1
|
Yin C, Xing Y, Zhao P, Yin Y, Yao H, Xue J, Gu W. Tetradecanol-wrapped, CpG-loaded porous Prussian blue nanoimmunomodulator for photothermal-responsive in situ anti-tumor vaccine-like immunotherapy. BIOMATERIALS ADVANCES 2024; 164:213996. [PMID: 39146604 DOI: 10.1016/j.bioadv.2024.213996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Therapeutic vaccine becomes a promising strategy to fight cancer by enhancing and sustaining specific anti-tumor immune responses. However, its efficacy is often impeded by low immunogenicity, the immunosuppressive tumor microenvironment (TME), and immune-related adverse events. Herein, we introduce 1-tetradecanol (TD)-wrapped, CpG-loaded porous Prussian blue nanoparticles (pPBNPs-CpG@TD) as a nanoimmunomodulator to initiate photothermal-induced immunogenic cell death (ICD) and photothermal-responsive release of CpG for augmenting the ICD effect. It was revealed that the dual-photothermal action significantly potentiated the in situ anti-tumor vaccine-like immunotherapy in terms of enhanced immunogenicity, promoted dendritic cell maturation, and increased T lymphocyte infiltration, consequently eliciting a robust immune response for inhibiting both primary and rechallenge tumors on a subcutaneous 4T1 tumor-bearing mouse model. The development and use of photoactive nanoimmunomodulators represents a novel and effective strategy to boost immunogenicity and counteract immunosuppressive TME, marking a significant advancement in the realm of ICD-driven in situ anti-tumor vaccine-like immunotherapy.
Collapse
Affiliation(s)
- Chenlu Yin
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Yixin Xing
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Peng Zhao
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Yuying Yin
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Hanye Yao
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Jingqiang Xue
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China
| | - Wei Gu
- School of pharmaceutical sciences, Capital medical university, Beijing 100069, PR China.
| |
Collapse
|
2
|
Li Q, Yan Y, Wang C, Dong Z, Hao Y, Chen M, Liu Z, Feng L. Biomineralization-inspired synthesis of autologous cancer vaccines for personalized metallo-immunotherapy. iScience 2024; 27:110189. [PMID: 38989457 PMCID: PMC11233966 DOI: 10.1016/j.isci.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Autologous cancer vaccines represent a promising therapeutic approach against tumor relapse. Herein, a concise biomineralization strategy was developed to prepare an immunostimulatory autologous cancer vaccine through protein antigen-mediated growth of flower-like manganese phosphate (MnP) nanoparticles. In addition to inheriting the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING)-activating capacity of Mn2+, the resulting ovalbumin (OVA)-loaded MnP (OVA@MnP) nanoparticles with superior stability and pH-responsiveness enabled efficient priming of antigen-specific CD8+ T cell expansion through promoting the endo/lysosome escape and subsequent antigen cross-presentation of OVA. Resultantly, OVA@MnP vaccines upon subcutaneous vaccination elicited both prophylactic and therapeutic effects against OVA-expressing B16-F10 melanoma. Furthermore, the biomineralized autologous cancer vaccines prepared from the whole tumor cell lysates of the dissected tumors suppressed the growth of residual tumors, particularly in combination with anti-PD-1 immunotherapy. This study highlights a simple biomineralization approach for the controllable synthesis of cGAS-STING-activating autologous cancer vaccines to suppress postsurgical tumor relapse.
Collapse
Affiliation(s)
- Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yifan Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
3
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Pal S, Chaudhari R, Baurceanu I, Hill BJ, Nagy BA, Wolf MT. Extracellular Matrix Scaffold-Assisted Tumor Vaccines Induce Tumor Regression and Long-Term Immune Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309843. [PMID: 38302823 PMCID: PMC11009079 DOI: 10.1002/adma.202309843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Injectable scaffold delivery is a strategy to enhance the efficacy of cancer vaccine immunotherapy. The choice of scaffold biomaterial is crucial, impacting both vaccine release kinetics and immune stimulation via the host response. Extracellular matrix (ECM) scaffolds prepared from decellularized tissues facilitate a pro-healing inflammatory response that promotes local cancer immune surveillance. Here, an ECM scaffold-assisted therapeutic cancer vaccine that maintains an immune microenvironment consistent with tissue reconstruction is engineered. Several immune-stimulating adjuvants are screened to develop a cancer vaccine formulated with decellularized small intestinal submucosa (SIS) ECM scaffold co-delivery. It is found that the STING pathway agonist cyclic di-AMP most effectively induces cytotoxic immunity in an ECM scaffold vaccine, without compromising key interleukin 4 (IL-4) mediated immune pathways associated with healing. ECM scaffold delivery enhances therapeutic vaccine efficacy, curing 50-75% of established E.G-7OVA lymphoma tumors in mice, while none are cured with soluble vaccine. SIS-ECM scaffold-assisted vaccination prolonged antigen exposure is dependent on CD8+ cytotoxic T cells and generates long-term antigen-specific immune memory for at least 10 months post-vaccination. This study shows that an ECM scaffold is a promising delivery vehicle to enhance cancer vaccine efficacy while being orthogonal to characteristics of pro-healing immune hallmarks.
Collapse
Affiliation(s)
- Sanjay Pal
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Rohan Chaudhari
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
- OHSU School of Medicine, Oregon Health & Science
University, Portland, OR 97239
| | - Iris Baurceanu
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Brenna J. Hill
- AIDS and Cancer Virus Program, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| | - Bethany A. Nagy
- Laboratory Animal Sciences Program (LASP), National Cancer
Institute, Frederick, MD 21702
| | - Matthew T. Wolf
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| |
Collapse
|
5
|
Yang F, Dai L, Shi K, Liu Q, Pan M, Mo D, Deng H, Yuan L, Lu Y, Pan L, Yang T, Qian Z. A facile boronophenylalanine modified polydopamine dual drug-loaded nanoparticles for enhanced anti-tumor immune response in hepatocellular carcinoma comprehensive treatment. Biomaterials 2024; 305:122435. [PMID: 38150771 DOI: 10.1016/j.biomaterials.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Hepatocellular carcinoma (HCC) has an insidious onset and high malignancy. Most patients have progressed to intermediate and advanced stages by the time of diagnosis, and the long-term efficacy of traditional treatments is not satisfactory. Immunotherapy has shown great promise in the treatment of HCC in recent years; however, the low immunogenicity and severe immunosuppressive tumor microenvironment result in a low response rate to immunotherapy in HCC patients. Therefore, it is of great significance to improve the immunogenicity of HCC and thus enhance its sensitivity to immunotherapy. Here, we prepared the boronophenylalanine-modified dual drug-loaded polydopamine nanoparticles by a facile method. This system used boronophenylalanine-modified polydopamine nanoparticles as a delivery vehicle and photothermal material for the chemotherapeutic drug doxorubicin and the immune agonist CpG oligodeoxynucleotides (CpG-ODN), with both active targeting and lysosomal escape functions. The cancer cells are rapidly killed by photothermal treatment, and then chemotherapy is used to further kill cancer cells that are inadequately treated by photothermal treatment. The combination of photothermal-chemotherapy synergistically induces the release of relevant antigens from tumor cells, thus initiating anti-tumor immunity; and then cooperates with CpG-ODN to trigger a powerful anti-tumor immune memory effect, potently and durably inhibiting HCC recurrence.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanzhi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Zhang H, Lai L, Wang Z, Zhang J, Zhou J, Nie Y, Chen J. Glycogen for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Int J Biol Macromol 2024; 257:128536. [PMID: 38061522 DOI: 10.1016/j.ijbiomac.2023.128536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Li Lai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianzhu Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Wang D, Liu J, Duan J, Yi H, Liu J, Song H, Zhang Z, Shi J, Zhang K. Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence. Nat Commun 2023; 14:4511. [PMID: 37500633 PMCID: PMC10374534 DOI: 10.1038/s41467-023-40085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Postoperative tumor recurrence and metastases often lead to cancer treatment failure. Here, we develop a local embedded photodynamic immunomodulatory DNA hydrogel for early warning and inhibition of postoperative tumor recurrence. The DNA hydrogel contains PDL1 aptamers that capture and enrich in situ relapsed tumor cells, increasing local ATP concentration to provide a timely warning signal. When a positive signal is detected, local laser irradiation is performed to trigger photodynamic therapy to kill captured tumor cells and release tumor-associated antigens (TAA). In addition, reactive oxygen species break DNA strands in the hydrogel to release encoded PDL1 aptamer and CpG, which together with TAA promote sufficient systemic antitumor immunotherapy. In a murine model where tumor cells are injected at the surgical site to mimic tumor recurrence, we find that the hydrogel system enables timely detection of tumor recurrence by enriching relapsed tumor cells to increase local ATP concentrations. As a result, a significant inhibitory effect of approximately 88.1% on recurrent tumors and effectively suppressing metastasis, offering a promising avenue for timely and effective treatment of postoperative tumor recurrence.
Collapse
Affiliation(s)
- Danyu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingwen Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Duan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Yi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2203028. [PMID: 36807733 PMCID: PMC11468714 DOI: 10.1002/adhm.202203028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Indexed: 02/20/2023]
Abstract
Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Jingyang Shan
- Department of NeurologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518000P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Xuejiao Song
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Guangwen Yang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Heng Dong
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
11
|
Bressler EM, Adams S, Liu R, Colson YL, Wong WW, Grinstaff MW. Boolean logic in synthetic biology and biomaterials: Towards living materials in mammalian cell therapeutics. Clin Transl Med 2023; 13:e1244. [PMID: 37386762 PMCID: PMC10310979 DOI: 10.1002/ctm2.1244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The intersection of synthetic biology and biomaterials promises to enhance safety and efficacy in novel therapeutics. Both fields increasingly employ Boolean logic, which allows for specific therapeutic outputs (e.g., drug release, peptide synthesis) in response to inputs such as disease markers or bio-orthogonal stimuli. Examples include stimuli-responsive drug delivery devices and logic-gated chimeric antigen receptor (CAR) T cells. In this review, we explore recent manuscripts highlighting the potential of synthetic biology and biomaterials with Boolean logic to create novel and efficacious living therapeutics. MAIN BODY Collaborations in synthetic biology and biomaterials have led to significant advancements in drug delivery and cell therapy. Borrowing from synthetic biology, researchers have created Boolean-responsive biomaterials sensitive to multiple inputs including pH, light, enzymes and more to produce functional outputs such as degradation, gel-sol transition and conformational change. Biomaterials also enhance synthetic biology, particularly CAR T and adoptive T cell therapy, by modulating therapeutic immune cells in vivo. Nanoparticles and hydrogels also enable in situ generation of CAR T cells, which promises to drive down production costs and expand access to these therapies to a larger population. Biomaterials are also used to interface with logic-gated CAR T cell therapies, creating controllable cellular therapies that enhance safety and efficacy. Finally, designer cells acting as living therapeutic factories benefit from biomaterials that improve biocompatibility and stability in vivo. CONCLUSION By using Boolean logic in both cellular therapy and drug delivery devices, researchers have achieved better safety and efficacy outcomes. While early projects show incredible promise, coordination between these fields is ongoing and growing. We expect that these collaborations will continue to grow and realize the next generation of living biomaterial therapeutics.
Collapse
Affiliation(s)
- Eric M. Bressler
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Sarah Adams
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Rong Liu
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yolonda L. Colson
- Division of Thoracic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering and Biological Design CenterBoston UniversityBostonMassachusettsUSA
- Department of Chemistry and Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
12
|
Meng F, Wang J, Yeo Y. Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy. J Control Release 2022; 345:586-600. [PMID: 35351528 PMCID: PMC9133138 DOI: 10.1016/j.jconrel.2022.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022]
Abstract
A group of nucleic acids and oligonucleotides play various roles in the innate immune system. They can stimulate pattern recognition receptors to activate innate immune cells, encode immunostimulatory proteins or peptides, or silence specific genes to block negative regulators of immune cells. Given the limitations of current cancer immunotherapy, there has been increasing interest in harnessing innate immune responses by nucleic acids and oligonucleotides. The poor biopharmaceutical properties of nucleic acids and oligonucleotides make it critical to use carriers that can protect them in circulation, retain them in the tumor microenvironment, and bring them to intracellular targets. Therefore, various gene carriers have been repurposed to deliver nucleic acids and oligonucleotides for cancer immunotherapy and improve their safety and activity. Here, we review recent studies that employed carriers to enhance the functions of nucleic acids and oligonucleotides and overall immune responses to cancer, and discuss remaining challenges and future opportunities in the development of nucleic acid-based immunotherapeutics.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA.
| |
Collapse
|