considered to offer space maintenance in reconstructing the alveolar ridge within bone defects due to its superb mechanical properties and biocompatibility. However, soft tissue invasion across the pores of the Ti-mesh and intrinsically limited bioactivity of the titanium substrates often hinder satisfactory clinical outcomes in GBR treatments. Here, a cell recognitive osteogenic barrier coating was proposed using a bioengineered mussel adhesive protein (MAP) fused with Alg-Gly-Asp (RGD) peptide to achieve highly accelerated bone regeneration. The fusion bioadhesive MAP-RGD exhibited outstanding performance as a bioactive physical barrier that enabled effective cell occlusion and a prolonged, localized delivery of bone morphogenetic protein-2 (BMP-2). The MAP-RGD@BMP-2 coating promoted in vitro cellular behaviors and osteogenic commitments of mesenchymal stem cells (MSCs) via the synergistic crosstalk effects of the RGD peptide and BMP-2 in a surface-bound manner. The facile gluing of MAP-RGD@BMP-2 onto the Ti-mesh led to a distinguishable acceleration of the in vivo formation of new bone in terms of quantity and maturity in a rat calvarial defect. Hence, our protein-based cell recognitive osteogenic barrier coating can be an excellent therapeutic platform to improve the clinical predictability of GBR treatment.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Biomedical Convergence Science and TechnologySchool of Convergence, Kyungpook National UniversityDaeguRepublic of Korea
- Cell and Matrix Research Institute, Kyungpook National UniversityDaeguSouth Korea
| | | | - Cong Zhou
- School of Stomatology, Shandong UniversityJinanChina
| | - Sang Ho Jun
- Department of Oral and Maxillofacial SurgeryKorea University Anam HospitalSeoulRepublic of Korea
| | - Hyung Joon Cha
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
8
|
Xiao Y, Donnelly H, Sprott M, Luo J, Jayawarna V, Lemgruber L, Tsimbouri PM, Meek RD, Salmeron-Sanchez M, Dalby MJ. Material-driven fibronectin and vitronectin assembly enhances BMP-2 presentation and osteogenesis. Mater Today Bio 2022; 16:100367. [PMID: 35937570 PMCID: PMC9352550 DOI: 10.1016/j.mtbio.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering strategies are of interest in the field of bone tissue regenerative medicine. MSCs are commonly investigated in combination with growth factors (GFs) and biomaterials to provide a regenerative environment for the cells. However, optimizing how biomaterials interact with MSCs and efficiently deliver GFs, remains a challenge. Here, via plasma polymerization, tissue culture plates are coated with a layer of poly (ethyl acrylate) (PEA), which is able to spontaneously permit fibronectin (FN) to form fibrillar nanonetworks. However, vitronectin (VN), another important extracellular matrix (ECM) protein forms multimeric globules on the polymer, thus not displaying functional groups to cells. Interestingly, when FN and VN are co-absorbed onto PEA surfaces, VN can be entrapped within the FN fibrillar nanonetwork in the monomeric form providing a heterogeneous, open ECM network. The combination of FN and VN promote MSC adhesion and leads to enhanced GF binding; here we demonstrate this with bone morphogenetic protein-2 (BMP2). Moreover, MSC differentiation into osteoblasts is enhanced, with elevated expression of osteopontin (OPN) and osteocalcin (OCN) quantified by immunostaining, and increased mineralization observed by von Kossa staining. Osteogenic intracellular signalling is also induced, with increased activity in the SMAD pathway. The study emphasizes the need of recapitulating the complexity of native ECM to achieve optimal cell-material interactions. Vitronectin can be incorporated within fibronectin fibril networks upon co-coating onto poly (ethyl acrylate) modified surfaces. Fibronectin and vitronectin networks promote mesenchymal stem cell adhesion and induce α5 integrin clustering. Fibronectin and vitronectin nanonetworks improve bone morphogenetic protein-2 presentation to mesenchymal stem cells and thus facilitates osteogenesis.
Collapse
|
9
|
Zarkesh K, Heidari R, Iranpour P, Azarpira N, Ahmadi F, Mohammadi-Samani S, Farjadian F. Theranostic Hyaluronan Coated EDTA Modified Magnetic Mesoporous Silica Nanoparticles for Targeted Delivery of Cisplatin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
The Effect of the Topmost Layer and the Type of Bone Morphogenetic Protein-2 Immobilization on the Mesenchymal Stem Cell Response. Int J Mol Sci 2022; 23:ijms23169287. [PMID: 36012551 PMCID: PMC9408842 DOI: 10.3390/ijms23169287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) plays a key role in the stem cell response, not only via its influence on osteogenesis, but also on cellular adhesion, migration, and proliferation. However, when applied clinically, its supra-physiological levels cause many adverse effects. Therefore, there is a need to concomitantly retain the biological activity of BMP-2 and reduce its doses. Currently, the most promising strategies involve site-specific and site-directed immobilization of rhBMP-2. This work investigated the covalent and electrostatic binding of rhBMP-2 to ultrathin-multilayers with chondroitin sulfate (CS) or diazoresin (DR) as the topmost layer. Angle-resolved X-ray photoelectron spectroscopy was used to study the exposed chemical groups. The rhBMP-2 binding efficiency and protein state were studied with time-of-flight secondary ion mass spectrometry. Quartz crystal microbalance, atomic force microscopy, and enzyme-linked immunosorbent assay were used to analyze protein–substrate interactions. The effect of the topmost layer was tested on initial cell adhesion and short-term osteogenesis marker expression. The results show the highest expression of selected osteomarkers in cells cultured on the DR-ended layer, while the cellular flattening was rather poor compared to the CS-ended system. rhBMP-2 adhesion was observed only on negatively charged layers. Cell flattening became more prominent in the presence of the protein, even though the osteogenic gene expression decreased.
Collapse
|
11
|
Wu D, Hou Y, Chu Z, Wei Q, Hong W, Lin Y. Ligand Mobility-Mediated Cell Adhesion and Spreading. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12976-12983. [PMID: 35282676 DOI: 10.1021/acsami.1c22603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells live in a highly dynamic environment where their physical connection and communication with the outside are achieved through receptor-ligands binding. Therefore, a precise knowledge of the interaction between receptors and ligands is critical for our understanding of how cells execute different biological duties. Interestingly, recent evidence has shown that the mobility of ligands at the cell-extracellular matrix (ECM) interface significantly affects the adhesion and spreading of cells, while the underlying mechanism remains unclear. Here, we present a modeling investigation to address this critical issue. Specifically, by adopting the Langevin dynamics, the random movement of ligands was captured by assigning a stochastic force along with a viscous drag on them. After that, the evolution of adhesion and subsequent spreading of cells were analyzed by considering the force-regulated binding/breakage of individual molecular bonds connecting polymerizing actin bundles inside the cell to the ECM. Interestingly, a biphasic relationship between adhesion and ligand diffusivity was predicted, resulting in maximized cell spreading at intermediate mobility of ligand molecules. In addition, this peak position was found to be dictated by the aggregation of ligands, effectively reducing their diffusivity, and how fast bond association/dissociation can occur. These predictions are in excellent agreement with our experimental observations where distinct ligand mobility was introduced by tuning the interactions between the self-assembly polymer coating and the surface.
Collapse
Affiliation(s)
- Di Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 000000, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 000000, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518057, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 000000, China
| |
Collapse
|
12
|
Fischer NG, Kobe AC, Dai J, He J, Wang H, Pizarek JA, De Jong DA, Ye Z, Huang S, Aparicio C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater 2022; 141:70-88. [PMID: 34971784 PMCID: PMC8898307 DOI: 10.1016/j.actbio.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexandra C Kobe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Jinhong Dai
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Hongning Wang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States.
| |
Collapse
|
13
|
Sales A, Khodr V, Machillot P, Chaar L, Fourel L, Guevara-Garcia A, Migliorini E, Albigès-Rizo C, Picart C. Differential bioactivity of four BMP-family members as function of biomaterial stiffness. Biomaterials 2022; 281:121363. [PMID: 35063741 PMCID: PMC7613911 DOI: 10.1016/j.biomaterials.2022.121363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
While a soft film itself is not able to induce cell spreading, BMP-2 presented via such soft film (so called "matrix-bound BMP-2") was previously shown to trigger cell spreading, migration and downstream BMP-2 signaling. Here, we used thin films of controlled stiffness presenting matrix-bound BMPs to study the effect of four BMP members (BMP-2, 4, 7, 9) on cell adhesion and differentiation of skeletal progenitors. We performed automated high-content screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity. We revealed that the cell response to bBMPs is BMP-type specific, and involved certain BMP receptors and beta chain integrins. In addition, this response is stiffness-dependent for several receptors. The basolateral presentation of the BMPs allowed us to discriminate the specificity of cellular response, especiallyd the role of type I and II BMP receptors and of β integrins in a BMP-type and stiffness-dependent manner. Notably, BMP-2 and BMP-4 were found to have distinct roles, while ALK5, previously known as a TGF-β receptor was revealed to be involved in the BMP-pathway.
Collapse
Affiliation(s)
- Adrià Sales
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France.
| | - Valia Khodr
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Line Chaar
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Laure Fourel
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Amaris Guevara-Garcia
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
14
|
Shan J, Wang S, Xu H, Zhan H, Geng Z, Liang H, Dai M. Incorporation of cerium oxide into zirconia toughened alumina ceramic promotes osteogenic differentiation and osseointegration. J Biomater Appl 2021; 36:976-984. [PMID: 34496655 DOI: 10.1177/08853282211036535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to its high wear resistance and good biocompatibility, zirconia toughened alumina (ZTA) is an ideal material used as load-bearing implant. However, ZTA needs to be modified to overcome its bio-inert and thus improve osseointegration. Cerium oxide, which has been proved to be a bone-friendly ceramic, might be a desired material to enhance the bioactivity of ZTA. In this study, ZTA and cerium oxide doped ZTA (ZTAC) were prepared via sintering method. The in vitro study showed that the addition of cerium oxide promoted MC3T3-E1 cell adhesion and spreading through upregulating ITG α5 and ITG β1. In addition, the incorporation of cerium oxide enhanced cell proliferation, ALP activity, and ECM mineralization capacity. Moreover, the incorporation of cerium oxide promoted the expressions of osteogenesis related genes, such as ALP, Col-I, and OCN. The in vivo implantation test via a SD rat model showed that the incorporation of cerium oxide promoted new bone formation and bone-implant integration. In summary, this study provided a new strategy to fabricate bioactive ZTA implant for potential application in orthopedics field.
Collapse
Affiliation(s)
- Jing Shan
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Song Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Huaen Xu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haibo Zhan
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hanqin Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Min Dai
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
16
|
Oliver‐Cervelló L, Martin‐Gómez H, Reyes L, Noureddine F, Ada Cavalcanti‐Adam E, Ginebra M, Mas‐Moruno C. An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Adv Healthc Mater 2021; 10:e2001757. [PMID: 33336559 DOI: 10.1002/adhm.202001757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Indexed: 01/04/2023]
Abstract
Recreating the healing microenvironment is essential to regulate cell-material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| | - Helena Martin‐Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| | - Leslie Reyes
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
| | - Fatima Noureddine
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 Heidelberg 69120 Germany
| | | | - Maria‐Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia Barcelona 08028 Spain
| | - Carlos Mas‐Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC) Barcelona 08019 Spain
- Barcelona Research Center in Multiscale Science and Engineering UPC Barcelona 08019 Spain
| |
Collapse
|