1
|
De Maria A, Nieto-Domínguez M, Nikel PI. Synthesis of fluorinated amino acids by low-specificity, promiscuous aldolases coupled to in situ fluorodonor generation. Methods Enzymol 2024; 696:199-229. [PMID: 38658080 DOI: 10.1016/bs.mie.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.
Collapse
Affiliation(s)
- Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Haas R, Nikel PI. Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends Biotechnol 2023; 41:27-45. [PMID: 35786519 DOI: 10.1016/j.tibtech.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
The relatively narrow spectrum of chemical elements within the microbial 'biochemical palate' limits the reach of biotechnology, because several added-value compounds can only be produced with traditional organic chemistry. Synthetic biology offers enabling tools to tackle this issue by facilitating 'biologization' of non-canonical chemical atoms. The interplay between xenobiology and synthetic metabolism multiplies routes for incorporating nonbiological atoms into engineered microbes. In this review, we survey natural assimilation routes for elements beyond the essential biology atoms [i.e., carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)], discussing how these mechanisms could be repurposed for biotechnology. Furthermore, we propose a computational framework to identify chemical elements amenable to biologization, ranking reactions suitable to build synthetic metabolism. When combined and deployed in robust microbial hosts, these approaches will offer sustainable alternatives for smart chemical production.
Collapse
Affiliation(s)
- Robert Haas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Wu L, Tong MH, Kyeremeh K, Deng H. Identification of 5-Fluoro-5-Deoxy-Ribulose as a Shunt Fluorometabolite in Streptomyces sp. MA37. Biomolecules 2020; 10:biom10071023. [PMID: 32664266 PMCID: PMC7408626 DOI: 10.3390/biom10071023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
A fluorometabolite, 5-fluoro-5-deoxy-D-ribulose (5-FDRul), from the culture broth of the soil bacterium Streptomyces sp. MA37, was identified through a combination of genetic manipulation, chemo-enzymatic synthesis and NMR comparison. Although 5-FDRul has been chemically synthesized before, it was not an intermediate or a shunt product in previous studies of fluorometalism in S. cattleya. Our study of MA37 demonstrates that 5-FDRul is a naturally occurring fluorometabolite, rendering it a new addition to this rare collection of natural products. The genetic inactivation of key biosynthetic genes involved in the fluorometabolisms in MA37 resulted in the increased accumulation of unidentified fluorometabolites as observed from 19F-NMR spectral comparison among the wild type (WT) of MA37 and the mutated variants, providing evidence of the presence of other new biosynthetic enzymes involved in the fluorometabolite pathway in MA37.
Collapse
Affiliation(s)
- Linrui Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
| | - Ming Him Tong
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56 Legon-Accra, Ghana;
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
- Correspondence:
| |
Collapse
|
5
|
Wu L, Deng H. Defluorination of 4-fluorothreonine by threonine deaminase. Org Biomol Chem 2020; 18:6236-6240. [DOI: 10.1039/d0ob01358g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Threonine deaminase from E. coli catalyses defluorination on 4-fluorothreonine.
Collapse
Affiliation(s)
- Linrui Wu
- Department of Chemistry
- University of Aberdeen
- Aberdeen AB24 3UE
- UK
| | - Hai Deng
- Department of Chemistry
- University of Aberdeen
- Aberdeen AB24 3UE
- UK
| |
Collapse
|
6
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
7
|
Carvalho MF, Oliveira RS. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit Rev Biotechnol 2017; 37:880-897. [PMID: 28049355 DOI: 10.1080/07388551.2016.1267109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorinated compounds are finding increasing uses in several applications. They are employed in almost all areas of modern society. These compounds are all produced by chemical synthesis and their abundance highly contrasts with fluorinated molecules of natural origin. To date, only some plants and a handful of actinomycetes species are known to produce a small number of fluorinated compounds that include fluoroacetate (FA), some ω-fluorinated fatty acids, nucleocidin, 4-fluorothreonine (4-FT), and the more recently identified (2R3S4S)-5-fluoro-2,3,4-trihydroxypentanoic acid. This largely differs from other naturally produced halogenated compounds, which totals more than 5000. The mechanisms underlying biological fluorination have been uncovered after discovering the first actinomycete species, Streptomyces cattleya, that is capable of producing FA and 4-FT, and a fluorinase has been identified as the enzyme responsible for the formation of the C-F bond. The discovery of this enzyme has opened new perspectives for the biotechnological production of fluorinated compounds and many advancements have been achieved in its application mainly as a biocatalyst for the synthesis of [18F]-labeled radiotracers for medical imaging. Natural fluorinated compounds may also be derived from abiogenic sources, such as volcanoes and rocks, though their concentrations and production mechanisms are not well known. This review provides an outlook of what is currently known about fluorinated compounds with natural origin. The paucity of these compounds and the biological mechanisms responsible for their production are addressed. Due to its relevance, special emphasis is given to the discovery, characterization and biotechnological potential of the unique fluorinase enzyme.
Collapse
Affiliation(s)
- Maria F Carvalho
- a CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Porto , Portugal
| | - Rui S Oliveira
- b Centre for Functional Ecology, Department of Life Sciences , University of Coimbra , Coimbra , Portugal.,c Department of Environmental Health , Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto , Porto , Portugal
| |
Collapse
|
8
|
Walker MC, Chang MCY. Natural and engineered biosynthesis of fluorinated natural products. Chem Soc Rev 2015; 43:6527-36. [PMID: 24776946 DOI: 10.1039/c4cs00027g] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both natural products and synthetic organofluorines play important roles in the discovery and design of pharmaceuticals. The combination of these two classes of molecules has the potential to be useful in the ongoing search for new bioactive compounds but our ability to produce site-selectively fluorinated natural products remains limited by challenges in compatibility between their high structural complexity and current methods for fluorination. Living systems provide an alternative route to chemical fluorination and could enable the production of organofluorine natural products through synthetic biology approaches. While the identification of biogenic organofluorines has been limited, the study of the native organisms and enzymes that utilize these compounds can help to guide efforts to engineer the incorporation of this unusual element into complex pharmacologically active natural products. This review covers recent advances in understanding both natural and engineered production of organofluorine natural products.
Collapse
Affiliation(s)
- Mark C Walker
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, 125 Lewis, Berkeley, CA 94720-1460, USA.
| | | |
Collapse
|
9
|
Odar C, Winkler M, Wiltschi B. Fluoro amino acids: A rarity in nature, yet a prospect for protein engineering. Biotechnol J 2015; 10:427-46. [DOI: 10.1002/biot.201400587] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
|
10
|
Ma L, Bartholome A, Tong MH, Qin Z, Yu Y, Shepherd T, Kyeremeh K, Deng H, O'Hagan D. Identification of a fluorometabolite from Streptomyces sp. MA37: (2 R3 S4 S)-5-fluoro-2,3,4-trihydroxypentanoic acid. Chem Sci 2015; 6:1414-1419. [PMID: 29861965 PMCID: PMC5947533 DOI: 10.1039/c4sc03540b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/26/2014] [Indexed: 01/19/2023] Open
Abstract
(2R3S4S)-5-Fluoro-2,3,4-trihydroxypentanoic acid (5-FHPA) has been discovered as a new fluorometabolite in the soil bacterium Streptomyces sp. MA37. Exogenous addition of 5-fluoro-5-deoxy-d-ribose (5-FDR) into the cell free extract of MA37 demonstrated that 5-FDR was an intermediate to a range of unidentified fluorometabolites, distinct from fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Bioinformatics analysis allowed identification of a gene cluster (fdr), encoding a pathway to the biosynthesis of 5-FHPA. Over-expression and in vitro assay of FdrC indicated that FdrC is a NAD+ dependent dehydrogenase responsible for oxidation of 5-FDR into 5-fluoro-5-deoxy-lactone, followed by hydrolysis to 5-FHPA. The identity of 5-FHPA in the fermentation broth was confirmed by synthesis of a reference compound and then co-correlation by 19F-NMR and GC-MS analysis. The occurrence of 5-FHPA proves the existence of a new fluorometabolite pathway.
Collapse
Affiliation(s)
- Long Ma
- EaStChem School of Chemistry , University of St Andrews , North Haugh , St Andrews KY169ST , UK .
| | - Axel Bartholome
- EaStChem School of Chemistry , University of St Andrews , North Haugh , St Andrews KY169ST , UK .
| | - Ming Him Tong
- Marine Biodiscovery Centre , Department of Chemistry , University of Aberdeen , Meston Walk , Aberdeen AB24 3UE , UK .
| | - Zhiwei Qin
- Marine Biodiscovery Centre , Department of Chemistry , University of Aberdeen , Meston Walk , Aberdeen AB24 3UE , UK .
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) , School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , P. R. China
| | - Thomas Shepherd
- The James Hutton Institute , Invergowrie , Dundee , DD2 5DA , UK
| | - Kwaku Kyeremeh
- Department of Chemistry , University of Ghana , FGO Torto Building , Legon , Ghana
| | - Hai Deng
- Marine Biodiscovery Centre , Department of Chemistry , University of Aberdeen , Meston Walk , Aberdeen AB24 3UE , UK .
| | - David O'Hagan
- EaStChem School of Chemistry , University of St Andrews , North Haugh , St Andrews KY169ST , UK .
| |
Collapse
|
11
|
O'Hagan D, Deng H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 2014; 115:634-49. [PMID: 25253234 DOI: 10.1021/cr500209t] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David O'Hagan
- EaStChem School of Chemistry, University of St Andrews , North Haugh, St Andrews KY169ST, United Kingdom
| | | |
Collapse
|
12
|
Sergeev ME, Morgia F, Javed MR, Doi M, Keng PY. Enzymatic radiofluorination: Fluorinase accepts methylaza-analog of SAM as substrate for FDA synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
|
14
|
Insights into fluorometabolite biosynthesis in Streptomyces cattleya DSM46488 through genome sequence and knockout mutants. Bioorg Chem 2012; 44:1-7. [PMID: 22858315 DOI: 10.1016/j.bioorg.2012.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/20/2012] [Indexed: 11/20/2022]
Abstract
Streptomyces cattleya DSM 46488 is unusual in its ability to biosynthesise fluorine containing natural products, where it can produce fluoroacetate and 4-fluorothreonine. The individual enzymes involved in fluorometabolite biosynthesis have already been demonstrated in in vitro investigations. Candidate genes for the individual biosynthetic steps were located from recent genome sequences. In vivo inactivation of individual genes including those encoding the S-adenosyl-l-methionine:fluoride adenosyltransferase (fluorinase, SCATT_41540), 5'-fluoro-5'-deoxyadenosine phosphorylase (SCATT_41550), fluoroacetyl-CoA thioesterase (SCATT_41470), 5-fluoro-5-deoxyribose-1-phosphate isomerase (SCATT_20080) and a 4-fluorothreonine acetaldehyde transaldolase (SCATT_p11780) confirm that they are essential for fluorometabolite production. Notably gene disruption of the transaldolase (SCATT_p11780) resulted in a mutant which could produce fluoroacetate but was blocked in its ability to biosynthesise 4-fluorothreonine, revealing a branchpoint role for the PLP-transaldolase.
Collapse
|
15
|
Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol 2011; 193:5055-6. [PMID: 21868806 DOI: 10.1128/jb.05583-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces cattleya, a producer of the antibiotics thienamycin and cephamycin C, is one of the rare bacteria known to synthesize fluorinated metabolites. The genome consists of two linear replicons. The genes involved in fluorine metabolism and in the biosynthesis of the antibiotic thienamycin were mapped on both replicons.
Collapse
|
16
|
Fluorinase: a tool for the synthesis of 18F-labeled sugars and nucleosides for PET. Future Med Chem 2009; 1:865-73. [DOI: 10.4155/fmc.09.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is an increasing interest in the preparation of 18F-labeled radiopharmaceuticals with potential applications in PET for medicinal imaging. Appropriate synthetic methods require a quick and efficient route in which to incorporate the 18F into a ligand, due to the relatively short half-life of the 18F isotope. Enzymatic methods are rare in this area; however, the discovery of a fluorinating enzyme from Streptomyces cattleya (EC 2.5.1.63) has opened up the possibility of the enzymatic synthesis and formation of C-18F bonds from the [18F]fluoride ion. In this article, the development of enzymatic preparations of 18F-labeled sugars and nucleosides as potential radiotracers using the fluorinase from S. cattleya for PET applications is reviewed. Enzymatic reactions are not traditional in PET synthesis, but this enzyme has some attractive features. The enzyme is available in an overexpressed form from Escherichia coli and it is relatively stable and can be easily purified and manipulated. Most notably, it utilizes [18F] fluoride, the form of the isotope normally generated by the cyclotron and usually in very high specific radioactivity. The disadvantage with the enzyme is that it is substrate specific; however, when the fluorinase is used in combination biotransformations with a second or third enzyme, then a range of radiolabeled nucleosides and ribose sugars can be prepared. The fluorinase enzyme has emerged as a curiosity from biosynthesis studies, but it now has some potential as a new catalyst for 18F incorporation for PET syntheses. The focus is now on delivering a user-friendly catalyst to the PET synthesis community and establishing a clinical role for some of the 18F-labeled molecules available using this technology.
Collapse
|
17
|
Deng H, O'Hagan D. The fluorinase, the chlorinase and the duf-62 enzymes. Curr Opin Chem Biol 2009; 12:582-92. [PMID: 18675376 DOI: 10.1016/j.cbpa.2008.06.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
The fluorinase from Streptomyces cattleya and chlorinase from Salinispora tropica have a commonality in that they mediate nucleophilic reactions of their respective halide ions to the C-5' carbon of S-adenosyl-L-methionine (SAM). These enzyme reactions fall into the relatively small group of S(N)2 substitution reactions found in enzymology. These enzymes have some homology to a larger class of proteins expressed by the duf-62 gene, of which around 200 representatives have been sequenced and deposited in databases. The duf-62 genes express a protein which mediates a hydrolytic cleavage of SAM to generate adenosine and L-methionine. Superficially this enzyme operates very similarly to the halogenases in that water/hydroxide replaces the halide ion. However structural examination of the duf-62 gene product reveals a very different organisation of the active site suggesting a novel mechanism for water activation.
Collapse
Affiliation(s)
- Hai Deng
- University of St Andrews, School of Chemistry and Centre for Biomolecular Sciences, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
18
|
Deng H, Cross SM, McGlinchey RP, Hamilton JT, O'Hagan D. In Vitro Reconstituted Biotransformation of 4-Fluorothreonine from Fluoride Ion: Application of the Fluorinase. ACTA ACUST UNITED AC 2008; 15:1268-76. [DOI: 10.1016/j.chembiol.2008.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/13/2008] [Accepted: 10/16/2008] [Indexed: 11/16/2022]
|
19
|
Murphy CD, Quirke S, Balogun O. Degradation of fluorobiphenyl byPseudomonas pseudoalcaligenesKF707. FEMS Microbiol Lett 2008; 286:45-9. [DOI: 10.1111/j.1574-6968.2008.01243.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Eustáquio AS, Moore BS. Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew Chem Int Ed Engl 2008; 47:3936-8. [PMID: 18407559 DOI: 10.1002/anie.200800177] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra S Eustáquio
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0204, USA
| | | |
Collapse
|
21
|
|
22
|
Eustáquio A, Moore B. Mutasynthesis of Fluorosalinosporamide, a Potent and Reversible Inhibitor of the Proteasome. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|