1
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
2
|
Tryapkin OA, Kantemirov AV, Dyshlovoy SA, Prassolov VS, Spirin PV, von Amsberg G, Sidorova MA, Zhidkov ME. A New Mild Method for Synthesis of Marine Alkaloid Fascaplysin and Its Therapeutically Promising Derivatives. Mar Drugs 2023; 21:424. [PMID: 37623705 PMCID: PMC10455802 DOI: 10.3390/md21080424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.
Collapse
Affiliation(s)
- Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Vladimir S. Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Pavel V. Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| |
Collapse
|
3
|
Wang C, Wang S, Li H, Hou Y, Cao H, Hua H, Li D. Marine-Derived Lead Fascaplysin: Pharmacological Activity, Total Synthesis, and Structural Modification. Mar Drugs 2023; 21:md21040226. [PMID: 37103365 PMCID: PMC10142289 DOI: 10.3390/md21040226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.
Collapse
|
4
|
Sonawane V, Mohd Siddique MU, Jadav SS, Sinha BN, Jayaprakash V, Chaudhuri B. Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy. Eur J Med Chem 2019; 165:115-132. [PMID: 30665142 DOI: 10.1016/j.ejmech.2019.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
Inhibition of cyclin dependent kinase 4 (Cdk4) prevents cancer cells from entering the early G0/G1 phase of the cell division cycle whereas inhibiting tubulin polymerization blocks cancer cells' ability to undergo mitosis (M) late in the cell cycle. We had reported earlier that two non-planar and relatively non-toxic fascaplysin derivatives, an indole and a tryptoline, inhibit Cdk4 with IC50 values of 6.2 and 10 μM, respectively. Serendipitously, we had also found that they inhibited tubulin polymerization. The molecules were efficacious in mouse tumor models. We have now identified Cink4T in a 59-compound quinazolinone library, designed on the basis of ligand-based virtual screening, as a compound that inhibits Cdk4 and tubulin. Its IC50 value for Cdk4 inhibition is 0.47 μM and >50 μM for inhibition of Cdk1, Cdk2, Cdk6, Cdk9. Cink4T inhibits tubulin polymerization with an IC50 of 0.6 μM. Molecular modelling studies on Cink4T with Cdk4 and tubulin crystal structures lend support to these observations. Cancer cell cycle analyses confirm that Cink4T blocks cells at both G0/G1 and M phases as it should if it were to inhibit both Cdk4 and tubulin polymerization. Our results show, for the very first time, that virtual screening can be used to design novel inhibitors that can potently block two crucial phases of the cell division cycle.
Collapse
Affiliation(s)
- Vinay Sonawane
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | | | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
5
|
Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA. Int J Mol Sci 2017; 18:ijms18102074. [PMID: 28961193 PMCID: PMC5666756 DOI: 10.3390/ijms18102074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4); however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB), indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2) and tropomyosin-related kinase A (TRKA) via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.
Collapse
|
6
|
Rondla R, Padma Rao LS, Ramatenki V, Vadija R, Mukkera T, Potlapally SR, Vuruputuri U. Azolium analogues as CDK4 inhibitors: Pharmacophore modeling, 3D QSAR study and new lead drug discovery. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Mahale S, Bharate SB, Manda S, Joshi P, Jenkins PR, Vishwakarma RA, Chaudhuri B. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis 2015; 6:e1743. [PMID: 25950473 PMCID: PMC4669722 DOI: 10.1038/cddis.2015.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/09/2022]
Abstract
The marine natural product fascaplysin (1) is a potent Cdk4 (cyclin-dependent kinase 4)-specific inhibitor, but is toxic to all cell types possibly because of its DNA-intercalating properties. Through the design and synthesis of numerous fascaplysin analogues, we intended to identify inhibitors of cancer cell growth with good therapeutic window with respect to normal cells. Among various non-planar tryptoline analogues prepared, N-(biphenyl-2-yl) tryptoline (BPT, 6) was identified as a potent inhibitor of cancer cell growth and free from DNA-binding properties owing to its non-planar structure. This compound was tested in over 60 protein kinase assays. It displayed inhibition of Cdk4-cyclin D1 enzyme in vitro far more potently than many other kinases including Cdk family members. Although it blocks growth of cancer cells deficient in the mitotic-spindle checkpoint at the G0/G1 phase of the cell cycle, the block occurs primarily at the G2/M phase. BPT inhibits tubulin polymerization in vitro and acts as an enhancer of tubulin depolymerization of paclitaxel-stabilized tubulin in live cells. Western blot analyses indicated that, in p53-positive cells, BPT upregulates the expression of p53, p21 and p27 proteins, whereas it downregulates the expression of cyclin B1 and Cdk1. BPT selectively kills SV40-transformed mouse embryonic hepatic cells and human fibroblasts rather than untransformed cells. BPT inhibited the growth of several human cancer cells with an IC50<1 μM. The pharmacokinetic study in BALB/c mice indicated good plasma exposure after intravenous administration. It was found to be efficacious at 1/10th the maximum-tolerated dose (1000 mg/kg) against human tumours derived from HCT-116 (colon) and NCI-H460 (lung) cells in SCID (severe-combined immunodeficient) mice models. BPT is a relatively better anticancer agent than fascaplysin with an unusual ability to block two overlapping yet crucial phases of the cell cycle, mitosis and G0/G1. Its ability to effectively halt tumour growth in human tumour-bearing mice would suggest that BPT has the potential to be a candidate for further clinical development.
Collapse
Affiliation(s)
- S Mahale
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - S B Bharate
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - S Manda
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - P Joshi
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - P R Jenkins
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - R A Vishwakarma
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - B Chaudhuri
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
8
|
Mahale S, Bharate SB, Manda S, Joshi P, Bharate SS, Jenkins PR, Vishwakarma RA, Chaudhuri B. Biphenyl-4-carboxylic Acid [2-(1H-Indol-3-yl)-ethyl]-methylamide (CA224), a Nonplanar Analogue of Fascaplysin, Inhibits Cdk4 and Tubulin Polymerization: Evaluation of in Vitro and in Vivo Anticancer Activity. J Med Chem 2014; 57:9658-72. [DOI: 10.1021/jm5014743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sachin Mahale
- School
of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| | | | | | | | | | - Paul R. Jenkins
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Bhabatosh Chaudhuri
- School
of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
9
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
10
|
Ortar G, De Petrocellis L, Moriello AS, Allarà M, Morera E, Nalli M, Di Marzo V. Tetrahydro-β-carboline derivatives targeting fatty acid amide hydrolase (FAAH) and transient receptor potential (TRP) channels. Bioorg Med Chem Lett 2012. [PMID: 23206861 DOI: 10.1016/j.bmcl.2012.10.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A series of twenty-five derivatives of tetrahydro-β-carbolines 1-3 was synthesized and assayed on FAAH and TRPV1 and TRPA1 channels. Four carbamates, that is, 5a,c,e, and 9b inhibited FAAH with significant potency and interacted also effectively with TRPV1 and TRPA1 nociceptive receptors, while ureas 7b,d,f, and 8a,b were endowed with specific submicromolar TRPV1 modulating activities.
Collapse
Affiliation(s)
- Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Fascaplysin as a specific inhibitor for CDK4: insights from molecular modelling. PLoS One 2012; 7:e42612. [PMID: 22905154 PMCID: PMC3419161 DOI: 10.1371/journal.pone.0042612] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/10/2012] [Indexed: 12/26/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play a key role in the cell cycle and are important anti-cancer drug targets. The natural product fascaplysin inhibits CDK4 with surprising selectivity (IC(50) = 0.4 µM) compared to the close homolog CDK2 (IC(50) = 500 µM). Free energy calculations of the positively charged fascaplysin and an uncharged iso-electronic derivative in the CDK2 and CDK4 inhibitor complexes indicate that the positive charge of fascaplysin is crucial for selectivity. This finding will guide further improvements in the design of fascaplysin-based selective inhibitors for CDK4.
Collapse
|
12
|
Zanuy M, Ramos-Montoya A, Villacañas O, Canela N, Miranda A, Aguilar E, Agell N, Bachs O, Rubio-Martinez J, Pujol MD, Lee WNP, Marin S, Cascante M. Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle. Metabolomics 2012; 8:454-464. [PMID: 22661920 PMCID: PMC3361763 DOI: 10.1007/s11306-011-0328-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G(1) phase. Aberrant expression of CDK4 and CDK6 is a hallmark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM (the calcein acetoxymethyl-ester) is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G(1) phase. The metabolic effects of calcein AM on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phosphate pathway was significantly altered. To elucidate whether these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.
Collapse
Affiliation(s)
- Miriam Zanuy
- Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
| | - Antonio Ramos-Montoya
- Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
| | - Oscar Villacañas
- Department of Physical Chemistry, Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Nuria Canela
- Department of Cell Biology, Immunology and Neurosciencies, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Anibal Miranda
- Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
| | - Esther Aguilar
- Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
| | - Neus Agell
- Department of Cell Biology, Immunology and Neurosciencies, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Oriol Bachs
- Department of Cell Biology, Immunology and Neurosciencies, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Jaime Rubio-Martinez
- Department of Physical Chemistry, Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Maria Dolors Pujol
- Department of Pharmacology and Therapeutic Chemistry, CSIC Associated Unit, Faculty of Pharmacy, Universitat de Barcelona, Joan XXIII, s/n, 08028 Barcelona, Spain
| | - Wai-Nang P. Lee
- Department of Pediatrics, Los Angeles Biomedical Research Institute at the Harbor-UCLA Medical Center, RB1, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Silvia Marin
- Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
| |
Collapse
|
13
|
Yan X, Chen H, Lu X, Wang F, Xu W, Jin H, Zhu P. Fascaplysin exert anti-tumor effects through apoptotic and anti-angiogenesis pathways in sarcoma mice model. Eur J Pharm Sci 2011; 43:251-9. [PMID: 21569843 DOI: 10.1016/j.ejps.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/17/2011] [Accepted: 04/24/2011] [Indexed: 11/17/2022]
Abstract
Previous studies indicated that fascaplysin derived from marine sponge can induce tumor cell death by apoptosis and possesses anti-angiogenesis activity. In order to verify these two effects in animal model and to identify action mechanisms, we established a sarcoma mice model, and treated mice with fascaplysin for 10 days. The tumor tissues were examined morphologically and immunohistochemically. The differential gene expression was also investigated by mRNA array. Fascaplysin treatment resulted in a significant suppression of tumor growth. Typical apoptotic phenomena were observed by transmission electron microscope and histological detection. Tissue sections were stained with monoclonal antibody directed to proliferating cell nuclear antigen (PCNA) and CD31. The decreased PCNA and CD31 antigen staining indicate the reduction of tumor cell proliferation and tumor vasculature property of fascaplysin in vivo. Microarrays were used to examine the gene expression profiles of tumors on CapitalBio mouse genome oligo array. The regulated genes analyzed from the expression level showed overlapping gene ontology (GO) categories and pathway mapping. Our findings indicate that cell cycle arrest, apoptosis, regulation of actin cytoskeleton, and cell adhesion all play important roles in the onset of fascaplysin. Detailed analysis by real time PCR of key genes confirmed the experimental results of microarrays. From these findings, it can be considered that fascaplysin can inhibit the growth of S180 cell implanted tumor, and the action mechanisms may involve in apoptosis, anti-angiogenesis, or cell cycle arrest.
Collapse
Affiliation(s)
- Xiaojun Yan
- Ningbo University, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
CDK-mediated regulation of cell functions via c-Jun phosphorylation and AP-1 activation. PLoS One 2011; 6:e19468. [PMID: 21559334 PMCID: PMC3084876 DOI: 10.1371/journal.pone.0019468] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/30/2011] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) and their targets have been primarily associated with regulation of cell-cycle progression. Here we identify c-Jun, a transcription factor involved in the regulation of a broad spectrum of cellular functions, as a newly recognized CDK substrate. Using immune cells from mouse and human, and several complementary in vitro and in vivo approaches including dominant negative protein expression, pharmacologic inhibitors, kinase assays and CDK4 deficient cells, we demonstrate the ability of CDK4 to phosphorylate c-Jun. Additionally, the activity of AP-1, a ubiquitous transcription factor containing phosphorylated c-Jun as a subunit, was inhibited by abrogating CDK4. Surprisingly, the regulation of c-Jun phosphorylation by CDK4 occurred in non-dividing cells, indicating that this pathway is utilized for cell functions that are independent of proliferation. Our studies identify a new substrate for CDK4 and suggest a mechanism by which CDKs can regulate multiple cellular activation functions, not all of which are directly associated with cell cycle progression. These findings point to additional roles of CDKs in cell signaling and reveal potential implications for therapeutic manipulations of this kinase pathway.
Collapse
|
15
|
Fascaplysin-inspired diindolyls as selective inhibitors of CDK4/cyclin D1. Bioorg Med Chem 2009; 17:6073-84. [DOI: 10.1016/j.bmc.2009.06.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 01/10/2023]
|
16
|
Lei B, Xi L, Li J, Liu H, Yao X. Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4. Anal Chim Acta 2009; 644:17-24. [DOI: 10.1016/j.aca.2009.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/23/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|
17
|
Freemantle SJ, Liu X, Feng Q, Galimberti F, Blumen S, Sekula D, Kitareewan S, Dragnev KH, Dmitrovsky E. Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem 2008; 102:869-77. [PMID: 17868090 DOI: 10.1002/jcb.21519] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer is characterized by uncontrolled cell division resulting from multiple mutagenic events. Cancer chemoprevention strategies aim to inhibit or reverse these events using natural or synthetic pharmacologic agents. Ideally, this restores normal growth control mechanisms. Diverse classes of compounds have been identified with chemopreventive activity. What unites many of them is an ability to inhibit the cell cycle by specifically modulating key components. This delays division long enough for cells to respond to mutagenic damage. In some cases, damage is repaired and in others cellular damage is sufficient to trigger apoptosis. It is now known that pathways responsible for targeting G1 cyclins for proteasomal degradation can be engaged pharmacologically. Emergence of induced cyclin degradation as a target for cancer therapy and chemoprevention in pre-clinical models is discussed in this article. Evidence for cyclin D1 as a molecular pharmacologic target and biological marker for clinical response is based on experience of proof of principle trials.
Collapse
Affiliation(s)
- Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|