1
|
Kurtuldu F, Mutlu N, Friedrich RP, Beltrán AM, Liverani L, Detsch R, Alexiou C, Galusek D, Boccaccini AR. Gallium-containing mesoporous nanoparticles influence in-vitro osteogenic and osteoclastic activity. BIOMATERIALS ADVANCES 2024; 162:213922. [PMID: 38878645 DOI: 10.1016/j.bioadv.2024.213922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Mesoporous silica nanoparticles were synthesized using a microemulsion-assisted sol-gel method, and calcium, gallium or a combination of both, were used as dopants. The influence of these metallic ions on the physicochemical properties of the nanoparticles was investigated by scanning and transmission electron microscopy, as well as N2 adsorption-desorption methods. The presence of calcium had a significant impact on the morphology and textural features of the nanoparticles. The addition of calcium increased the average diameter of the nanoparticles from 80 nm to 150 nm, while decreasing their specific surface area from 972 m2/g to 344 m2/g. The nanoparticles of all compositions were spheroidal, with a disordered mesoporous structure. An ion release study in cell culture medium demonstrated that gallium was released from the nanoparticles in a sustained manner. In direct contact with concentrations of up to 100 μg/mL of the nanoparticles, gallium-containing nanoparticles did not exhibit cytotoxicity towards pre-osteoblast MC3T3-E1 cells. Moreover, in vitro cell culture tests revealed that the addition of gallium to the nanoparticles enhanced osteogenic activity. Simultaneously, the nanoparticles disrupted the osteoclast differentiation of RAW 264.7 macrophage cells. These findings suggest that gallium-containing nanoparticles possess favorable physicochemical properties and biological characteristics, making them promising candidates for applications in bone tissue regeneration, particularly for unphysiological or pathological conditions such as osteoporosis.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Seville, Spain
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; DGS S.p.A., 00142 Rome, Italy
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, FunGlass, 911 50 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Zhu Y, Zhang X, Chang G, Deng S, Chan HF. Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312964. [PMID: 39014919 DOI: 10.1002/adma.202312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Indexed: 07/18/2024]
Abstract
Bioactive glass (BG) is a class of biocompatible, biodegradable, multifunctional inorganic glass materials, which is successfully used for orthopedic and dental applications, with several products already approved for clinical use. Apart from exhibiting osteogenic properties, BG is also known to be angiogenic and antibacterial. Recently, BG's role in immunomodulation has been gradually revealed. While the therapeutic effect of BG is mostly reported in the context of bone and skin-related regeneration, its application in regenerating other tissues/organs, such as muscle, cartilage, and gastrointestinal tissue, has also been explored recently. The strategies of applying BG have also expanded from powder or cement form to more advanced strategies such as fabrication of composite polymer-BG scaffold, 3D printing of BG-loaded scaffold, and BG-induced extracellular vesicle production. This review presents a concise overview of the recent applications of BG in regenerative medicine. Various regenerative strategies of BG will be first introduced. Next, the applications of BG in regenerating various tissues/organs, such as bone, cartilage, muscle, tendon, skin, and gastrointestinal tissue, will be discussed. Finally, summarizing clinical applications of BG for tissue regeneration will conclude, and outline future challenges and directions for the clinical translation of BG.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong SAR, P. R. China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, P. R. China
| |
Collapse
|
3
|
Zhang G, Zhen C, Yang J, Wang J, Wang S, Fang Y, Shang P. Recent advances of nanoparticles on bone tissue engineering and bone cells. NANOSCALE ADVANCES 2024; 6:1957-1973. [PMID: 38633036 PMCID: PMC11019495 DOI: 10.1039/d3na00851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
With the development of biotechnology, biomaterials have been rapidly developed and shown great potential in bone regeneration therapy and bone tissue engineering. Nanoparticles have attracted the attention of researches and have applied in various fields especially in the biomedical field as the special physicochemical properties. Nanoparticles were found to regulate bone remodeling depending on their size, shape, composition, and charge. Therefore, in-depth research was necessary to provide the basic support to select the most suitable nanoparticles for bone relate diseases treatment. This article reviews the current development of nanoparticles in bone tissue engineering, focusing on drug delivery, gene delivery, and cell labeling. In addition, the research progress on the interaction of nanoparticles with bone cells, focusing on osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells, and the underlying mechanism were also reviewed. Finally, the current challenges and future research directions are discussed. Thus, detailed study of nanoparticles may reveal new therapeutic strategies to improve the effectiveness of bone regeneration therapy or other bone diseases.
Collapse
Affiliation(s)
- Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054 China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital) Shenzhen 518109 China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd Huzhou 313300 China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
4
|
Chen Y, Huang Y, Li J, Jiao T, Yang L. Enhancing osteoporosis treatment with engineered mesenchymal stem cell-derived extracellular vesicles: mechanisms and advances. Cell Death Dis 2024; 15:119. [PMID: 38331884 PMCID: PMC10853558 DOI: 10.1038/s41419-024-06508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
As societal aging intensifies, the incidence of osteoporosis (OP) continually rises. OP is a skeletal disorder characterized by reduced bone mass, deteriorated bone tissue microstructure, and consequently increased bone fragility and fracture susceptibility, typically evaluated using bone mineral density (BMD) and T-score. Not only does OP diminish patients' quality of life, but it also imposes a substantial economic burden on society. Conventional pharmacological treatments yield limited efficacy and severe adverse reactions. In contemporary academic discourse, mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) have surfaced as auspicious novel therapeutic modalities for OP. EVs can convey information through the cargo they carry and have been demonstrated to be a crucial medium for intercellular communication, playing a significant role in maintaining the homeostasis of the bone microenvironment. Furthermore, various research findings provide evidence that engineered strategies can enhance the therapeutic effects of EVs in OP treatment. While numerous reviews have explored the progress and potential of EVs in treating degenerative bone diseases, research on using EVs to address OP remains in the early stages of basic experimentation. This paper reviews advancements in utilizing MSCs and their derived EVs for OP treatment. It systematically examines the most extensively researched MSC-derived EVs for treating OP, delving not only into the molecular mechanisms of EV-based OP therapy but also conducting a comparative analysis of the strengths and limitations of EVs sourced from various cell origins. Additionally, the paper emphasizes the technical and engineering strategies necessary for leveraging EVs in OP treatment, offering insights and recommendations for future research endeavors.
Collapse
Affiliation(s)
- Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Jia Li
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
5
|
Peña-Flores JA, Muela-Campos D, Guzmán-Medrano R, Enríquez-Espinoza D, González-Alvarado K. Functional Relevance of Extracellular Vesicle-Derived Long Non-Coding and Circular RNAs in Cancer Angiogenesis. Noncoding RNA 2024; 10:12. [PMID: 38392967 PMCID: PMC10891584 DOI: 10.3390/ncrna10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are defined as subcellular structures limited by a bilayer lipid membrane that function as important intercellular communication by transporting active biomolecules, such as proteins, amino acids, metabolites, and nucleic acids, including long non-coding RNAs (lncRNAs). These cargos can effectively be delivered to target cells and induce a highly variable response. LncRNAs are functional RNAs composed of at least 200 nucleotides that do not code for proteins. Nowadays, lncRNAs and circRNAs are known to play crucial roles in many biological processes, including a plethora of diseases including cancer. Growing evidence shows an active presence of lnc- and circRNAs in EVs, generating downstream responses that ultimately affect cancer progression by many mechanisms, including angiogenesis. Moreover, many studies have revealed that some tumor cells promote angiogenesis by secreting EVs, which endothelial cells can take up to induce new vessel formation. In this review, we aim to summarize the bioactive roles of EVs with lnc- and circRNAs as cargo and their effect on cancer angiogenesis. Also, we discuss future clinical strategies for cancer treatment based on current knowledge of circ- and lncRNA-EVs.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Doctoral Program in Biomedical and Stomatological Sciences, Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico; (D.M.-C.); (R.G.-M.); (D.E.-E.); (K.G.-A.)
| | | | | | | | | |
Collapse
|
6
|
Cai M, Peng H, Liu M, Huang M, Zheng W, Zhang G, Lai W, Liao C, Cai L, Zhang D, Liu X. Vascular Pericyte-Derived Exosomes Inhibit Bone Resorption via Traf3. Int J Nanomedicine 2023; 18:7065-7077. [PMID: 38046234 PMCID: PMC10693246 DOI: 10.2147/ijn.s438229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose Blood vessels distribute cells, oxygen, and nutrients throughout the body to support tissue growth and balance. Pericytes and endothelial cells form the inner wall of blood vessels, crucial for organ development and tissue homeostasis by producing paracrine signaling molecules. In the skeletal system, pericyte-derived vascular factors along with angiogenic factors released by bone cells regulate angiogenesis and bone formation. Although the involvement of angiogenic factors and skeletal blood vessels in bone homeostasis is relatively clear, the role of pericytes and the underlying mechanisms remain unknown. Here, our objective was to elucidate the significance of pericytes in regulating osteoclast differentiation. Methods We used tissue staining to detect the coverage of pericytes and osteoclasts in femoral tissues of osteoporotic mice and mice of different ages, analyzing their correlation. We developed mice with conditionally deleted pericytes, observing changes in bone mass and osteoclast activity using micro-computer tomography and tissue staining to detect the regulatory effect of pericytes on osteoclasts. Pericytes-derived exosomes (PC-EVs) were collected and co-cultured with monocytes that induce osteoclast differentiation to detect the effect of the former on the exosomes. Finally, the specific mechanism of PC-EVs regulating osteoclast differentiation was verified using RNA sequencing and Western blotting. Results Our study indicates a significant correlation between pericytes and age-related bone resorption. Conditional deletion of pericytes activated bone resorption and led to osteopenia in vivo. We discovered that PC-EVs inhibited the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, which is mediated by tumor necrosis factor receptor-associated factor 3 (Traf3), negatively regulating osteoclast development and bone resorption. Silencing Traf3 in PC-EVs canceled their inhibitory effect on osteoclast differentiation. Conclusion Our study provides a novel perspective into the regulatory role of pericytes on bone resorption and may provide potential strategies for developing novel anti-bone resorption therapies.
Collapse
Affiliation(s)
- Mingxiang Cai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Huizhen Peng
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Minyi Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Wen Zheng
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Guilan Zhang
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Wenjia Lai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Chufang Liao
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Lizhao Cai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
7
|
Liu C, Liu W, Qi B, Fan L, Liu S, Yang Q, Yang Y, Yang S, Zhang Y, Wei X, Zhu L. Bone Homeostasis Modulating Orthopedic Adhesive for the Closed-Loop Management of Osteoporotic Fractures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302704. [PMID: 37605327 DOI: 10.1002/smll.202302704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Patients with osteoporotic fractures often require effective fixation and subsequent bone repair. However, currently available materials are often limited functionally, failing to improve this cohort's outcomes. Herein, kaempferol-loaded mesoporous bioactive glass nanoparticles (MBGNs)-doped orthopedic adhesives are prepared to assist osteoporotic fracture fixation and restore dysregulated bone homeostasis, including promoting osteoblast formation while inhibiting osteoclastic bone-resorbing activity to synergistically promote osteoporotic fracture healing. The injectability, reversible adhesiveness and malleable properties endowed the orthopedic adhesives with high flexibility and hemostatic performance to adapt to complex clinical scenarios. Moreover, Ca2+ and SiO4 4- ions released from MBGNs can accelerate osteogenesis via the PI3K/AKT pathway, while kaempferol mediated osteoclastogenesis inhibition and can slow down the bone resorption process through NF-κB pathway, which regulated bone regeneration and remodeling. Importantly, implementing the orthopedic adhesive is validated as an effective closed-loop management approach in restoring the dysregulated bone homeostasis of osteoporotic fractures.
Collapse
Affiliation(s)
- Can Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| |
Collapse
|
8
|
Jia Z, Zhang S, Li W. Harnessing Stem Cell-Derived Extracellular Vesicles for the Regeneration of Degenerative Bone Conditions. Int J Nanomedicine 2023; 18:5561-5578. [PMID: 37795043 PMCID: PMC10546935 DOI: 10.2147/ijn.s424731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Degenerative bone disorders such as intervertebral disc degeneration (IVDD), osteoarthritis (OA), and osteoporosis (OP) pose significant health challenges for aging populations and lack effective treatment options. The field of regenerative medicine holds promise in addressing these disorders, with a focus on utilizing extracellular vesicles (EVs) derived from stem cells as an innovative therapeutic approach. EVs have shown great potential in stimulating biological responses, making them an attractive candidate for rejuvenating degenerative bone disorders. However, a comprehensive review summarizing the current state of this field and providing a clear assessment of EV-based therapies in degenerative bone disorders is currently deficient. In this review, we aim to fill the existing gap by outlining the current knowledge on the role of EVs derived from different types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, in bone regeneration. Furthermore, we discuss the therapeutic potential of EV-based treatments for IVDD, OA, and OP. By substantiating the use of stem cell-derived EVs, we highlight their promising potential as a cell-free strategy to improve degenerative bone disorders.
Collapse
Affiliation(s)
- Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101100, People’s Republic of China
| | - Shunxin Zhang
- Department of Ultrasound, 2nd Medical Center of PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
9
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
10
|
Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: A narrative review. Heliyon 2023; 9:e18120. [PMID: 37496898 PMCID: PMC10366432 DOI: 10.1016/j.heliyon.2023.e18120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The bone marrow (BM) plays a pivotal role in homeostasis by supporting hematopoiesis and immune cells' activation, maturation, interaction, and deployment. "BMSC-derived secretome" refers to the complete repertoire of secreted molecules, including nucleic acids, chemokines, growth factors, cytokines, and lipids from BM-derived mesenchymal stem cells (BMSCs). BMSC-derived secretomes are the current molecular platform for acellular therapy. Secretomes are highly manipulable and can be synthesised in vast quantities using commercially accessible cell lines in the laboratory. Secretomes are less likely to elicit an immunological response because they contain fewer surface proteins. Moreover, the delivery of BMSC-derived secretomes has been shown in numerous studies to be an effective, cell-free therapy method for alleviating the symptoms of inflammatory and degenerative diseases. As a result, secretome delivery from BMSCs has the same therapeutic effects as BMSCs transplantation but may have fewer adverse effects. Additionally, BMSCs' secretome has therapeutic promise for organoids and parabiosis studies. This review focuses on recent advances in secretome-based cell-free therapy, including its manipulation, isolation, characterisation, and delivery systems. The diverse bioactive molecules of secretomes that successfully treat inflammatory and degenerative diseases of the musculoskeletal, cardiovascular, nervous, respiratory, reproductive, gastrointestinal, and anti-ageing systems were also examined in this review. However, secretome-based therapy has some unfavourable side effects that may restrict its uses. Some of the adverse effects of this modal therapy were briefly mentioned in this review.
Collapse
Affiliation(s)
- Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
| |
Collapse
|
11
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
12
|
Winston DD, Li T, Lei B. Bioactive nanoglass regulating the myogenic differentiation and skeletal muscle regeneration. Regen Biomater 2023; 10:rbad059. [PMID: 37492228 PMCID: PMC10365926 DOI: 10.1093/rb/rbad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
Bioactive glass nanoparticles (BGNs) are widely used in the field of biomedicine, including drug delivery, gene therapy, tumor therapy, bioimaging, molecular markers and tissue engineering. Researchers are interested in using BGNs in bone, heart and skin regeneration. However, there is inadequate information on skeletal muscle tissue engineering, limited information on the biological effects of BGNs on myoblasts, and the role of bioactive glass composite materials on myogenic differentiation is unknown. Herein, we report the effects of BGNs with different compositions (60Si-BGN, 80Si-BGN, 100Si-BGN) on the myogenic differentiation in C2C12 cells and in vivo skeletal tissue regeneration. The results showed that 80Si-BGN could efficiently promote the myogenic differentiation of C1C12 cells, including the myotube formation and myogenic gene expression. The in vivo experiment in a rat skeletal muscle defect model also confirmed that 80Si-BGN could significantly improve the complete regeneration of skeletal muscle tissue during 4 weeks implantation. This work firstly demonstrated evidence that BGN could be the bioactive material in enhancing skeletal muscle regeneration.
Collapse
Affiliation(s)
| | | | - Bo Lei
- Correspondence address. E-mail:
| |
Collapse
|
13
|
Gorgani S, Hosseini SA, Wang AZ, Baino F, Kargozar S. Effects of Bioactive Glasses (BGs) on Exosome Production and Secretion: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114194. [PMID: 37297327 DOI: 10.3390/ma16114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
There is an increasing trend toward the application of bioactive glasses in different areas of biomedicine, including tissue engineering and oncology. The reason for this increase is mostly attributed to the inherent properties of BGs, such as excellent biocompatibility, and the ease of tailoring their properties by changing, for example, the chemical composition. Previous experiments have demonstrated that the interactions between BGs and their ionic dissolution products, and mammalian cells, can affect and change cellular behaviors, and thereby govern the performance of living tissues. However, limited research exists on their critical role in the production and secretion of extracellular vesicles (EVs) such as exosomes. Exosomes are nanosized membrane vesicles that carry various therapeutic cargoes such as DNA, RNA, proteins, and lipids, and thereby can govern cell-cell communication and subsequent tissue responses. The use of exosomes is currently considered a cell-free approach in tissue engineering strategies, due to their positive roles in accelerating wound healing. On the other hand, exosomes are known as key players in cancer biology (e.g., progression and metastasis), due to their capability to carry bioactive molecules between tumor cells and normal cells. Recent studies have demonstrated that the biological performance of BGs, including their proangiogenic activity, is accomplished with the help of exosomes. Indeed, therapeutic cargos (e.g., proteins) produced in BG-treated cells are transferred by a specific subset of exosomes toward target cells and tissues, and lead to a biological phenomenon. On the other hand, BGs are suitable delivery vehicles that can be utilized for the targeted delivery of exosomes to cells and tissues of interest. Therefore, it seems necessary to have a deeper understanding of the potential effects of BGs in the production of exosomes in cells that are involved in tissue repair and regeneration (mostly mesenchymal stem cells), as well as in those that play roles in cancer progression (e.g., cancer stem cells). This review aims to present an updated report on this critical issue, to provide a roadmap for future research in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Andrew Z Wang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Duan J, Li H, Wang C, Yao J, Jin Y, Zhao J, Zhang Y, Liu M, Sun H. BMSC-derived extracellular vesicles promoted osteogenesis via Axin2 inhibition by delivering MiR-16-5p. Int Immunopharmacol 2023; 120:110319. [PMID: 37216799 DOI: 10.1016/j.intimp.2023.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Osteoporosis (OP) is a systemic bone disease caused by an imbalance in osteogenesis and osteoclastic resorption. Extracellular vesicles (EVs)-encapsulated miRNAs from bone mesenchymal stem cells (BMSCs) have been reported to participate in osteogenesis. MiR-16-5p is one of the miRNAs that regulates osteogenic differentiation; however, studies have shown that its role in osteogenesis is controversial. Thus, this study aims to investigate the role of miR-16-5p from BMSC-derived extracellular vesicles (EVs) in osteogenic differentiation and uncover the underlying mechanisms. In this study, we used an ovariectomized (OVX) mouse model and an H2O2-treated BMSCs model to investigate the effects of BMSC-derived EVs and EV-encapsulated miR-16-5p on OP and the underlying mechanisms. Our results proved that the miR-16-5p level was significantly decreased in H2O2-treated BMSCs, bone tissues of OVX mice, and lumbar lamina tissues from osteoporotic women. EVs-encapsulated miR-16-5p from BMSCs could promote osteogenic differentiation. Moreover, the miR-16-5p mimics promoted osteogenic differentiation of H2O2-treated BMSCs, and the effects exerted by miR-16-5p were mediated by targeting Axin2, a scaffolding protein of GSK3β that negatively regulates the Wnt/β-catenin signaling pathway. This study provides evidence that EVs-encapsulated miR-16-5p from BMSCs could promote osteogenic differentiation by repressing Axin2.
Collapse
Affiliation(s)
- Jiaxin Duan
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Jianyu Zhao
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Department of Basic Medicine, Chongqing Three Gorges Medical College, Wanzhou, Chongqing, China.
| | - Mozhen Liu
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| |
Collapse
|
15
|
Davies OG. Extracellular vesicles: From bone development to regenerative orthopedics. Mol Ther 2023; 31:1251-1274. [PMID: 36869588 PMCID: PMC10188641 DOI: 10.1016/j.ymthe.2023.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Regenerative medicine aims to promote the replacement of tissues lost to damage or disease. While positive outcomes have been observed experimentally, challenges remain in their clinical translation. This has led to growing interest in applying extracellular vesicles (EVs) to augment or even replace existing approaches. Through the engineering of culture environments or direct/indirect manipulation of EVs themselves, multiple avenues have emerged to modulate EV production, targeting, and therapeutic potency. Drives to modulate release using material systems or functionalize implants for improved osseointegration have also led to outcomes that could have real-world impact. The purpose of this review is to highlight advantages in applying EVs for the treatment of skeletal defects, outlining the current state of the art in the field and emphasizing avenues for further investigation. Notably, the review identifies inconsistencies in EV nomenclature and outstanding challenges in defining a reproducible therapeutic dose. Challenges also remain in the scalable manufacture of a therapeutically potent and pure EV product, with a need to address scalable cell sources and optimal culture environments. Addressing these issues will be critical if we are to develop regenerative EV therapies that meet the demands of regulators and can be translated from bench to bedside.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise, and Health Sciences, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
16
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
18
|
The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis. Biomaterials 2023; 296:122059. [PMID: 36848779 DOI: 10.1016/j.biomaterials.2023.122059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Osteoporosis is known as an imbalance in bone catabolism and anabolism. Overactive bone resorption causes bone mass loss and increased incidence of fragility fractures. Antiresorptive drugs are widely used for osteoporosis treatment, and their inhibitory effects on osteoclasts (OCs) have been well established. However, due to the lack of selectivity, their off-target and side effects often bring suffering to patients. Herein, an OCs' microenvironment-responsive nanoplatform HA-MC/CaCO3/ZOL@PBAE-SA (HMCZP) is developed, consisting of succinic anhydride (SA)-modified poly(β-amino ester) (PBAE) micelle, calcium carbonate shell, minocycline-modified hyaluronic acid (HA-MC) and zoledronic acid (ZOL). Results indicate that HMCZP, as compared with the first-line therapy, could more effectively inhibit the activity of mature OCs and significantly reverse the systemic bone mass loss in ovariectomized mice. In addition, the OCs-targeted capacity of HMCZP makes it therapeutically efficient at sites of severe bone mass loss and allows it to reduce the adverse effects of ZOL, such as acute phase reaction. High-throughput RNA sequencing (RNA-seq) reveals that HMCZP could down-regulate a critical osteoporotic target, tartrate-resistant acid phosphatase (TRAP), as well as other potential therapeutical targets for osteoporosis. These results suggest that an intelligent nanoplatform targeting OCs is a promising strategy for osteoporosis therapy.
Collapse
|
19
|
Ma M, Cui G, Liu Y, Tang Y, Lu X, Yue C, Zhang X. Mesenchymal stem cell-derived extracellular vesicles, osteoimmunology and orthopedic diseases. PeerJ 2023; 11:e14677. [PMID: 36710868 PMCID: PMC9881470 DOI: 10.7717/peerj.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue healing and regenerative medicine due to their self-renewal and multi-directional differentiation properties. MSCs exert their therapeutic effects mainly via the paracrine pathway, which involves the secretion of extracellular vesicles (EVs). EVs have a high drug loading capacity and can transport various molecules, such as proteins, nucleic acids, and lipids, that can modify the course of diverse diseases. Due to their ability to maintain the therapeutic effects of their parent cells, MSC-derived EVs have emerged as a promising, safe cell-free treatment approach for tissue regeneration. With advances in inflammation research and emergence of the field of osteoimmunology, evidence has accumulated pointing to the role of inflammatory and osteoimmunological processes in the occurrence and progression of orthopedic diseases. Several studies have shown that MSC-derived EVs participate in bone regeneration and the pathophysiology of orthopedic diseases by regulating the inflammatory environment, enhancing angiogenesis, and promoting the differentiation and proliferation of osteoblasts and osteoclasts. In this review, we summarize recent advances in the application and functions of MSC-derived EVs as potential therapies against orthopedic diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Guofeng Cui
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Yanfeng Tang
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Xiaoshuai Lu
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Chen Yue
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Xue Zhang
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| |
Collapse
|
20
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
21
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
22
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
23
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
24
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
25
|
Kong M, Yu X, Zheng Q, Zhang S, Guo W. Oncogenic roles of LINC01234 in various forms of human cancer. Biomed Pharmacother 2022; 154:113570. [PMID: 36030582 DOI: 10.1016/j.biopha.2022.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) plays an essential role in various malignant neoplasia. As a newly identified lncRNA, LINC01234 is abnormally expressed in several types of cancers and promotes the development of cancers. Accumulating evidence indicates that overexpression of LINC01234 is associated with poor clinical outcomes. Moreover, LINC01234 modulates many cellular events as a putative proto-oncogene, including proliferation, migration, invasion, apoptosis, cell cycle progression, and EMT. In terms of molecular mechanism, LINC01234 regulates gene expression by acting as ceRNA, participating in signaling pathways, interacting with proteins and other molecules, and encoding polypeptide. It reveals that LINC01234 may serve as a potential biomarker for cancer diagnosis, treatment, and prognosis. This review summarizes the expression pattern, biological function, and molecular mechanism of LINC01234 in human cancer and discusses its potential clinical utility.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China.
| |
Collapse
|