1
|
Liang J, Cheng G, Qiu L, Xue L, Xu H, Qiao X, Guo N, Xiang H, Chen Y, Ding H. Activatable Sulfur Dioxide Nanosonosensitizer Enables Precisely Controllable Sono-Gaseous Checkpoint Trimodal Therapy for Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409442. [PMID: 39679828 PMCID: PMC11791957 DOI: 10.1002/advs.202409442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Immune checkpoint blockade (ICB) is combined with sonodynamic therapy (SDT) to increase response rates and enhance anticancer efficacy. However, the "always on" property of most sonosensitizers in reducing tumor microenvironment (TME) compromises the therapeutic outcome of sonoimmunotherapy and exacerbates adverse side effects. Precisely controllable strategies combining sulfur dioxide (SO2) gas therapy with cancer immunotherapy can address these issues but remain lacking. Herein an "activatable SO2 nanosonosensitizer" for precise sono-gaseous checkpoint trimodal therapy of orthotopic hepatocellular carcinoma (HCC) is reported, whose full activity is initiated by ultrasound (US) irradiation in the reducing TME. This "activatable SO2 nanosonosensitizer," Aza-DNBS nanoparticles (NPs), are established by self-assembling Aza-boron-dipyrromethene based sonosensitizer molecules and 2,4-dinitrobenzenesulfonate (DNBS)-caged SO2 prodrug. The activity of Aza-DNBS NPs is initially silenced, and the sonodynamic, gaseous, and immunosuppressive TME reprogramming activities are precisely awakened under US irradiation. Due to the glutathione-responsiveness of Aza-DNBS NPs, Aza-DNBS NPs can generate large amounts of SO2 for gas therapy-enhanced SDT, which triggers robust immunogenic cell death activation and reprogramming of the immunosuppressive TME, thereby significantly suppressing orthotopic tumor growth and delaying lung metastasis. Thus, this study represents a strategy for designing a generic nanoplatform for precisely combined immunotherapy of orthotopic HCC.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Guangwen Cheng
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Liyun Xue
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Na Guo
- Department of PathologyZhejiang Cancer HospitalHangzhouZhejiang310022China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
2
|
Shi B, Du M, Chen Z. Advances in tumor immunotherapy targeting macrophages. Expert Rev Clin Immunol 2024:1-18. [PMID: 39636579 DOI: 10.1080/1744666x.2024.2438721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/03/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION In recent years, immunotherapy has shown significant therapeutic potential in patients with advanced tumors. However, only a small number of individuals benefit, mainly due to the tumor microenvironment (TME), which provides conditions for the development of tumors. Macrophages in TME, known as tumor-associated macrophages (TAM), are mainly divided into M1 anti-tumor and M2 pro-tumor phenotypes, which play a regulatory role in various stages of tumorigenesis, promote tumorigenesis and metastasis, and cause immunotherapy resistance. AREAS COVERED This review focuses on research strategies and preclinical/clinical research progress in translating TAM into antitumor phenotype by referring to the PubMed database for five years. These include small molecule chemotherapy drug development, metabolic regulation, gene editing, physical stimulation, nanotechnology-mediated combination therapy strategies, and chimeric antigen receptor-based immunotherapy. EXPERT OPINION It is necessary to explore the surface-specific receptors and cell signaling pathways of TAM further to improve the specificity and targeting of drugs and to strengthen research in the field of probes that can monitor changes in TAM in real time. In addition, the physical stimulation polarization strategy has the advantages of being noninvasive, economical, and stable and will have excellent clinical transformation value in the future.
Collapse
Affiliation(s)
- Binrui Shi
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Kim HR, Park SJ, Cho YS, Ko YG, Kim SY, Byun Y. Synergistic anticancer immunity in metastatic triple-negative breast cancer through an in situ amplifying Peptide-Drug Conjugate. J Control Release 2024; 375:681-697. [PMID: 39094631 DOI: 10.1016/j.jconrel.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Despite significant progress in combining cancer immunotherapy with chemotherapy to treat triple negative breast cancer (TNBC), challenges persist due to target depletion and tumor heterogeneity, especially in metastasis. Chemotherapy lacks precise targeting abilities, and targeted therapy is inadequate in addressing the diverse heterogeneity of tumors. To address these challenges, we introduce RGDEVD-DOX as a tumor-specific immunogenic agent, namely TPD1, which targets integrin αvβ3 and gets continuously activated by apoptosis. TPD1 facilitates the caspase-3-mediated in situ amplification that results in tumor-specific accumulation of doxorubicin. This local concentration of doxorubicin induces immunogenic cell death and promotes the recruitment of immune cells to the tumor site. Notably, the tumor-targeting capabilities of TPD1 help bypass the systemic immunotoxicity of doxorubicin. Consequently, this alters the tumor microenvironment, converting it into a 'hot' tumor that is more susceptible to immune checkpoint inhibition. We demonstrated the anti-metastatic and anti-cancer efficacy of this treatment using various xenograft and metastatic models. This study underscores the high potential of caspase-3 cleavable peptide-drug conjugates to be used in conjunction with anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; School of Medicine, Stanford University, CA 94305, United States; School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Seok Cho
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yoon Gun Ko
- Pharosgen Co.Ltd, Seoul 05852, Republic of Korea
| | | | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Zhang Z, Zhuo Y, Zhang Z, Chen R, Liang L, Jiang X, Nie D, Liu C, Zou Z, Li X, Li J, Wang B, Wang R, Gan Y, Yu M. Endoplasmic reticulum-targeted delivery of celastrol and PD-L1 siRNA for reinforcing immunogenic cell death and potentiating cancer immunotherapy. Acta Pharm Sin B 2024; 14:3643-3660. [PMID: 39234613 PMCID: PMC11372457 DOI: 10.1016/j.apsb.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 09/06/2024] Open
Abstract
The prospect of employing chemoimmunotherapy targeted towards the endoplasmic reticulum (ER) presents an opportunity to amplify the synergistic effects of chemotherapy and immunotherapy. In this study, we initially validated celastrol (CEL) as an inducer of immunogenic cell death (ICD) by promoting ER stress and autophagy in colorectal cancer (CRC) cells. Subsequently, an ER-targeted strategy was posited, involving the codelivery of CEL with PD-L1 small interfering RNAs (siRNA) using KDEL peptide-modified exosomes derived from milk (KME), to enhance chemoimmunotherapy outcomes. Our findings demonstrate the efficient transportation of KME to the ER via the Golgi-to-ER pathway. Compared to their non-targeting counterparts, KME exhibited a significant augmentation of the CEL-induced ICD effect. Additionally, it facilitated the release of danger signaling molecules (DAMPs), thereby stimulating the antigen-presenting function of dendritic cells and promoting the infiltration of T cells into the tumor. Concurrently, the ER-targeted delivery of PD-L1 siRNA resulted in the downregulation of both intracellular and membrane PD-L1 protein expression, consequently fostering the proliferation and activity of CD8+ T cells. Ultimately, the ER-targeted formulation exhibited enhanced anti-tumor efficacy and provoked anti-tumor immune responses against orthotopic colorectal tumors in vivo. Collectively, a robust ER-targeted delivery strategy provides an encouraging approach for achieving potent cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Jie Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongrong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohe Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yang Y, Cheng Y, Cheng L. The emergence of cancer sono-immunotherapy. Trends Immunol 2024; 45:549-563. [PMID: 38910097 DOI: 10.1016/j.it.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Owing to its remarkable ease of use, ultrasound has recently been explored for stimulating or amplifying immune responses during cancer therapy, termed 'sono-immunotherapy'. Ultrasound can cause immunogenic cell death in cancer cells via thermal and nonthermal effects to regulate the tumor microenvironment, thereby priming anticancer immunity; by integrating well-designed biomaterials, novel sono-immunotherapy approaches with augmented efficacy can also be developed. Here, we review the advances in sono-immunotherapy for cancer treatment and summarize existing limitations along with potential trends. We offer emerging insights into this realm, which might prompt breakthroughs and expand its potential applications to other diseases.
Collapse
Affiliation(s)
- Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China; Monash Suzhou Research Institute, Monash University, Suzhou, 215000, China; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou, 215000, China; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Yu J, Xu J, Jiang R, Yuan Q, Ding Y, Ren J, Jiang D, Wang Y, Wang L, Chen P, Zhang L. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int J Biol Macromol 2024; 265:130709. [PMID: 38462120 DOI: 10.1016/j.ijbiomac.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Renliang Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Qinglan Yuan
- University Hospital, Jiujiang University, Jiujiang 332005, China
| | - Yuanyuan Ding
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Yiqiu Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
7
|
Pan H, Liu P, Zhao L, Pan Y, Mao M, Kroemer G, Kepp O. Immunogenic cell stress and death in the treatment of cancer. Semin Cell Dev Biol 2024; 156:11-21. [PMID: 37977108 DOI: 10.1016/j.semcdb.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The successful treatment of oncological malignancies which results in long-term disease control or the complete eradication of cancerous cells necessitates the onset of adaptive immune responses targeting tumor-specific antigens. Such desirable anticancer immunity can be triggered via the induction of immunogenic cell death (ICD) of cancer cells, thus converting malignant cells into an in situ vaccine that elicits T cell mediated adaptive immune responses and establishes durable immunological memory. The exploration of ICD for cancer treatment has been subject to extensive research. However, functional heterogeneity among ICD activating therapies in many cases requires specific co-medications to achieve full-blown efficacy. Here, we described the hallmarks of ICD and classify ICD activators into three distinct functional categories namely, according to their mode of action: (i) ICD inducers, which increase the immunogenicity of malignant cells, (ii) ICD sensitizers, which prime cellular circuitries for ICD induction by conventional cytotoxic agents, and (iii) ICD enhancers, which improve the perception of ICD signals by antigen presenting dendritic cells. Altogether, ICD induction, sensitization and enhancement offer the possibility to convert well-established conventional anticancer therapies into immunotherapeutic approaches that activate T cell-mediated anticancer immunity.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France.
| |
Collapse
|