1
|
Su N, Yu X, Duan M, Shi N. Recent advances in methylation modifications of microRNA. Genes Dis 2025; 12:101201. [PMID: 39524539 PMCID: PMC11550756 DOI: 10.1016/j.gendis.2023.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
microRNAs (miRNAs) are short single-stranded non-coding RNAs between 21 and 25 nt in length in eukaryotic organisms, which control post-transcriptional gene expression. Through complementary base pairing, miRNAs generally bind to their target messenger RNAs and repress protein production by destabilizing the messenger RNA and translational silencing. They regulate almost all life activities, such as cell proliferation, differentiation, apoptosis, tumorigenesis, and host-pathogen interactions. Methylation modification is the most common RNA modification in eukaryotes. miRNA methylation exists in different types, mainly N6-methyladenosine, 5-methylcytosine, and 7-methylguanine, which can change the expression level and biological mode of action of miRNAs and improve the activity of regulating gene expression in a very fine-tuned way with flexibility. In this review, we will summarize the recent findings concerning methylation modifications of miRNA, focusing on their biogenesis and the potential role of miRNA fate and functions.
Collapse
Affiliation(s)
| | | | | | - Ning Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
2
|
Jiang X, Zhan L, Tang X. RNA modifications in physiology and pathology: Progressing towards application in clinical settings. Cell Signal 2024; 121:111242. [PMID: 38851412 DOI: 10.1016/j.cellsig.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.
Collapse
Affiliation(s)
- Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Czajkowski R, Krzyżanowska DM, Sokolova D, Rąbalski Ł, Kosiński M, Jafra S, Królicka A. Genetic Loci of Plant Pathogenic Dickeya solani IPO 2222 Expressed in Contact with Weed-Host Bittersweet Nightshade ( Solanum dulcamara L.) Plants. Int J Mol Sci 2024; 25:2794. [PMID: 38474041 PMCID: PMC10931765 DOI: 10.3390/ijms25052794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.
Collapse
Affiliation(s)
- Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| | - Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143 Kyiv, Ukraine
| | - Łukasz Rąbalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Maciej Kosiński
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (Ł.R.); (M.K.)
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland;
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, A. Abrahama 58, 80-307 Gdansk, Poland; (D.M.K.); (D.S.); (A.K.)
| |
Collapse
|
4
|
Laxminarayana D. Perceptions into causes and consequences of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants. RHEUMATOLOGY & AUTOIMMUNITY 2023; 3:1-8. [DOI: 10.1002/rai2.12065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 01/02/2025]
Abstract
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants are emerging worldwide and pathogenicity varies widely from no symptoms to death. The SARS‐CoV‐2 is evolving as lineages like Alpha, Beta, Gamma, Epsilon, Iota, Delta, and Omicron in the course of time. The main reasons for such viral evolution are (a) the imperfect nature of SARS‐CoV‐2 RNA polymerase, and viral exonuclease mediated proofreading functions resulting in the generation of mutations in viral genomes; (b) fusions of the 5′ leader sequence to unexpected 3′ sites, and transcription regulatory sequences (TRSs) in subgenomic RNAs (sgRNAs), which result in the generation of structural variants and novel open reading frames; (c) these viruses are combated by the host type I interferons (IFNs). In such a process IFNs upregulate viral RNA editing APOBEC3G/F and ADAR1 genes, which induce mutations in viral genomes. These factors play important roles in causing viral evolution and the emergence of more efficient SARS‐CoV‐2 genomes, which escape the host immune defense system, and vaccine‐elicited antibodies and impede therapeutic strategies. The main challenges we now face are how to control future SARS‐CoV‐2 evolution, the elimination of their deleterious side effects, and the onset of new diseases as aftermaths of SARS‐CoV‐2 infections. Preventive measures like (a) the development of broadly neutralizing antibodies and novel vaccines, therapies based on genomics and proteomics data will help in avoiding, and/or minimizing SARS‐CoV‐2 infections; (b) targeted therapies, application of patient‐based precision medicine methodology can help in achieving the goal and avoiding unwanted deleterious side effects and the onset of SARS‐CoV‐2 infections mediated several diseases in future.
Collapse
|
5
|
Walsh CT. Covalent Catalytic Strategies for Enzymes That Modify RNA Molecules on their Tripartite Building Blocks. ACS Chem Biol 2022; 17:2686-2703. [PMID: 36103129 DOI: 10.1021/acschembio.2c00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tripartite structures of the four 5'-nucleotide monophosphate (NMP) building blocks in all RNAs enable enzyme-catalyzed chemical modifications to three types of sites: the heterocyclic bases via N- and C-methylations and other alkylations, conversion of the N-glycoside linkages of the uridine moiety to the C-C glycoside link in pseudouridines, and the phosphodiester-mediated processes of 5'-capping, splicing, and 3'-tailing of premRNAs. We examine known cases for enzymatic covalent catalytic strategies that entail transient formation and breakdown of covalent enzyme-RNA adducts in each catalytic cycle. One case involves generation of the required carbon nucleophile during C5 methylation of cytosine residues in RNAs. A second examines the mechanism proposed for pseudouridine synthases and for replacement of a guanine residue in tRNAs by queuosine. The third category involves phosphoric anhydride and phosphodiester chemistry by which viral RNAs encode enzymes for making their own mRNA 5'-caps. This strategy includes the recent finding that the SARS-CoV2 proteins assemble a canonical 5',5'-GTP cap on their 28 900 nucleotide genomic RNA to enable its translation as an mRNA by host translational machinery by way of a covalent RNA-viral enzyme intermediate.
Collapse
Affiliation(s)
- Christopher T Walsh
- ChEM-H Institute, Stanford University, Palo Alto, California 94305, United States
| |
Collapse
|
6
|
Brooks AF, Garcia GA, Showalter HD. Synthesis of azide congeners of
preQ
1
as potential substrates for
tRNA
guanine transglycosylase. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Allen F. Brooks
- Department of Medicinal Chemistry University of Michigan Ann Arbor Michigan USA
| | - George A. Garcia
- Department of Medicinal Chemistry University of Michigan Ann Arbor Michigan USA
| | - Hollis D. Showalter
- Department of Medicinal Chemistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
7
|
Jones LB, Ghosh P, Lee JH, Chou CN, Kunz DA. Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source. Microbiology (Reading) 2018; 164:956-968. [DOI: 10.1099/mic.0.000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lauren B. Jones
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Pallab Ghosh
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Jung-Hyun Lee
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Chia-Ni Chou
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Daniel A. Kunz
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
8
|
New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2'-O-methylribonucleosides. J Biosci Bioeng 2017; 125:38-45. [PMID: 28826816 DOI: 10.1016/j.jbiosc.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.
Collapse
|
9
|
Nainar S, Marshall PR, Tyler CR, Spitale RC, Bredy TW. Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 2017; 19:1292-8. [PMID: 27669990 DOI: 10.1038/nn.4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
In this Perspective, we expand the notion of temporal regulation of RNA in the brain and propose that the qualitative nature of RNA and its metabolism, together with RNA abundance, are essential for the molecular mechanisms underlying experience-dependent plasticity. We discuss emerging concepts in the newly burgeoning field of epitranscriptomics, which are predicted to be heavily involved in cognitive function. These include activity-induced RNA modifications, RNA editing, dynamic changes in the secondary structure of RNA, and RNA localization. Each is described with an emphasis on its role in regulating the function of both protein-coding genes, as well as various noncoding regulatory RNAs, and how each might influence learning and memory.
Collapse
Affiliation(s)
- Sarah Nainar
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| | - Paul R Marshall
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Christina R Tyler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA.,Queensland Brain Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Abstract
Inosine is one of the most common modifications found in human RNAs and the Adenosine Deaminases that act on RNA (ADARs) are the main enzymes responsible for its production. ADARs were first discovered in the 1980s and since then our understanding of ADARs has advanced tremendously. For instance, it is now known that defective ADAR function can cause human diseases. Furthermore, recently solved crystal structures of the human ADAR2 deaminase bound to RNA have provided insights regarding the catalytic and substrate recognition mechanisms. In this chapter, we describe the occurrence of inosine in human RNAs and the newest perspective on the ADAR family of enzymes, including their substrate recognition, catalytic mechanism, regulation as well as the consequences of A-to-I editing, and their relation to human diseases.
Collapse
|
11
|
Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W, Schaefer M, Helm M. Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol 2016; 14:1108-1123. [PMID: 27232191 PMCID: PMC5699548 DOI: 10.1080/15476286.2016.1191737] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology, cell biology and epigenetics.
Collapse
Affiliation(s)
- Albert Jeltsch
- a Institute of Biochemistry , Stuttgart University , Stuttgart , Germany
| | | | - Tomasz P Jurkowski
- a Institute of Biochemistry , Stuttgart University , Stuttgart , Germany
| | - Frank Lyko
- c Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center , Heidelberg , Germany
| | - Gunter Reuter
- d Institute of Biology, Developmental Genetics, Martin Luther University Halle , Halle , Germany
| | - Serge Ankri
- e Department of Molecular Microbiology , The Bruce Rappaport Faculty of Medicine , Technion , Haifa , Israel
| | - Wolfgang Nellen
- f Abteilung für Genetik, Universität Kassel , Kassel , Germany
| | - Matthias Schaefer
- g Medical University of Vienna, Center for Anatomy & Cell Biology , Vienna , Austria
| | - Mark Helm
- h Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Mainz , Germany
| |
Collapse
|
12
|
Hohn C, Härtsch A, Ehrmann FR, Pfaffeneder T, Trapp N, Dumele O, Klebe G, Diederich F. An Immucillin-Based Transition-State-Analogous Inhibitor of tRNA-Guanine Transglycosylase (TGT). Chemistry 2016; 22:6750-4. [PMID: 26991861 DOI: 10.1002/chem.201600883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/06/2022]
Abstract
Shigellosis is one of the most severe diarrheal diseases worldwide without any efficient treatment so far. The enzyme tRNA-guanine transglycosylase (TGT) has been identified as a promising target for small-molecule drug design. Herein, we report a transition-state analogue, a small, immucillin-derived inhibitor, as a new lead structure with a novel mode of action. The complex inhibitor synthesis was accomplished in 18 steps with an overall yield of 3 %. A co-crystal structure of the inhibitor bound to Z. mobilis TGT confirmed the predicted conformation of the immucillin derivative in the enzyme active site.
Collapse
Affiliation(s)
- Christoph Hohn
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Adrian Härtsch
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Frederik Rainer Ehrmann
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Oliver Dumele
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany.
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Manna S, Harman A. Horizontal gene transfer of a Chlamydial tRNA-guanine transglycosylase gene to eukaryotic microbes. Mol Phylogenet Evol 2015; 94:392-6. [PMID: 26435002 DOI: 10.1016/j.ympev.2015.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/14/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes.
Collapse
Affiliation(s)
- Sam Manna
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Ashley Harman
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Alexander SC, Busby KN, Cole CM, Zhou CY, Devaraj NK. Site-Specific Covalent Labeling of RNA by Enzymatic Transglycosylation. J Am Chem Soc 2015; 137:12756-9. [DOI: 10.1021/jacs.5b07286] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Seth C. Alexander
- Department
of Chemistry and
Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kayla N. Busby
- Department
of Chemistry and
Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Christian M. Cole
- Department
of Chemistry and
Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Cun Yu Zhou
- Department
of Chemistry and
Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department
of Chemistry and
Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Müller M, Hartmann M, Schuster I, Bender S, Thüring KL, Helm M, Katze JR, Nellen W, Lyko F, Ehrenhofer-Murray AE. Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res 2015; 43:10952-62. [PMID: 26424849 PMCID: PMC4678861 DOI: 10.1093/nar/gkv980] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023] Open
Abstract
Dnmt2 enzymes are cytosine-5 methyltransferases that methylate C38 of several tRNAs. We report here that the activities of two Dnmt2 homologs, Pmt1 from Schizosaccharomyces pombe and DnmA from Dictyostelium discoideum, are strongly stimulated by prior queuosine (Q) modification of the substrate tRNA. In vivo tRNA methylation levels were stimulated by growth of cells in queuine-containing medium; in vitro Pmt1 activity was enhanced on Q-containing RNA; and queuine-stimulated in vivo methylation was abrogated by the absence of the enzyme that inserts queuine into tRNA, eukaryotic tRNA-guanine transglycosylase. Global analysis of tRNA methylation in S. pombe showed a striking selectivity of Pmt1 for tRNA(Asp) methylation, which distinguishes Pmt1 from other Dnmt2 homologs. The present analysis also revealed a novel Pmt1- and Q-independent tRNA methylation site in S. pombe, C34 of tRNA(Pro). Notably, queuine is a micronutrient that is scavenged by higher eukaryotes from the diet and gut microflora. This work therefore reveals an unanticipated route by which the environment can modulate tRNA modification in an organism.
Collapse
Affiliation(s)
- Martin Müller
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mark Hartmann
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Sebastian Bender
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Kathrin L Thüring
- Institut für Pharmakologie und Biochemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Mark Helm
- Institut für Pharmakologie und Biochemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Jon R Katze
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wolfgang Nellen
- Abteilung für Genetik, Universität Kassel, 34132 Kassel, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
16
|
Oshiro I, Jitsuzaki D, Onizuka K, Nishimoto A, Taniguchi Y, Sasaki S. Site-specific modification of the 6-amino group of adenosine in RNA by an interstrand functionality-transfer reaction with an s-functionalized 4-thiothymidine. Chembiochem 2015; 16:1199-204. [PMID: 25940822 DOI: 10.1002/cbic.201500084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022]
Abstract
Non-natural RNA modifications have been widely used to study the function and structure of RNA. Expanding the study of RNA further requires versatile and efficient tools for site-specific RNA modification. We recently established a new strategy for the site-specific modification of RNA based on a functionality-transfer reaction between an oligodeoxynucleotide (ODN) probe and an RNA substrate. 2'-Deoxy-6-thioguanosine was used to anchor the transfer group, and the 4-amino group of cytosine or the 2-amino group of guanine was specifically modified. In this study, 2'-deoxy-4-thiothymidine was adopted as a new platform to target the 6-amino group of adenosine. The (E)-pyridinyl vinyl keto transfer group was attached to the 4-thioT in the ODN probe, and it was efficiently and specifically transferred to the 6-amino group of the opposing adenosine in RNA in the presence of CuCl2 . This method expands the available RNA target sites for specific modification.
Collapse
Affiliation(s)
- Ikuya Oshiro
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).,CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012 (Japan)
| | - Daichi Jitsuzaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).,CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012 (Japan)
| | - Kazumitsu Onizuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).,CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012 (Japan)
| | - Atsushi Nishimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).,CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012 (Japan)
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).,CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012 (Japan)
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan).,CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012 (Japan)
| |
Collapse
|
17
|
Niavarani A, Currie E, Reyal Y, Anjos-Afonso F, Horswell S, Griessinger E, Luis Sardina J, Bonnet D. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PLoS One 2015; 10:e0120089. [PMID: 25807502 PMCID: PMC4373805 DOI: 10.1371/journal.pone.0120089] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022] Open
Abstract
Classic deamination mRNA changes, including cytidine to uridine (C-to-U) and adenosine to inosine (A-to-I), are important exceptions to the central dogma and lead to significant alterations in gene transcripts and products. Although there are a few reports of non-classic mRNA alterations, as yet there is no molecular explanation for these alternative changes. Wilms Tumor 1 (WT1) mutations and variants are implicated in several diseases, including Wilms tumor and acute myeloid leukemia (AML). We observed two alternative G-to-A changes, namely c.1303G>A and c.1586G>A in cDNA clones and found them to be recurrent in a series of 21 umbilical cord blood mononuclear cell (CBMC) samples studied. Two less conserved U-to-C changes were also observed. These alternative changes were found to be significantly higher in non-progenitor as compared to progenitor CBMCs, while they were found to be absent in a series of AML samples studied, indicating they are targeted, cell type-specific mRNA editing modifications. Since APOBEC/ADAR family members are implicated in RNA/DNA editing, we screened them by RNA-interference (RNAi) for WT1-mRNA changes and observed near complete reversal of WT1 c.1303G>A alteration upon APOBEC3A (A3A) knockdown. The role of A3A in mediating this change was confirmed by A3A overexpression in Fujioka cells, which led to a significant increase in WT1 c.1303G>A mRNA editing. Non-progenitor CBMCs showed correspondingly higher levels of A3A-mRNA and protein as compared to the progenitor ones. To our knowledge, this is the first report of mRNA modifying activity for an APOBEC3 protein and implicates A3A in a novel G-to-A form of editing. These findings open the way to further investigations into the mechanisms of other potential mRNA changes, which will help to redefine the RNA editing paradigm in both health and disease.
Collapse
MESH Headings
- Adenosine/metabolism
- Base Sequence
- Cytidine Deaminase/antagonists & inhibitors
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Guanine/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Molecular Sequence Data
- Mutation
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/metabolism
- RNA Editing
- RNA Interference
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sequence Analysis, DNA
- Umbilical Cord/cytology
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Wilms Tumor/genetics
- Wilms Tumor/pathology
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Erin Currie
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Yasmin Reyal
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Stuart Horswell
- Department of Bioinformatics, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Emmanuel Griessinger
- INSERM U1065, Mediterranean Centre for Molecular Medicine (C3M), Université Nice Sophia Antipolis, Nice, France
| | - Jose Luis Sardina
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Jitsuzaki D, Onizuka K, Nishimoto A, Oshiro I, Taniguchi Y, Sasaki S. Remarkable acceleration of a DNA/RNA inter-strand functionality transfer reaction to modify a cytosine residue: the proximity effect via complexation with a metal cation. Nucleic Acids Res 2014; 42:8808-15. [PMID: 24957600 PMCID: PMC4117767 DOI: 10.1093/nar/gku538] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modified nucleosides in natural RNA molecules are essential for their functions. Non-natural nucleoside analogues have been introduced into RNA to manipulate its structure and function. We have recently developed a new strategy for the in situ modification of RNA based on the functionality transfer reaction between an oligodeoxynucleotide probe and an RNA substrate. 2′-Deoxy-6-thioguanosine (6-thio-dG) was used as the platform to anchor the transfer group. In this study, a pyridinyl vinyl ketone moiety was newly designed as the transfer group with the expectation that a metal cation would form a chelate complex with the pyridinyl-2-keto group. It was demonstrated that the (E)-pyridinyl vinyl keto group was efficiently and specifically transferred to the 4-amino group of the opposing cytosine in RNA in the presence of NiCl2 with more than 200-fold accelerated rate compared with the previous system with the use of the diketo transfer group. Detailed mechanistic studies suggested that NiCl2 forms a bridging complex between the pyridinyl keto moiety and the N7 of the purine residue neighboring the cytosine residue of the RNA substrate to bring the groups in close proximity.
Collapse
Affiliation(s)
- Daichi Jitsuzaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012, Japan
| | - Kazumitsu Onizuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Nishimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuya Oshiro
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, and CREST, Japan Science and Technology Agency, 4-1-8 Motomachi, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Eichhorn CD, Kang M, Feigon J. Structure and function of preQ 1 riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:939-950. [PMID: 24798077 DOI: 10.1016/j.bbagrm.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/17/2022]
Abstract
PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mijeong Kang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Gong Z, Zhao Y, Chen C, Duan Y, Xiao Y. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations. PLoS One 2014; 9:e92247. [PMID: 24663240 PMCID: PMC3963873 DOI: 10.1371/journal.pone.0092247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
Riboswitches play roles in transcriptional or translational regulation through specific ligand binding of their aptamer domains. Although a number of ligand-bound aptamer complex structures have been solved, it is important to know ligand-free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, preQ1 riboswitch aptamer domain from Bacillus subtilis is studied by overall 1.5 μs all-atom molecular dynamics simulations We found that the ligand-free aptamer has a stable state with a folded P1-L3 and open binding pocket. The latter forms a cytosine-rich pool in which the nucleotide C19 oscillates between close and open positions, making it a potential conformation for preQ1 entrance. The dynamic picture further suggests that the specific recognition of preQ1 by the aptamer domain is not only facilitated by the key nucleotide C19 but also aided and enhanced by other cytosines around the binding pocket. These results should help to understand the details of preQ1 binding.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Duan
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Center and Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
21
|
Jackman JE, Alfonzo JD. Transfer RNA modifications: nature's combinatorial chemistry playground. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:35-48. [PMID: 23139145 DOI: 10.1002/wrna.1144] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following synthesis, tRNAs are peppered by numerous chemical modifications which may differentially affect a tRNA's structure and function. Although modifications affecting the business ends of a tRNA are predictably important for cell viability, a majority of modifications play more subtle structural roles that can affect tRNA stability and folding. The current trend is that modifications act in concert and it is in the context of the specific sequence of a given tRNA that they impart their differing effects. Recent developments in the modification field have highlighted the diversity of modifications in tRNA. From these, the combinatorial nature of modifications in explaining previously described phenotypes derived from their absence has emerged as a growing theme.
Collapse
Affiliation(s)
- Jane E Jackman
- The Ohio State Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
22
|
Brooks AF, Vélez-Martínez CS, Showalter HDH, Garcia GA. Investigating the prevalence of queuine in Escherichia coli RNA via incorporation of the tritium-labeled precursor, preQ(1). Biochem Biophys Res Commun 2012; 425:83-8. [PMID: 22819844 DOI: 10.1016/j.bbrc.2012.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
There are over 100 modified bases that occur in RNA with the majority found in transfer RNA. It has been widely believed that the queuine modification is limited to four transfer RNA species in vivo. However, given the vast amount of the human genome (60-70%) that is transcribed into non-coding RNA (Mattick [10]), probing the presence of modified bases in these RNAs is of fundamental importance. The mechanism of incorporation of queuine, via transglycosylation, makes this uniquely poised to probe base modification in RNA. Results of incubations of Escherichia coli cell cultures with [(3)H] preQ(1) (a queuine precursor in eubacteria) clearly demonstrate preQ(1) incorporation into a number of RNA species of various sizes larger than transfer RNA. Specifically, significant levels of preQ(1) incorporation into ribosomal RNA are observed. The modification of other large RNAs was also observed. These results confirm that non-coding RNAs contain modified bases and lead to the supposition that these modifications are necessary to control non-coding RNA structure and function as has been shown for transfer RNA.
Collapse
Affiliation(s)
- Allen F Brooks
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109-1065, USA
| | | | | | | |
Collapse
|
23
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Struktur und Funktion nicht-kanonischer Nukleobasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 2012; 51:7110-31. [PMID: 22744788 DOI: 10.1002/anie.201201193] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Indexed: 12/19/2022]
Abstract
DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.
Collapse
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thomas CE, Chen YC, Garcia GA. Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases. Biochem Biophys Res Commun 2011; 410:34-9. [PMID: 21640076 PMCID: PMC3124622 DOI: 10.1016/j.bbrc.2011.05.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 11/16/2022]
Abstract
tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ(1)), eukarya (queuine) and archaea (preQ(0)). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ(1) (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can "open up" the active site, allowing for the binding of competitive pteridine inhibitors. However, even the "best" of these mutants still does not recognize queuine at concentrations up to 50μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]).
Collapse
Affiliation(s)
- C. Eric Thomas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065
| | - Yi-Chen Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065
| |
Collapse
|
26
|
Chen YC, Brooks AF, Goodenough-Lashua DM, Kittendorf JD, Showalter HD, Garcia GA. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Nucleic Acids Res 2010; 39:2834-44. [PMID: 21131277 PMCID: PMC3074131 DOI: 10.1093/nar/gkq1188] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
27
|
Brückl T, Thoma I, Wagner AJ, Knochel P, Carell T. Efficient Synthesis of Deazaguanosine-Derived tRNA Nucleosides PreQ0, PreQ1, and Archaeosine Using the Turbo-Grignard Method. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
|
29
|
Chen YC, Kelly VP, Stachura SV, Garcia GA. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA (NEW YORK, N.Y.) 2010; 16:958-68. [PMID: 20354154 PMCID: PMC2856889 DOI: 10.1261/rna.1997610] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/09/2010] [Indexed: 05/21/2023]
Abstract
The eukaryotic tRNA-guanine transglycosylase (TGT) has been reported to exist as a heterodimer, in contrast to the homodimeric eubacterial TGT. While ubiquitin-specific protease 14 (USP14) has been proposed to act as a regulatory subunit of the eukaryotic TGT, the mouse TGT has recently been shown to be a queuine tRNA-ribosyltransferase 1 (QTRT1, eubacterial TGT homolog).queuine tRNA-ribosyltransferase domain-containing 1 (QTRTD1) heterodimer. We find that human QTRTD1 (hQTRTD1) co-purifies with polyhistidine-tagged human QTRT1 (ht-hQTRT1) via Ni(2+) affinity chromatography. Cross-linking experiments, mass spectrometry, and size exclusion chromatography results are consistent with the two proteins existing as a heterodimer. We have not been able to observe co-purification and/or association between hQTRT1 and USP14 when co-expressed in Escherichia coli. More importantly, under our experimental conditions, the transglycosylase activity of hQTRT1 is only observed when hQTRT1 and hQTRTD1 have been co-expressed and co-purified. Kinetic characterization of the human TGT (hQTRT1.hQTRTD1) using human tRNA(Tyr) and guanine shows catalytic efficiency (k(cat)/K(M)) similar to that of the E. coli TGT. Furthermore, site-directed mutagenesis confirms that the hQTRT1 subunit is responsible for the transglycosylase activity. Taken together, these results indicate that the human TGT is composed of a catalytic subunit, hQTRT1, and hQTRTD1, not USP14. hQTRTD1 has been implicated as the salvage enzyme that generates free queuine from QMP. Work is ongoing in our laboratory to confirm this activity.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | |
Collapse
|
30
|
Abstract
tRNAs possess a high content of modified nucleosides, which display an incredible structural variety. These modified nucleosides are conserved in their sequence and have important roles in tRNA functions. Most often, hypermodified nucleosides are found in the wobble position of tRNAs, which play a direct role in maintaining translational efficiency and fidelity, codon recognition, etc. One of such hypermodified base is queuine, which is a base analogue of guanine, found in the first anticodon position of specific tRNAs (tyrosine, histidine, aspartate and asparagine tRNAs). These tRNAs of the ‘Q-family’ originally contain guanine in the first position of anticodon, which is post-transcriptionally modified with queuine by an irreversible insertion during maturation. Queuine is ubiquitously present throughout the living system from prokaryotes to eukaryotes, including plants. Prokaryotes can synthesize queuine de novo by a complex biosynthetic pathway, whereas eukaryotes are unable to synthesize either the precursor or queuine. They utilize salvage system and acquire queuine as a nutrient factor from their diet or from intestinal microflora. The tRNAs of the Q-family are completely modified in terminally differentiated somatic cells. However, hypomodification of Q-tRNA (queuosine-modified tRNA) is closely associated with cell proliferation and malignancy. The precise mechanisms of queuine- and Q-tRNA-mediated action are still a mystery. Direct or indirect evidence suggests that queuine or Q-tRNA participates in many cellular functions, such as inhibition of cell proliferation, control of aerobic and anaerobic metabolism, bacterial virulence, etc. The role of Q-tRNA modification in cellular machinery and the signalling pathways involved therein is the focus of this review.
Collapse
|
31
|
Boland C, Hayes P, Santa-Maria I, Nishimura S, Kelly VP. Queuosine formation in eukaryotic tRNA occurs via a mitochondria-localized heteromeric transglycosylase. J Biol Chem 2009; 284:18218-27. [PMID: 19414587 DOI: 10.1074/jbc.m109.002477] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNA guanine transglycosylase (TGT) enzymes are responsible for the formation of queuosine in the anticodon loop (position 34) of tRNA(Asp), tRNA(Asn), tRNA(His), and tRNA(Tyr); an almost universal event in eubacterial and eukaryotic species. Despite extensive characterization of the eubacterial TGT the eukaryotic activity has remained undefined. Our search of mouse EST and cDNA data bases identified a homologue of the Escherichia coli TGT and three spliced variants of the queuine tRNA guanine transglycosylase domain containing 1 (QTRTD1) gene. QTRTD1 variant_1 (Qv1) was found to be the predominant adult form. Functional cooperativity of TGT and Qv1 was suggested by their coordinate mRNA expression in Northern blots and from their association in vivo by immunoprecipitation. Neither TGT nor Qv1 alone could complement a tgt mutation in E. coli. However, transglycosylase activity could be obtained when the proteins were combined in vitro. Confocal and immunoblot analysis suggest that TGT weakly interacts with the outer mitochondrial membrane possibly through association with Qv1, which was found to be stably associated with the organelle.
Collapse
Affiliation(s)
- Coilin Boland
- School of Biochemistry & Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
32
|
Kang M, Peterson R, Feigon J. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell 2009; 33:784-90. [PMID: 19285444 DOI: 10.1016/j.molcel.2009.02.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/18/2009] [Accepted: 02/25/2009] [Indexed: 12/27/2022]
Abstract
The modified nucleotide queuosine (Q) is almost universally found in the anticodon wobble position of specific tRNAs. In many bacteria, biosynthesis of Q is modulated by a class of regulatory mRNA elements called riboswitches. The preQ(1) riboswitch, found in the 5'UTR of bacterial genes involved in synthesis of the Q precursors preQ(0) and preQ(1), contains the smallest known aptamer domain. We report the solution structure of the preQ(1) riboswitch aptamer domain from Bacillus subtilis bound to preQ(1), which is a unique compact pseudoknot with three loops and two stems that encapsulates preQ(1) at the junction between the two stems. The pseudoknot only forms in the presence of preQ(1), and the 3' A-rich tail of the aptamer domain is an integral part of the pseudoknot. In the absence of preQ(1), the A-rich tail forms part of the antiterminator. These structural studies provide insight into riboswitch transcriptional control of preQ(1) biosynthesis.
Collapse
Affiliation(s)
- Mijeong Kang
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
33
|
Laxminarayana D, O'Rourke KS, Maas S, Olorenshaw I. Altered editing in RNA editing adenosine deaminase ADAR2 gene transcripts of systemic lupus erythematosus T lymphocytes. Immunology 2007; 121:359-69. [PMID: 17376196 PMCID: PMC2265949 DOI: 10.1111/j.1365-2567.2007.02582.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenosine Deaminases that act on RNA (ADARs) edit gene transcripts through site-specific conversion of adenosine to inosine by hydrolytic deamination at C6 of the adenosine. ADAR2 gene transcripts are substrates for the ADAR1 and ADAR2 enzymes and their expression is regulated by editing at the - 1 and - 2 sites. Our previous experiments demonstrated up-regulation of type I interferon (IFN) inducible 150 kDa ADAR1 in systemic lupus erythematosus (SLE) T cells. In this study we investigate the role of ADAR1 and ADAR2 in editing of ADAR2 gene transcripts of healthy controls and SLE patients. The ADAR2 gene transcripts were cloned into pCR2.1-TOPO vectors. A total of 150 clones from SLE and 150 clones from controls were sequenced. Sequence analysis demonstrated A to I editing at - 1, + 10, + 23 and + 24 in normal T cells. In SLE clones site-selective editing of the - 2 site was observed as a result of type I IFN-inducible 150 kDa ADAR1 expression. These results are confirmed by analysing ADAR2 transcripts of normal T cells activated with type I IFN-alpha. Editing of the + 23 and + 24 sites was decreased in SLE T cells compared to normal controls. In addition to A to G changes, U to C discrepancies were observed in normal and SLE T cells. In SLE cells, positions - 6 and + 30 were frequently edited from U to C compared to normal controls. Taken together, these results demonstrate altered and site-selective editing in ADAR2 transcripts of SLE patients. Based on these results, it is proposed that altered transcript editing contributes to the modulation of gene expression and immune functions in SLE patients.
Collapse
Affiliation(s)
- Dama Laxminarayana
- Section on Rheumatology and Immunology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
34
|
Brückl T, Klepper F, Gutsmiedl K, Carell T. A short and efficient synthesis of the tRNA nucleosides PreQ0 and archaeosine. Org Biomol Chem 2007; 5:3821-5. [DOI: 10.1039/b713309j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Todorov KA, Garcia GA. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity. Biochemistry 2006; 45:617-25. [PMID: 16401090 PMCID: PMC2533737 DOI: 10.1021/bi051863d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
tRNA-guanine transglycosylase (TGT) is a key enzyme involved in the post-transcriptional modification of certain tRNAs in their anticodon wobble positions with queuine. To maintain the correct Watson-Crick base pairing properties of the wobble base (and hence proper translation of the genetic code), TGT must recognize its heterocyclic substrate with high specificity. The X-ray crystal structure of a eubacterial TGT bound to preQ1 [Romier, C., et al. (1996) EMBO J. 15, 2850-2857] suggested that aspartate 143 (Escherichia coli TGT numbering) was involved in heterocyclic substrate recognition. Subsequent mutagenic and computational modeling studies from our lab [Todorov, K. A., et al. (2005) Biophys. J. 89 (3), 1965-1977] provided experimental evidence supporting this hypothesis. Herein, we report further studies probing the differential heterocyclic substrate recognition properties of the aspartate 143 mutant TGTs. Our results are consistent with one of the mutants exhibiting an inversion of substrate recognition preference (xanthine vs guanine) relative to that of the wild type, as evidenced by Km values. This confirms the key role of aspartate 143 in maintaining the anticodon identities of the queuine-containing tRNAs and suggests that TGT mutants could be developed that would alter the tRNA wobble base base pairing properties.
Collapse
Affiliation(s)
- Katherine Abold Todorov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | |
Collapse
|
36
|
Sabina J, Söll D. The RNA-binding PUA domain of archaeal tRNA-guanine transglycosylase is not required for archaeosine formation. J Biol Chem 2006; 281:6993-7001. [PMID: 16407303 DOI: 10.1074/jbc.m512841200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial tRNA-guanine transglycosylase (TGT) replaces the G in position 34 of tRNA with preQ(1), the precursor to the modified nucleoside queuosine. Archaeal TGT, in contrast, substitutes preQ(0) for the G in position 15 of tRNA as the first step in archaeosine formation. The archaeal enzyme is about 60% larger than the bacterial protein; a carboxyl-terminal extension of 230 amino acids contains the PUA domain known to contact the four 3'-terminal nucleotides of tRNA. Here we show that the C-terminal extension of the enzyme is not required for the selection of G15 as the site of base exchange; truncated forms of Pyrococcus furiosus TGT retain their specificity for guanine exchange at position 15. Deletion of the PUA domain causes a 4-fold drop in the observed k(cat) (2.8 x 10(-3) s(-1)) and results in a 75-fold increased K(m) for tRNA(Asp)(1.2 x 10(-5) m) compared with full-length TGT. Mutations in tRNA(Asp) altering or abolishing interactions with the PUA domain can compete with wild-type tRNA(Asp) for binding to full-length and truncated TGT enzymes. Whereas the C-terminal domains do not appear to play a role in selection of the modification site, their relevance for enzyme function and their role in vivo remains to be discovered.
Collapse
Affiliation(s)
- Jeffrey Sabina
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
37
|
Modification and editing of RNA: historical overview and important facts to remember. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106848] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|