1
|
Liu X, Li C, Zhao F, Guidoin R, Liu K, Wang F, Wang L. A functional stent with near-infrared light triggered localized photothermal-chemo synergistic therapy for malignant stenosis of esophageal cancer. Colloids Surf B Biointerfaces 2025; 251:114634. [PMID: 40101464 DOI: 10.1016/j.colsurfb.2025.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Stent implantation is a widely used palliative treatment for relieving strictures in malignant esophageal cancer. However, conventional fully covered stents play a role in preventing the tumor from ingrowth but increasing the risk of migration. Therefore, there is an urgent need for a multifunctional stent that not only reduces migration but also provides synergistic therapeutic benefits to inhibit tumor growth. This study proposed a braided esophageal stent with synergistic photothermal and chemotherapy functions to achieve precise controllable drug release. The stent was braided of Nitinol fiber and polyethylene terephthalate fiber in one-step, in which Nitinol loaded with high-efficiency photothermal conversion agent gold nanoparticles and polyethylene terephthalate loaded anti-tumor drugs release mediated by a temperature-responsive coating. The stent showed anti-migration ability and orchestrated the localized hyperthermia plus thermal-stimuli drug release during the tumor lesion. Cell experiments confirmed that the stent showed a significantly synergistic tumor cell killing effect (28.29 %). In 3D tumor sphere model, the apoptosis rate of tumor cells reached 31.34 %. In summary, the composite stent design strategy integrates anti-migration features and photoheating-controlled drug release for synergistic cancer therapy, providing a new design idea for the application of nickel-titanium alloy stents in the treatment of malignant esophageal stenosis.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Fan Zhao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Robert Guidoin
- Department of Surgery, Laval University and Division of Regenerative Medicine, Research Center CHU, Quebec, Canada
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Xu M, He W, Yan K, Gao X, Li J, Xu D, Xiao J, Yan T. Isorhamnetin Alleviates Inflammation-Induced Crosstalk between Kynurenine Pathway and Gut Microbiota in Depressed Mice. Biomol Ther (Seoul) 2025; 33:297-310. [PMID: 39933950 PMCID: PMC11893487 DOI: 10.4062/biomolther.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 02/13/2025] Open
Abstract
Depression is a widespread psychiatric disorder with complex pathogenesis and unsatisfactory therapeutic effects. As a native flavonoid, Isorhamnetin (ISO) has been deemed to exert neuroprotective effects by antioxidation and regulation of immunity. However, no reports of anti-depressed effect of ISO have yet been found. The present study was conducted to clarify the mechanism basis of anti-depressed effect of ISO utilizing behavioral, biochemical, molecular approaches in vitro and in vivo and bio-informatics analysis. The effects of ISO on depressed mice was investigated through the SPT and FST, and the lesions were examined by H&E staining. Besides, the inflammatory factor and indicator in kynurenine pathway were assessed through detection kits, and the microbiota were checked by 16sRNA. Molecular docking study was performed to investigate the target of ISO. Additionally, Western blot was used to test the activation of PI3K/AKT signaling pathway. The results indicated that ISO could enhance the sugar water preference of mice in SPT and reduce immobility time in FST. Further more, ISO suppressed peripheral and central inflammation, regulated the changes in kynurenine pathway and gut microbiota, inhibited activation of PI3K/AKT pathway, and presented good binding patterns with target proteins on PI3K/AKT signaling pathway. Collectively, these findings demonstrate that ISO alleviated depression-like behaviour by normalizing inflammation-induced dysregulation of the crosstalk between KP and gut microbiota disorder through regulated PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Mengjie Xu
- Department of Biological Sciences, XinZhou Normal University, Xinzhou, Shanxi 034000, China
| | - Wei He
- Department of Biological Sciences, XinZhou Normal University, Xinzhou, Shanxi 034000, China
| | - Ke Yan
- Department of Biological Sciences, XinZhou Normal University, Xinzhou, Shanxi 034000, China
| | - Xinru Gao
- Department of Biological Sciences, XinZhou Normal University, Xinzhou, Shanxi 034000, China
| | - Jun Li
- Department of Biological Sciences, XinZhou Normal University, Xinzhou, Shanxi 034000, China
| | - Dongyue Xu
- Department of Biological Sciences, XinZhou Normal University, Xinzhou, Shanxi 034000, China
| | - Jiao Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Wang L, Xu Y, Jiang M, Wang M, Ji M, Xie X, Sheng H. Chronic stress induces depression-like behavior in rats through affecting brain mitochondrial function and inflammation. Psychoneuroendocrinology 2025; 172:107261. [PMID: 39721083 DOI: 10.1016/j.psyneuen.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Chronic stress is involved in pathophysiology of depression, and causes some neurochemical alterations in brain. Both mitochondrial dysfunction and neuroinflammation are implicated in mediating the depression-like behavior. The objectives of present study were, at first, to confirm that chronic unpredictable mild stress (CUMS) induces depression-like behavior and alters mitochondrial function and inflammatory responses within the brain, and then to explore the role of mitochondria in the development of this depression-like behavior. It has been found that CUMS exposure induced depression-like behavior, mitochondrial dysfunction, increased IL-1, IL-6, IFN-γ and TNF-α levels in hippocampus and PFC. Moreover, the level of ATP, the key index of mitochondrial function, was inversely correlated with the levels of proinflammatory cytokine. Intracerebroventricular (ICV) injection of the mitochondrial targeted antioxidant MnTBAP significantly alleviated depression-like behavior in CUMS group. These findings suggested that CUMS results in depression-like behavior, mitochondrial dysfunction as well as neuroinflammation, and mitochondria dysfunction contributes to depression-like behavior caused by CUMS.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yongjun Xu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical College, Fujian Medical University, Fuzhou, China; Laboratory of Basic Medicine, Dongfang Hospital (900th Hospital of the Joint Logistics Team), Xiamen University, Fuzhou, China; Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengruo Jiang
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengqi Wang
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Meijiao Ji
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Xin Xie
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Hui Sheng
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Lu C, Zhao L, Tian L, Lin C, Wu L. Antidepressant advantage of Chaihushugan san in female mice: A novel signaling mechanism in hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118627. [PMID: 39053711 DOI: 10.1016/j.jep.2024.118627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCY Chaihushugan san (CSS), a classic formula for soothing the liver and relieving depression, has been identified to produce rapid antidepressant-like effects in female mice. However, the gender predominance and underlying mechanisms of CSS's antidepressant remain unclear. AIM OF THE STUDY In this study, we focused on unraveling the gender predominance of CSS in antidepressant and the specific neuronal mechanisms that mediate this predominance. METHODS AND MATERIALS Tail suspension test (TST), forced swimming test (FST) and sucrose preference test (SPT) were used to evaluate depressive phenotypes or antidepressant-like effects of CSS in female and male chronic unpredictable mild stress (CUMS) mice model. RNA-sequencing was used to screen specific target for CSS antidepressant gender dominance. RT-PCR and elisa were used to detect the expressions of specific molecule, hormones, and inflammatory factors in the hippocampus. hippocampal viral overactivation and pharmacological blockade were used to detect the correlation between CSS antidepressant gender dominance and related targets. RESULTS In the present study, both female and male mice displayed depressive phenotypes including significant increasing immobility time in TST and reducing sucrose preference ratio in SPT after exposing CUMS for 3 weeks. However, acute administration of CSS (2, 4 g/kg) improved the depressive phenotypes only in female mice or not male mice at 2 h later. Moreover, the expressions of TC2N were increased only in female mice after exposing CUMS for 3 weeks, which were also reversed by CSS after a single administration 2 h later, but no alterations in male mice. The hippocampal expressions of estrogen receptor β (Erβ), pro-inflammatory factors (IL-1β and TNF-α) and anti-inflammatory factors (IL-10, TGF-β and IL-1Rα) were all abnormal in female CUMS mice model, which were all normalized by CSS. Furthermore, overactivation of hippocampal TC2N by AAV-TC2N+/+ blocked the antidepressant-like effects of CSS and the up-regulation of hippocampal Erβ in female mice. However, inhibition of Erβ blunted the antidepressant-like effects of CSS and CSS's suppression of pro-inflammatory factors (IL-1β and TNF-α), which had no any effect on hippocampal TC2N and anti-inflammatory factors (IL-10 and TGF-β). CONCLUSIONS The study revealed that CSS had antidepressant superiority in female mice depending on inhibiting hippocampal TC2N and then activating Erβ, further inhibiting the release of pro-inflammatory factors to produce antidepressant effects, which provided a basis for the guidance of CSS in clinical application, new ideas and targets for the development of drugs for depression with gender differences.
Collapse
Affiliation(s)
- Chao Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Lingang Zhao
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 211599, China
| | - Liyuan Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Chenguang Lin
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China.
| |
Collapse
|
5
|
Xie Z, Yao L, Fang H, Yang Z, Zhou X, Lin L, Xie J, Zhang Y. Multi-Functional and Flexible Nano-Silver@MXene Heterostructure-Decorated Graphite Felt for Wearable Thermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310191. [PMID: 38431965 DOI: 10.1002/smll.202310191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Indexed: 03/05/2024]
Abstract
Wearable heaters with multifunctional performances are urgently required for the future personal health management. However, it is still challengeable to fabricate multifunctional wearable heaters simultaneously with flexibility, air-permeability, Joule heating performance, electromagnetic shielding property, and anti-bacterial ability. Herein, silver nanoparticles (AgNPs)@MXene heterostructure-decorated graphite felts are fabricated by introducing MXene nanosheets onto the graphite felts via a simple dip-coating method and followed by a facile in situ growth approach to grow AgNPs on MXene layers. The obtained AgNPs@MXene heterostructure decorated graphite felts not only maintain the intrinsic flexibility, air-permeability and comfort characteristics of the matrixes, but also present excellent Joule heating performance including wide temperature range (30-128 °C), safe operating conditions (0.9-2.7 V), and rapid thermal response (reaching 128 °C within 100 s at 2.7 V). Besides, the multifunctional graphite felts exhibit excellent electromagnetic shielding effectiveness (53 dB) and outstanding anti-bacterial performances (>95% anti-bacterial rate toward Bacillus subtilis, Escherichia coli and Staphy-lococcus aureus). This work sheds light on a novel avenue to fabricate multifunctional wearable heaters for personal healthcare and personal thermal management.
Collapse
Affiliation(s)
- Zuoxiang Xie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Lei Yao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Houzhi Fang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Junwen Xie
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yinhang Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Rui'an Graduate College of Wenzhou University, Wenzhou, Zhejiang, 325206, P. R. China
| |
Collapse
|