1
|
Sekulovski N, Carleton AE, Rengarajan AA, Lin CW, Juga LN, Whorton AE, Schmidt JK, Golos TG, Taniguchi K. Temporally resolved single cell transcriptomics in a human model of amniogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556553. [PMID: 39026707 PMCID: PMC11257495 DOI: 10.1101/2023.09.07.556553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amniogenesis is triggered in a collection of pluripotent epiblast cells as the human embryo implants. To gain insights into the critical but poorly understood transcriptional machinery governing amnion fate determination, we examined the evolving transcriptome of a developing human pluripotent stem cell-derived amnion model at the single cell level. This analysis revealed several continuous amniotic fate progressing states with state-specific markers, which include a previously unrecognized CLDN10+ amnion progenitor state. Strikingly, we found that expression of CLDN10 is restricted to the amnion-epiblast boundary region in the human post-implantation amniotic sac model as well as in a peri-gastrula cynomolgus macaque embryo, bolstering the growing notion that, at this stage, the amnion-epiblast boundary is a site of active amniogenesis. Bioinformatic analysis of published primate peri-gastrula single cell sequencing data further confirmed that CLDN10 is expressed in cells progressing to amnion. Additionally, our loss of function analysis shows that CLDN10 promotes amniotic but suppresses primordial germ cell-like fate. Overall, this study presents a comprehensive amniogenic single cell transcriptomic resource and identifies a previously unrecognized CLDN10+ amnion progenitor population at the amnion-epiblast boundary of the primate peri-gastrula.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anusha A. Rengarajan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison E. Whorton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
3
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Xu KL, Mauck RL, Burdick JA. Modeling development using hydrogels. Development 2023; 150:dev201527. [PMID: 37387575 PMCID: PMC10323241 DOI: 10.1242/dev.201527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The development of multicellular complex organisms relies on coordinated signaling from the microenvironment, including both biochemical and mechanical interactions. To better understand developmental biology, increasingly sophisticated in vitro systems are needed to mimic these complex extracellular features. In this Primer, we explore how engineered hydrogels can serve as in vitro culture platforms to present such signals in a controlled manner and include examples of how they have been used to advance our understanding of developmental biology.
Collapse
Affiliation(s)
- Karen L. Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
5
|
Resto Irizarry AM, Esfahani SN, Zheng Y, Yan RZ, Kinnunen P, Fu J. Machine learning-assisted imaging analysis of a human epiblast model. Integr Biol (Camb) 2021; 13:221-229. [PMID: 34327532 PMCID: PMC8521036 DOI: 10.1093/intbio/zyab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022]
Abstract
The human embryo is a complex structure that emerges and develops as a result of cell-level decisions guided by both intrinsic genetic programs and cell-cell interactions. Given limited accessibility and associated ethical constraints of human embryonic tissue samples, researchers have turned to the use of human stem cells to generate embryo models to study specific embryogenic developmental steps. However, to study complex self-organizing developmental events using embryo models, there is a need for computational and imaging tools for detailed characterization of cell-level dynamics at the single cell level. In this work, we obtained live cell imaging data from a human pluripotent stem cell (hPSC)-based epiblast model that can recapitulate the lumenal epiblast cyst formation soon after implantation of the human blastocyst. By processing imaging data with a Python pipeline that incorporates both cell tracking and event recognition with the use of a CNN-LSTM machine learning model, we obtained detailed temporal information of changes in cell state and neighborhood during the dynamic growth and morphogenesis of lumenal hPSC cysts. The use of this tool combined with reporter lines for cell types of interest will drive future mechanistic studies of hPSC fate specification in embryo models and will advance our understanding of how cell-level decisions lead to global organization and emergent phenomena. Insight, innovation, integration: Human pluripotent stem cells (hPSCs) have been successfully used to model and understand cellular events that take place during human embryogenesis. Understanding how cell-cell and cell-environment interactions guide cell actions within a hPSC-based embryo model is a key step in elucidating the mechanisms driving system-level embryonic patterning and growth. In this work, we present a robust video analysis pipeline that incorporates the use of machine learning methods to fully characterize the process of hPSC self-organization into lumenal cysts to mimic the lumenal epiblast cyst formation soon after implantation of the human blastocyst. This pipeline will be a useful tool for understanding cellular mechanisms underlying key embryogenic events in embryo models.
Collapse
Affiliation(s)
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|