1
|
Bhullar AS, Jin K, Shi H, Jones A, Hironaka D, Xiong G, Xu R, Guo P, Binzel DW, Shu D. Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction. Mol Ther 2024; 32:4467-4481. [PMID: 39369270 PMCID: PMC11638871 DOI: 10.1016/j.ymthe.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has no therapeutic targets, relies on chemotherapeutics for treatment, and is in dire need of novel therapeutic approaches for improved patient outcomes. Extracellular vesicles (EVs) serve as intercellular communicators and have been proposed as ideal drug delivery vehicles. Here, EVs were engineered with RNA nanotechnology to develop TNBC tumor inhibitors. Using super resolved-structured illumination microscopy, EVs were optimized for precise Survivin small interfering RNA (siRNA) conjugated to chemotherapeutics loading and CD44 aptamer ligand decoration, thereby enhancing specificity toward TNBC cells. Conventional treatments typically employ chemotherapy drugs gemcitabine (GEM) and paclitaxel (PTX) at dosages on the order of mg/kg respectively, per injection (intravenous) in mice. In contrast, engineered EVs encapsulating these drugs saw functional tumor growth inhibition at significantly reduced concentrations: 2.2 μg/kg for GEM or 5.6 μg/kg for PTX, in combination with 21.5 μg/kg survivin-siRNA in mice. The result is a substantial decrease in the chemotherapeutic dose required, by orders of magnitude, compared with standard regimens. In vivo and in vitro evaluations in a TNBC orthotopic xenograft mouse model demonstrated the efficacy of this decreased dosage strategy, indicating the potential for decreased chemotherapy-associated toxicity.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA
| | - Haizhu Shi
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Austen Jones
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton Hironaka
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Li X, Jin K, Liao YC, Lee WJ, Chen LC, Cheng TC, Ho YS, Guo P. RNA Nanotechnology for Codelivering High-Payload Nucleoside Analogs to Cancer with a Synergetic Effect. Mol Pharm 2024; 21:5690-5702. [PMID: 39388598 DOI: 10.1021/acs.molpharmaceut.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nucleoside analogs are potent inhibitors for cancer treatment, but the main obstacles to their application in humans are their toxicity, nonspecificity, and lack of targeted delivery tools. Here, we report the use of RNA four-way junctions (4WJs) to deliver two nucleoside analogs, floxuridine (FUDR) and gemcitabine (GEM), with high payloads through routine and simple solid-state RNA synthesis and nanoparticle assembly. The design of RNA nanotechnology for the co-delivery of nucleoside analogs and the chemotherapeutic drug paclitaxel (PTX) resulted in synergistic effects and high efficacy in the treatment of Triple-Negative Breast Cancer (TNBC). The 4WJ-drug complexes were confirmed to have efficient tumor spontaneous targeting and no toxicity because the motility of RNA nanoparticles has been previously shown to enable these RNA-drug complexes to spontaneously accumulate in tumor blood vessels. The negative charge of RNA enables those RNA complexes that are not targeted to tumor vasculature to circulate in the blood and enter the urine through the kidney glomerulus, without accumulating in organs, therefore being nontoxic. Drug incorporation into RNA 4WJ can be precisely controlled with a defined loading amount, location, and ratio. The incorporation of nucleoside analogs into 4WJ only requires one step using nucleoside analogue phosphoramidites during solid-phase RNA synthesis, without the need for additional conjugation and purification processes.
Collapse
Affiliation(s)
| | | | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung 40402, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 40402, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 40402, Taiwan
| | | |
Collapse
|
3
|
Yip T, Qi X, Yan H, Chang Y. Therapeutic applications of RNA nanostructures. RSC Adv 2024; 14:28807-28821. [PMID: 39263430 PMCID: PMC11387945 DOI: 10.1039/d4ra03823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
RNA-based therapeutics have gained wide public interest in recent years. RNA is a versatile molecule that exists in many forms including mRNA, siRNA, miRNA, ribozymes, and other non-coding RNAs and is primarily applied for gene therapy. RNA is also used as a modular building block to construct RNA nanostructures. The programmable nature of RNA nanostructures enables the generation of simple, modulable, and multi-functional RNA-based therapeutics. Although the therapeutic application of RNA may be limited due to its structural instability, advances in RNA nanotechnology have improved the stability of RNA nanostructures for greater application. Various strategies have been developed to enhance the stability of RNA nanostructures enabling their application in vivo. In this review, we examine the therapeutic applications of RNA nanostructures. Non-immunogenic RNA nanostructures can be rationally designed with functional RNA molecules to modulate gene expression for gene therapy. On the other hand, nucleic acids can be sensed by cellular receptors to elicit an innate immune response, for which certain DNA and RNA motifs can function as adjuvants. Taking advantage of this adjuvant potential, RNA nanostructures can be used for immunotherapy and be designed for cancer vaccines. Thus, we examine the therapeutic application of immunogenic RNA nanostructures for cancer immunotherapy. RNA nanostructures represent promising platforms to design new nanodrugs, gene therapeutics, immunotherapeutic adjuvants, and cancer vaccines. Ongoing research in the field of RNA nanotechnology will continue to empower the development of RNA nanostructure-based therapeutics with high efficacy and limited toxicity.
Collapse
Affiliation(s)
- Theresa Yip
- School of Life Sciences, Arizona State University Tempe AZ 85281 USA
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
| | - Xiaodong Qi
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
- School of Molecular Sciences, Arizona State University Tempe AZ 85281 USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
- School of Molecular Sciences, Arizona State University Tempe AZ 85281 USA
| | - Yung Chang
- School of Life Sciences, Arizona State University Tempe AZ 85281 USA
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
| |
Collapse
|
4
|
Zhang Z, Li S, Wang H, Shan Y. The Effects of the Carrier and Ligand Spatial Conformation on RNA Nanodrug Cell Delivery. Anal Chem 2024. [PMID: 39096242 DOI: 10.1021/acs.analchem.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Small interfering RNA (siRNA) highlights the immense therapeutic potential for cancer treatment. The major challenge in siRNA therapy is the effective RNA nanodrug delivery system, which is facilitated by the ligand and the carrier. In this study, we analyzed the binding specificity of linear RGD and circular RGD to αVβ3 integrins by mapping the morphology using super-resolution direct stochastic optical reconstruction microscopy. Meanwhile, the binding dynamics was investigated using single-molecule force spectroscopy. Then, the effects of the ligand and carrier on RNA nanodrug cell entry dynamic parameters were evaluated at the single particle level by the force tracing technique. Furthermore, the delivery efficiency of RNA nanodrugs was assessed using AFM-based nanoindentation at the single cell level. This report will provide valuable insights for rational design strategies aiming to achieve improved efficiency for nanodrug delivery systems.
Collapse
Affiliation(s)
- Zhuang Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
5
|
Liu J, Wu J, Chen T, Yang B, Liu X, Xi J, Zhang Z, Gao Y, Li Z. Enhancing X-Ray Sensitization with Multifunctional Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400954. [PMID: 38676336 DOI: 10.1002/smll.202400954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/28/2024]
Abstract
In the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues. The multifaceted applications of NPs in radiotherapy encompass collaborative interactions with chemotherapeutic, immunotherapeutic, and targeted pharmaceuticals, along with contributions to photodynamic/photothermal therapy, imaging enhancement, and the integration of artificial intelligence technology. Despite promising preclinical outcomes, the paper acknowledges challenges in the clinical translation of these findings. The conclusion maintains an optimistic stance, emphasizing ongoing trials and technological advancements that bolster personalized treatment approaches. The paper advocates for continuous research and clinical validation, envisioning the integration of NPs as a revolutionary paradigm in cancer therapy, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - JunYong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Bin Yang
- Department of Orthopedics, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - XiangPing Liu
- Department of Neurology, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - Jing Xi
- Department of Nephrology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, 415000, China
| | - Ziyang Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| |
Collapse
|
6
|
Stewart JM. RNA nanotechnology on the horizon: Self-assembly, chemical modifications, and functional applications. Curr Opin Chem Biol 2024; 81:102479. [PMID: 38889473 DOI: 10.1016/j.cbpa.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
RNA nanotechnology harnesses the unique chemical and structural properties of RNA to build nanoassemblies and supramolecular structures with dynamic and functional capabilities. This review focuses on design and assembly approaches to building RNA structures, the RNA chemical modifications used to enhance stability and functionality, and modern-day applications in therapeutics, biosensing, and bioimaging.
Collapse
|
7
|
Avila Y, Rebolledo LP, Skelly E, de Freitas Saito R, Wei H, Lilley D, Stanley RE, Hou YM, Yang H, Sztuba-Solinska J, Chen SJ, Dokholyan NV, Tan C, Li SK, He X, Zhang X, Miles W, Franco E, Binzel DW, Guo P, Afonin KA. Cracking the Code: Enhancing Molecular Tools for Progress in Nanobiotechnology. ACS APPLIED BIO MATERIALS 2024; 7:3587-3604. [PMID: 38833534 PMCID: PMC11190997 DOI: 10.1021/acsabm.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
Collapse
Affiliation(s)
- Yelixza
I. Avila
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P. Rebolledo
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Renata de Freitas Saito
- Comprehensive
Center for Precision Oncology, Centro de Investigação
Translacional em Oncologia (LIM24), Departamento
de Radiologia e Oncologia, Faculdade de Medicina da Universidade de
São Paulo and Instituto do Câncer do Estado de São
Paulo, São Paulo, São Paulo 01246-903, Brazil
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu 210023, P. R. China
| | - David Lilley
- School
of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Robin E. Stanley
- Signal
Transduction Laboratory, National Institute of Environmental Health
Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ya-Ming Hou
- Thomas
Jefferson
University, Department of Biochemistry
and Molecular Biology, 233 South 10th Street, BLSB 220 Philadelphia, Pennsylvania 19107, United States
| | - Haoyun Yang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Joanna Sztuba-Solinska
- Vaccine
Research and Development, Early Bioprocess Development, Pfizer Inc., 401 N Middletown Road, Pearl
River, New York 10965, United States
| | - Shi-Jie Chen
- Department
of Physics and Astronomy, Department of Biochemistry, Institute of
Data Sciences and Informatics, University
of Missouri at Columbia, Columbia, Missouri 65211, United States
| | - Nikolay V. Dokholyan
- Departments
of Pharmacology and Biochemistry & Molecular Biology Penn State College of Medicine; Hershey, Pennsylvania 17033, United States
- Departments
of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheemeng Tan
- University of California, Davis, California 95616, United States
| | - S. Kevin Li
- Division
of Pharmaceutical Sciences, James L Winkle
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiaoming He
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Xiaoting Zhang
- Department
of Cancer Biology, Breast Cancer Research Program, and University
of Cincinnati Cancer Center, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Wayne Miles
- Department
of Cancer Biology and Genetics, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Elisa Franco
- Department
of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Daniel W. Binzel
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
8
|
Jin K, Liao YC, Cheng TC, Li X, Lee WJ, Pi F, Jasinski D, Chen LC, Phelps MA, Ho YS, Guo P. In Vitro and In Vivo Evaluation of the Pathology and Safety Aspects of Three- and Four-Way Junction RNA Nanoparticles. Mol Pharm 2024; 21:718-728. [PMID: 38214504 PMCID: PMC10976369 DOI: 10.1021/acs.molpharmaceut.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
RNA therapeutics has advanced into the third milestone in pharmaceutical drug development, following chemical and protein therapeutics. RNA itself can serve as therapeutics, carriers, regulators, or substrates in drug development. Due to RNA's motile, dynamic, and deformable properties, RNA nanoparticles have demonstrated spontaneous targeting and accumulation in cancer vasculature and fast excretion through the kidney glomerulus to urine to prevent possible interactions with healthy organs. Furthermore, the negatively charged phosphate backbone of RNA results in general repulsion from negatively charged lipid cell membranes for further avoidance of vital organs. Thus, RNA nanoparticles can spontaneously enrich tumor vasculature and efficiently enter tumor cells via specific targeting, while those not entering the tumor tissue will clear from the body quickly. These favorable parameters have led to the expectation that RNA has low or little toxicity. RNA nanoparticles have been well characterized for their anticancer efficacy; however, little detail on RNA nanoparticle pathology and safety is known. Here, we report the in vitro and in vivo assessment of the pathology and safety aspects of different RNA nanoparticles including RNA three-way junction (3WJ) harboring 2'-F modified pyrimidine, folic acid, and Survivin siRNA, as well as the RNA four-way junction (4WJ) harboring 2'-F modified pyrimidine and 24 copies of SN38. Both animal models and patient serum were investigated. In vitro studies include hemolysis, platelet aggregation, complement activation, plasma coagulation, and interferon induction. In vivo studies include hematoxylin and eosin (H&E) staining, hematological and biochemical analysis as the serum profiling, and animal organ weight study. No significant toxicity, side effect, or immune responses were detected during the extensive safety evaluations of RNA nanoparticles. These results further complement previous cancer inhibition studies and demonstrate RNA nanoparticles as an effective and safe drug delivery vehicle for future clinical translations.
Collapse
Affiliation(s)
- Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengmei Pi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel Jasinski
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li-Ching Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|