1
|
Xu Y, Lv J, Liu Y, Du J, Luo C, Wang Y, Liu L, Sakurai K, Tang Z, Chen X. Coagulation-Targeted TGF-β Signaling Pathway Inhibitor Nanomedicine for Inhibiting the Growth and Lung Metastasis of Breast Cancer. NANO LETTERS 2024. [PMID: 39680715 DOI: 10.1021/acs.nanolett.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The transforming growth factor β (TGF-β) signaling pathway exerts a dual role in oncogenesis, acting as a suppressor in healthy and early stage neoplastic tissues while promoting malignancy and metastasis in advanced cancers. Tumor hemorrhage further exacerbates TGF-β-mediated metastasis by up-regulating its expression. Here, a coagulation-targeting peptide (A15)-decorated TGF-β inhibitor nanomedicine (A15-LY-NPs) was developed. The tumor colonization assays showed that the nanomedicine reduced 4T1-luc cell colonization in normal tissues. When combined with a vascular disrupting agent, A15-LY-NPs demonstrated three times greater drug accumulation in the tumor at 24 h compared to the control and showed a 93.7% tumor suppression rate in 4T1 tumors initiated at ∼500 mm3, significantly attenuating metastatic spread to the lungs and liver. This study presents an innovative approach for the precise and efficient delivery of TGF-β inhibitors to tumors, offering the potential to augment the efficacy of cancer therapeutics.
Collapse
Affiliation(s)
- Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jincheng Du
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Chuwen Luo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Kitakyushu 808-0135, Japan
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Mesut B, Al-Mohaya M, Gholap AD, Yeşilkaya E, Das U, Akhtar MS, Sah R, Khan S, Moin A, Faiyazuddin M. Demystifying the potential of lipid-based nanocarriers in targeting brain malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9243-9279. [PMID: 38963550 DOI: 10.1007/s00210-024-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.
Collapse
Affiliation(s)
- Burcu Mesut
- Pharmaceutical Technology Department, Faculty of Pharmacy, Istanbul University, Istanbul, 34216, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Eda Yeşilkaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Ushasi Das
- Pharmaceutical Technology Department, Jadavpur University, Kolkata, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, 44600, Nepal.
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 2440, Hail, Saudi Arabia
| | - Md Faiyazuddin
- School of Pharmacy, Al - Karim University, Katihar, 854106, Bihar, India.
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Lv J, Xu Y, Liu Y, Sakurai K, Yu H, Tang Z. Co-delivery of Plinabulin and Tirapazamine boosts anti-tumor efficacy by simultaneously destroying tumor blood vessels and killing tumor cells. Biomaterials 2024; 309:122586. [PMID: 38718615 DOI: 10.1016/j.biomaterials.2024.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 06/03/2024]
Abstract
It is imperative to optimize chemotherapy for heightened anti-tumor therapeutic efficacy. Unrestrained tumor cell proliferation and sustained angiogenesis are pivotal for cancer progression. Plinabulin, a vascular disrupting agent, selectively destroys tumor blood vessels. Tirapazamine (TPZ), a hypoxia-activated prodrug, intensifies cytotoxicity in diminishing oxygen levels within tumor cells. Despite completing Phase III clinical trials, both agents exhibited modest treatment efficiency due to dose-limiting toxicity. In this study, we employed methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-b-PDLLA) to co-deliver Plinabulin and TPZ to the tumor site, concurrently disrupting blood vessels and eliminating tumor cells, addressing both symptoms and the root cause of tumor progression. Plinabulin was converted into a prodrug with esterase response (PSM), and TPZ was synthesized into a hexyl chain-containing derivative (TPZHex) for effective co-delivery. PSM and TPZHex were co-encapsulated with mPEG-b-PDLLA, forming nanodrugs (PT-NPs). At the tumor site, PT-NPs responded to esterase overexpression, releasing Plinabulin, disrupting blood vessels, and causing nutritional and oxygen deficiency. TPZHex was activated in response to increased hypoxia, killing tumor cells. In treating 4T1 tumors, PT-NPs demonstrated enhanced therapeutic efficacy, achieving a 92.9 % tumor suppression rate and a 20 % cure rate. This research presented an innovative strategy to enhance synergistic efficacy and reduce toxicity in combination chemotherapy.
Collapse
Affiliation(s)
- Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Xu Y, Lv J, Kong C, Liu Y, Wang K, Tang Z, Chen X. Introducing urea into tirapazamine derivatives to enhance anticancer therapy. Natl Sci Rev 2024; 11:nwae038. [PMID: 38440219 PMCID: PMC10911816 DOI: 10.1093/nsr/nwae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Tirapazamine (TPZ) has been approved for multiple clinical trials relying on its excellent anticancer potential. However, as a typical hypoxia-activated prodrug (HAP), TPZ did not exhibit survival advantages in Phase III clinical trials when used in combination therapy due to the insufficient hypoxia levels in patients' tumors. In this study, to improve the therapeutic effects of TPZ, we first introduced urea to synthesize a series of urea-containing derivatives of TPZ. All urea-containing TPZ derivatives showed increased hypoxic cytotoxicity (9.51-30.85-fold) compared with TPZ, while maintaining hypoxic selectivity. TPZP, one of these derivatives, showed 20-fold higher cytotoxicity than TPZ while maintaining a similar hypoxic cytotoxicity ratio. To highly efficiently deliver TPZP to the tumors and reduce its side effects on healthy tissues, we further prepared TPZP into a nanodrug with fibrin-targeting ability: FT11-TPZP-NPs. CA4-NPs, a vascular disrupting agent, was used to increase the fibrin level within tumors and exacerbate tumor hypoxia. By being combined with CA4-NPs, FT11-TPZP-NPs can accumulate in the hypoxia-aggravated tumors and activate sufficiently to kill tumor cells. After a single-dose treatment, FT11-TPZP-NPs + CA4-NPs showed a high inhibition rate of 98.1% against CT26 tumor models with an initial volume of ∼480 mm3 and four out of six tumors were completely eliminated; it thereby exerted a significant antitumor effect. This study provides a new strategy for improving the therapeutic effect of TPZ and other HAPs in anticancer therapy.
Collapse
Affiliation(s)
- Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoying Kong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zhao L, Tan L, Wu Q, Fu C, Ren X, Ren J, Wang Z, Zhang J, Meng X. A two-stage exacerbated hypoxia nanoengineering strategy induced amplifying activation of tirapazamine for microwave hyperthermia-chemotherapy of breast cancer. J Colloid Interface Sci 2024; 659:178-190. [PMID: 38163404 DOI: 10.1016/j.jcis.2023.12.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Microwave hyperthermia (MH) is an emerging treatment for solid tumors, such as breast cancer, due to its advantages of minimally invasive and deep tissue penetration. However, MH induced tumor hypoxia is still an obstacle to breast tumor treatment failure. Therefore, an original nanoengineering strategy was proposed to exacerbate hypoxia in two stages, thereby amplifying the efficiency of activating tirapazamine (TPZ). And a novel microwave-sensitized nanomaterial (GdEuMOF@TPZ, GEMT) is designed. GdEuMOF (GEM) nanoparticles are certified excellent microwave (MW) sensitization performance, thus improving tumor selectivity to achieve MH. Meanwhile MW can aggravate the generation of thrombus and caused local circulatory disturbance of tumor, resulting in the Stage I exacerbated hypoxia environment passively. Due to tumor heterogeneity and uneven hypoxia, GEMT nanoparticles under microwave could actively deplete residual oxygen through the chemical reaction, exacerbating hypoxia level more evenly, thus forming the Stage II of exacerbated hypoxia environment. Consequently, a two-stage exacerbated hypoxia GEMT nanoparticles realize amplifying activation of TPZ, significantly enhance the efficacy of microwave hyperthermia and chemotherapy, and effectively inhibit breast cancer. This research provides insights into the development of progressive nanoengineering strategies for effective breast tumor therapy.
Collapse
Affiliation(s)
- Lirong Zhao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Longfei Tan
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiong Wu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Changhui Fu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangling Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Ren
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy center, Department of Transfusion medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jingjie Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xianwei Meng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
6
|
Liu Y, Xu Y, Wang Y, Lv J, Wang K, Tang Z. Hindering the unlimited proliferation of tumor cells synergizes with destroying tumor blood vessels for effective cancer treatment. Biomater Sci 2024; 12:1294-1306. [PMID: 38258411 DOI: 10.1039/d3bm01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The rational combination of chemotherapy drugs can improve the curative effect of cancer treatment. As two early recognized tumor hallmarks, the limitless replicative potential of tumor cells is essential for the development of their malignant growth state, and sustained angiogenesis is a prerequisite to the rapid growth of tumors. Based on this, we propose a combination therapy that hinders the unlimited proliferation of tumor cells and destroys tumor blood vessels. Herein, 7-ethyl-10-hydroxycamptothecin (SN38), a typical topoisomerase I inhibitor, was bonded to poly(L-glutamic acid) (PLG) to prepare the nanodrug SN38-NPs, which hinders the unlimited proliferation of tumor cells. A poly(L-glutamic acid)-combretastatin A4 conjugate (CA4-NPs), a representative vascular disrupting agent (VDA), was used to selectively disrupt the tumor blood vessels, cutting off the necessary nutrients and oxygen for the proliferation of tumor cells. In the 4T1 tumor model with an initial volume of about 400 mm3, the combined treatment of SN38-NPs and CA4-NPs showed an excellent cancer treatment effect with a tumor suppression rate of 94.3% and a synergistic interaction (Q = 1.25). Our study provides a new combination therapy approach for chemotherapy, with the hope of further improving the curative effect of anti-cancer therapy.
Collapse
Affiliation(s)
- Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Ma X, Fang W, Wang D, Shao N, Chen J, Nie T, Huang C, Huang Y, Luo L, Xiao Z. Nanomaterial-Based Antivascular Therapy in the Multimodal Treatment of Cancer. Pharmaceutics 2023; 15:pharmaceutics15041207. [PMID: 37111692 PMCID: PMC10145863 DOI: 10.3390/pharmaceutics15041207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Abnormal tumor vasculature and a hypoxic tumor microenvironment (TME) limit the effectiveness of conventional cancer treatment. Recent studies have shown that antivascular strategies that focus on antagonizing the hypoxic TME and promoting vessel normalization effectively synergize to increase the antitumor efficacy of conventional therapeutic regimens. By integrating multiple therapeutic agents, well-designed nanomaterials exhibit great advantages in achieving higher drug delivery efficiency and can be used as multimodal therapy with reduced systemic toxicity. In this review, strategies for the nanomaterial-based administration of antivascular therapy combined with other common tumor treatments, including immunotherapy, chemotherapy, phototherapy, radiotherapy, and interventional therapy, are summarized. In particular, the administration of intravascular therapy and other therapies with the use of versatile nanodrugs is also described. This review provides a reference for the development of multifunctional nanotheranostic platforms for effective antivascular therapy in combined anticancer treatments.
Collapse
Affiliation(s)
- Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Weimin Fang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Tianqi Nie
- The 12th People's Hospital of Guangzhou, Guangzhou 510620, China
| | - Cuiqing Huang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Xu Y, Lv J, Kong C, Li Y, Wang K, Shen N, Tang Z. A novel hypoxia‐activated polymeric
Tirapazamine
derivative for enhanced antitumor therapy. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajun Xu
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Jianlin Lv
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Chaoying Kong
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Yanran Li
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Kun Wang
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Na Shen
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Zhaohui Tang
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| |
Collapse
|