1
|
Liu F, Howard CB, Huda P, Fletcher NL, Bell CA, Blakey I, Agrez M, Thurecht KJ. Immune-modulating nanomedicines for enhanced drug delivery to non-small-cell lung cancer. Biomaterials 2025; 317:123089. [PMID: 39793167 DOI: 10.1016/j.biomaterials.2025.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Immune-modulating peptides have shown potential as novel immune-stimulating agents which enhance the secretion of anticancer cytokines in vitro. However, fast clearance from blood hampers the ability of such peptides to accumulate in the tumour and results in limited therapeutic efficacy in animal studies. To address the fast blood clearance, this work reports the development and validation of a novel polymeric nanoparticle delivery system for the efficient localization of an immunomodulating peptide in the tumour microenvironment (TME). To identify the optimal polymeric nanoparticle for this study, two types of nanoparticles were developed as either branched polymers or micelles that have similar chemical functionality but different sizes. The effect of targeting the nanomedicine to the tumour-specific antigen, glycoprotein GPC-1, was explored using a bispecific antibody (BsAb) that shows an affinity for the cell protein (GPC-1) and the nanoparticle. These systems were evaluated for targeting efficiency and tumour penetration using tumour spheroids of Lewis Lung Cancer (LLC) cells and it was shown that the targeted system significantly enhanced cell association compared to the untargeted control with minor differences in penetration. The lead micelle-peptide conjugates were identified and using in vivo allograft models they were demonstrated to have high delivery efficiency of the peptide to tumours, prolonged blood circulation, enhanced tumour accumulation and tumour suppression that was associated with immune cell recruitment to the tumour.
Collapse
Affiliation(s)
- Feifei Liu
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Idriss Blakey
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael Agrez
- ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia; InterK Peptide Therapeutics Limited, Sydney, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia.
| |
Collapse
|
2
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
3
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 PMCID: PMC10699306 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L. Fletcher
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M. Saunus
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E. McCart Reed
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T. Simpson
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J. Thurecht
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R. Lakhani
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology
Queensland, Royal Brisbane and Women’s
Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
5
|
Dong C, Yu X, Jin K, Qian J. Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; current status, challenges and future perspective. Nanomedicine (Lond) 2023; 18:2161-2184. [PMID: 38180008 DOI: 10.2217/nnm-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Glioblastoma (GB) originating from astrocytes is considered a grade IV astrocytoma tumor with severe consequences. The blood-brain barrier (BBB) offers a major obstacle in drug delivery to the brain to overcome GB. The current treatment options possess limited efficacy and maximal systemic toxic effects in GB therapy. Emerging techniques such as targeted drug delivery offer significant advantages, including enhanced drug delivery to the tumor site by overcoming the BBB. This review article focuses on the status of surface-modified lipid nanocarriers with functional ligands to efficiently traverse the BBB and improve brain targeting for successful GB treatment. The difficulties with surface-functionalized liposomes and potential future directions for opening up novel treatment options for GB are highlighted.
Collapse
Affiliation(s)
- Changming Dong
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China
| |
Collapse
|
6
|
Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 Monoclonal Antibody for Multiple Applications Against Breast Cancers. Monoclon Antib Immunodiagn Immunother 2023; 42:166-177. [PMID: 37824755 DOI: 10.1089/mab.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies (mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, including breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple applications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb (clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC). B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to be 2.9 × 10-9 M and 1.3 × 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively. B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Nagri S, Rice O, Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1215384. [PMID: 38938851 PMCID: PMC11210682 DOI: 10.3389/fbiom.2023.1215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient's quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.
Collapse
Affiliation(s)
- Shreya Nagri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Olivia Rice
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Ghosh S, Fletcher NL, Huda P, Houston ZH, Howard CB, Lund ME, Lu Y, Campbell DH, Walsh BJ, Thurecht KJ. Pharmacokinetics and Biodistribution of 89Zr-Miltuximab and Its Antibody Fragments as Glypican-1 Targeting Immuno-PET Agents in Glioblastoma. Mol Pharm 2023; 20:1549-1563. [PMID: 36602058 DOI: 10.1021/acs.molpharmaceut.2c00760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Maria E Lund
- GlyTherix Ltd, Ground Floor, 75 Talavera Road, Macquarie Park, New South Wales2113, Australia
| | - Yanling Lu
- GlyTherix Ltd, Ground Floor, 75 Talavera Road, Macquarie Park, New South Wales2113, Australia
| | - Douglas H Campbell
- GlyTherix Ltd, Ground Floor, 75 Talavera Road, Macquarie Park, New South Wales2113, Australia
| | - Bradley J Walsh
- GlyTherix Ltd, Ground Floor, 75 Talavera Road, Macquarie Park, New South Wales2113, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
9
|
Pizzi D, Humphries J, Morrow JP, Mahmoud AM, Fletcher NL, Sonderegger SE, Bell CA, Thurecht KJ, Kempe K. Probing the Biocompatibility and Immune Cell Association of Chiral, Water-Soluble, Bottlebrush Poly(2-oxazoline)s. Biomacromolecules 2023; 24:246-257. [PMID: 36464844 DOI: 10.1021/acs.biomac.2c01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Poly(2-oxazoline)s (POx) have received substantial attention as poly(ethylene glycol) (PEG) alternatives in the biomedical field due to their biocompatibility, high functionality, and ease of synthesis. While POx have demonstrated strong potential as biomaterial constituents, the larger family of poly(cyclic imino ether)s (PCIE) to which POx belongs remains widely underexplored. One highly interesting sub-class of PCIE is poly(2,4-disubstituted-2-oxazoline)s (PdOx), which bear an additional substituent on the backbone of the polymers' repeating units. This allows fine-tuning of the hydrophilic/hydrophobic balance and renders the PdOx chiral when enantiopure 2-oxazoline monomers are used. Herein, we synthesize new water-soluble (R-/S-/RS-) poly(oligo(2-ethyl-4-methyl-2-oxazoline) methacrylate) (P(OEtMeOxMA)) bottlebrushes and compare them to well-established PEtOx- and PEG-based bottlebrush controls in terms of their physical properties, hydrophilicity, and biological behavior. We reveal that the P(OEtMeOxMA) bottlebrushes show a lower critical solution temperature behavior at a physiologically relevant temperature (∼44 °C) and that the enantiopure (R-/S-) variants display a chiral secondary structure. Importantly, we demonstrate the biocompatibility of the chiral P(OEtMeOxMA) bottlebrushes through cellular association and mouse biodistribution studies and show that these systems display higher immune cell association and organ accumulation than the two control polymers. These novel materials possess properties that hold promise for applications in the field of nanomedicine and may be beneficial carriers for therapeutics that require enhanced cellular association and immune cell interaction.
Collapse
Affiliation(s)
- David Pizzi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - James Humphries
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Ayaat M Mahmoud
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Stefan E Sonderegger
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queesland4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia.,Materials Science and Engineering, Monash University, Clayton, Victoria3800, Australia
| |
Collapse
|
10
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|