1
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
3
|
Martínez-Ramírez J, Toldos-Torres M, Benayas E, Villar-Gómez N, Fernández-Méndez L, Espinosa FM, García R, Veintemillas-Verdaguer S, Morales MDP, Serrano MC. Hybrid hydrogels support neural cell culture development under magnetic actuation at high frequency. Acta Biomater 2024; 176:156-172. [PMID: 38281674 DOI: 10.1016/j.actbio.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The combination of hydrogels and magnetic nanoparticles, scarcely explored to date, offers a wide range of possibilities for innovative therapies. Herein, we have designed hybrid 3D matrices integrating natural polymers, such as collagen, chitosan (CHI) and hyaluronic acid (HA), to provide soft and flexible 3D networks mimicking the extracellular matrix of natural tissues, and iron oxide nanoparticles (IONPs) that deliver localized heat when exposed to an alternating magnetic field (AMF). First, colloidally stable nanoparticles with a hydrodynamic radius of ∼20 nm were synthesized and coated with either CHI (NPCHI) or HA (NPHA). Then, collagen hydrogels were homogeneously loaded with these coated-IONPs resulting in soft (E0 ∼ 2.6 kPa), biodegradable and magnetically responsive matrices. Polymer-coated IONPs in suspension preserved primary neural cell viability and neural differentiation even at the highest dose (0.1 mg Fe/mL), regardless of the coating, even boosting neuronal interconnectivity at lower doses. Magnetic hydrogels maintained high neural cell viability and sustained the formation of highly interconnected and differentiated neuronal networks. Interestingly, those hydrogels loaded with the highest dose of NPHA (0.25 mgFe/mg polymer) significantly impaired non-neuronal differentiation with respect to those with NPCHI. When evaluated under AMF, cell viability slightly diminished in comparison with control hydrogels magnetically stimulated, but not compared to their counterparts without stimulation. Neuronal differentiation under AMF was only affected on collagen hydrogels with the highest dose of NPHA, while non-neuronal differentiation regained control values. Taken together, NPCHI-loaded hydrogels displayed a superior performance, maybe benefited from their higher nanomechanical fluidity. STATEMENT OF SIGNIFICANCE: Hydrogels and magnetic nanoparticles are undoubtedly useful biomaterials for biomedical applications. Nonetheless, the combination of both has been scarcely explored to date. In this study, we have designed hybrid 3D matrices integrating both components as promising magnetically responsive platforms for neural therapeutics. The resulting collagen scaffolds were soft (E0 ∼ 2.6 kPa) and biodegradable hydrogels with capacity to respond to external magnetic stimuli. Primary neural cells proved to grow on these substrates, preserving high viability and neuronal differentiation percentages even under the application of a high-frequency alternating magnetic field. Importantly, those hydrogels loaded with chitosan-coated iron oxide nanoparticles displayed a superior performance, likely related to their higher nanomechanical fluidity.
Collapse
Affiliation(s)
- Julia Martínez-Ramírez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Marta Toldos-Torres
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Natalia Villar-Gómez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Laura Fernández-Méndez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Francisco M Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Ricardo García
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Sabino Veintemillas-Verdaguer
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María Del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| |
Collapse
|
4
|
Rodilla BL, Arché-Núñez A, Ruiz-Gómez S, Domínguez-Bajo A, Fernández-González C, Guillén-Colomer C, González-Mayorga A, Rodríguez-Díez N, Camarero J, Miranda R, López-Dolado E, Ocón P, Serrano MC, Pérez L, González MT. Flexible metallic core-shell nanostructured electrodes for neural interfacing. Sci Rep 2024; 14:3729. [PMID: 38355737 PMCID: PMC10866994 DOI: 10.1038/s41598-024-53719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step template assisted electrodeposition technique, to obtain flexible nanostructured electrodes coated with core-shell Ni-Au vertical nanowires. These nanowires benefit from biocompatibility of the Au shell exposed to the environment and the mechanical properties of Ni that allow for nanowires longer and more homogeneous in length than their only-Au counterparts. The nanostructured electrodes show impedance values, measured by electrochemical impedance spectroscopy (EIS), at least 9 times lower than those of flat reference electrodes. This ratio is in good accordance with the increased effective surface area determined both from SEM images and cyclic voltammetry measurements, evidencing that only Au is exposed to the medium. The observed EIS profile evolution of Ni-Au electrodes over 7 days were very close to those of Au electrodes and differently from Ni ones. Finally, the morphology, viability and neuronal differentiation of rat embryonic cortical cells cultured on Ni-Au NW electrodes were found to be similar to those on control (glass) substrates and Au NW electrodes, accompanied by a lower glial cell differentiation. This positive in-vitro neural cell behavior encourages further investigation to explore the tissue responses that the implantation of these nanostructured electrodes might elicit in healthy (damaged) neural tissues in vivo, with special emphasis on eventual tissue encapsulation.
Collapse
Affiliation(s)
- Beatriz L Rodilla
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
| | - Sandra Ruiz-Gómez
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
- Animal Molecular and Cellular Biology group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Place Croix du Sud 5, 1348 , Louvain la Neuve, Belgium
| | | | | | | | | | - Julio Camarero
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Department de Física de la Materia Condensada and Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rodolfo Miranda
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Department de Física de la Materia Condensada and Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda S/N, 45071, Toledo, Spain
- Design and development of Biomaterials for Neural Regeneration, HNP-SESCAM, Associated Unit With CSIC Through ICMM, Finca La Peraleda S/N, 45071, Toledo, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Lucas Pérez
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain
| | | |
Collapse
|
5
|
Zhang Y, Riexinger J, Yang X, Mikhailova E, Jin Y, Zhou L, Bayley H. A microscale soft ionic power source modulates neuronal network activity. Nature 2023; 620:1001-1006. [PMID: 37648756 PMCID: PMC10468398 DOI: 10.1038/s41586-023-06295-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 09/01/2023]
Abstract
Bio-integrated devices need power sources to operate1,2. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction3, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices4-6. One approach is to use soft power sources inspired by the electrical eel7,8; however, power sources that combine the required capabilities have not yet been produced, because it is challenging to obtain miniaturized units that both conserve contained energy before usage and are easily triggered to produce an energy output. Here we develop a miniaturized soft power source by depositing lipid-supported networks of nanolitre hydrogel droplets that use internal ion gradients to generate energy. Compared to the original eel-inspired design7, our approach can shrink the volume of a power unit by more than 105-fold and it can store energy for longer than 24 h, enabling operation on-demand with a 680-fold greater power density of about 1,300 W m-3. Our droplet device can serve as a biocompatible and biological ionic current source to modulate neuronal network activity in three-dimensional neural microtissues and in ex vivo mouse brain slices. Ultimately, our soft microscale ionotronic device might be integrated into living organisms.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Chemistry, University of Oxford, Oxford, UK.
| | | | - Xingyun Yang
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Yongcheng Jin
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Linna Zhou
- Department of Chemistry, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
7
|
Giorgi S, Lamberti A, Butrón L, Gross-Amat O, Alarcón-Alarcón D, Rodríguez-Cañas E, Fernández-Carvajal A, Ferrer-Montiel A. Compartmentalized primary cultures of dorsal root ganglion neurons to model peripheral pathophysiological conditions. Mol Pain 2023; 19:17448069231197102. [PMID: 37578145 PMCID: PMC10521292 DOI: 10.1177/17448069231197102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Neurosensory disorders such as pain and pruritus remain a major health problem greatly impacting the quality of life, and often increasing the risk of mortality. Current pre-clinical models to investigate dysfunction of sensory neurons have shown a limited clinical translation, in part, by failing to mimic the compartmentalized nociceptor anatomy that exhibits a central compartment containing the soma and a peripheral one harboring the axon endings with distinct molecular and cellular environmental composition. Thus, there is a need to validate compartmentalized preclinical neurosensory models for investigating the pathophysiology of peripheral sensory disorders and to test drug candidates. Here, we have addressed this issue and developed a microfluidic-based preclinical nociceptor model and validated it for investigating inflammatory and neuropathic peripheral disorders. We show that this model reproduces the peripheral sensitization and resolution produced by an inflammatory soup and by the chemotherapeutic drug paclitaxel. Furthermore, compartmentalized nociceptor primary cultures were amenable to co-culture with keratinocytes in the axonal compartment. Interaction of axonal endings with keratinocytes modulated neuronal responses, consistent with a crosstalk between both cell types. These findings pave the way towards translational pre-clinical sensory models for skin pathophysiological research and drug development.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Angela Lamberti
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Olivia Gross-Amat
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Enrique Rodríguez-Cañas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| |
Collapse
|
8
|
Huang WC, Hung CH, Lin YW, Zheng YC, Lei WL, Lu HE. Electrically Copolymerized Polydopamine Melanin/Poly(3,4-ethylenedioxythiophene) Applied for Bioactive Multimodal Neural Interfaces with Induced Pluripotent Stem Cell-Derived Neurons. ACS Biomater Sci Eng 2022; 8:4807-4818. [PMID: 36222713 DOI: 10.1021/acsbiomaterials.2c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multimodal neural interfaces include combined functions of electrical neuromodulation and synchronic monitoring of neurochemical and physiological signals in one device. The remarkable biocompatibility and electrochemical performance of polystyrene sulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) have made it the most recommended conductive polymer neural electrode material. However, PEDOT:PSS formed by electrochemical deposition, called PEDOT/PSS, often need multiple doping to improve structural instability in moisture, resolve the difficulties of functionalization, and overcome the poor cellular affinity. In this work, inspired by the catechol-derived adhesion and semiconductive properties of polydopamine melanin (PDAM), we used electrochemical oxidation polymerization to develop PDAM-doped PEDOT (PEDOT/PDAM) as a bioactive multimodal neural interface that permits robust electrochemical performance, structural stability, analyte-trapping capacity, and neural stem cell affinity. The use of potentiodynamic scans resolved the problem of copolymerizing 3,4-ethylenedioxythiophene (EDOT) and dopamine (DA), enabling the formation of PEDOT/PDAM self-assembled nanodomains with an ideal doping state associated with remarkable current storage and charge transfer capacity. Owing to the richness of hydrogen bond donors/acceptors provided by the hydroxyl groups of PDAM, PEDOT/PDAM presented better electrochemical and mechanical stability than PEDOT/PSS. It has also enabled high sensitivity and selectivity in the electrochemical detection of DA. Different from PEDOT/PSS, which inhibited the survival of human induced pluripotent stem cell-derived neural progenitor cells, PEDOT/PDAM maintained cell proliferation and even promoted cell differentiation into neuronal networks. Finally, PEDOT/PDAM was modified on a commercialized microelectrode array system, which resulted in the reduction of impedance by more than one order of magnitude; this significantly improved the resolution and reduced the noise of neuronal signal recording. With these advantages, PEDOT/PDAM is anticipated to be an efficient bioactive multimodal neural electrode material with potential application to brain-machine interfaces.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ching-Heng Hung
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yueh-Wen Lin
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Cheng Zheng
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Wan-Lou Lei
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
9
|
Fernández-González C, Guedeja-Marrón A, Rodilla BL, Arché-Nuñez A, Corcuera R, Lucas I, González MT, Varela M, de la Presa P, Aballe L, Pérez L, Ruiz-Gómez S. Electrodeposited Magnetic Nanowires with Radial Modulation of Composition. NANOMATERIALS 2022; 12:nano12152565. [PMID: 35893533 PMCID: PMC9370789 DOI: 10.3390/nano12152565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Beatriz L. Rodilla
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Ana Arché-Nuñez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Rubén Corcuera
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Irene Lucas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Teresa González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Maria Varela
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Patricia de la Presa
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Instituto de Magnetismo Aplicado, 28230 Las Rozas, Spain
| | - Lucía Aballe
- Alba Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain;
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Surface Science and Magnetism of Low Dimensional Systems, UCM, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
- Correspondence: (L.P.); (S.R.-G.)
| | - Sandra Ruiz-Gómez
- Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
- Correspondence: (L.P.); (S.R.-G.)
| |
Collapse
|
10
|
Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates. Int J Mol Sci 2022; 23:ijms23126362. [PMID: 35742806 PMCID: PMC9223746 DOI: 10.3390/ijms23126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.
Collapse
|