1
|
Saez DA, Vogt-Geisse S, Vöhringer-Martinez E. Ene-adducts from 1,4-dihydropyridines and α,β-unsaturated nitriles: asynchronous transition states displaying aromatic features. Org Biomol Chem 2022; 20:8662-8671. [DOI: 10.1039/d2ob00989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covalent adducts between 1,4-ditrimethylsilyl-1,4-dihydropyridine and α,β-unsaturated nitriles are formed through ionic or Ene mechanisms modulated by environmental or structural features, sharing common transition states with aromatic properties.
Collapse
Affiliation(s)
- David Adrian Saez
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Stefan Vogt-Geisse
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Medina FE, Ramos MJ, Fernandes PA. Complexities of the Reaction Mechanisms of CC Double Bond Reduction in Mammalian Fatty Acid Synthase Studied with Quantum Mechanics/Molecular Mechanics Calculations. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fabiola E. Medina
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Four amino acids define the CO 2 binding pocket of enoyl-CoA carboxylases/reductases. Proc Natl Acad Sci U S A 2019; 116:13964-13969. [PMID: 31243147 PMCID: PMC6628652 DOI: 10.1073/pnas.1901471116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carboxylases capture and convert CO2, which makes them key enzymes in photosynthesis and the global carbon cycle. However, the question how enzymes bind atmospheric CO2 is still unsolved. We studied enoyl-CoA carboxylases/reductases (Ecrs), the fastest CO2-fixing enzymes in nature, using structural biology, biochemistry, and advanced computational methods. Ecrs create a highly specific CO2-binding pocket with 4 amino acids at the active site. The pocket controls the fate of the gaseous molecule during catalysis and shields the catalytic center from oxygen and water. This exquisite control makes Ecrs highly efficient carboxylases outcompeting RuBisCO, the key enzyme of photosynthesis, by an order of magnitude. Our findings define the atomic framework for the future development of CO2-converting catalysts in biology and chemistry. Carboxylases are biocatalysts that capture and convert carbon dioxide (CO2) under mild conditions and atmospheric concentrations at a scale of more than 400 Gt annually. However, how these enzymes bind and control the gaseous CO2 molecule during catalysis is only poorly understood. One of the most efficient classes of carboxylating enzymes are enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RuBisCO in catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated the interactions of CO2 within the active site of Ecr from Kitasatospora setae. Combining experimental biochemistry, protein crystallography, and advanced computer simulations we show that 4 amino acids, N81, F170, E171, and H365, are required to create a highly efficient CO2-fixing enzyme. Together, these 4 residues anchor and position the CO2 molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a highly ordered water molecule plays an important role in an active site that is otherwise carefully shielded from water, which is detrimental to CO2 fixation. Altogether, our study reveals unprecedented molecular details of selective CO2 binding and C–C-bond formation during the catalytic cycle of nature’s most efficient CO2-fixing enzyme. This knowledge provides the basis for the future development of catalytic frameworks for the capture and conversion of CO2 in biology and chemistry.
Collapse
|
5
|
Jensen AW, Mohanty DK, Dilling WL. The growing relevance of biological ene reactions. Bioorg Med Chem 2019; 27:686-691. [PMID: 30709643 DOI: 10.1016/j.bmc.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 11/26/2022]
Abstract
The ene reaction involves the addition of an 'ene' to an 'enophile.' The retro-ene reaction is the reverse of the ene reaction. In recent years various biological molecules have been found to form covalent intermediates (ene-adducts) that might be the result of an ene reactions. Such adducts have been characterized or implicated for dihydropyridines and pyridininum cofactors derived from vitamin B3, such as the reduced and oxidized forms of nicotinamide adenine dinucleotide (NADH/NAD); flavin cofactors derived from vitamin B2, such as flavin adenine dinucleotide, FAD, and flavin mononucleotide, FMN; vitamin C; the oxime intermediate of nitric oxide synthase; tyrosine; and other biomolecules. Given the ubiquitous nature of these cofactors, it might be speculated that the formation of ene-adducts is a more common principle in biochemistry.
Collapse
Affiliation(s)
- Anton W Jensen
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48858, USA.
| | - Dillip K Mohanty
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48858, USA.
| | - Wendell L Dilling
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48858, USA.
| |
Collapse
|
6
|
Vögeli B, Rosenthal RG, Stoffel GMM, Wagner T, Kiefer P, Cortina NS, Shima S, Erb TJ. InhA, the enoyl-thioester reductase from Mycobacterium tuberculosis forms a covalent adduct during catalysis. J Biol Chem 2018; 293:17200-17207. [PMID: 30217823 PMCID: PMC6222099 DOI: 10.1074/jbc.ra118.005405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/09/2018] [Indexed: 11/06/2022] Open
Abstract
The enoyl-thioester reductase InhA catalyzes an essential step in fatty acid biosynthesis of Mycobacterium tuberculosis and is a key target of antituberculosis drugs to combat multidrug-resistant M. tuberculosis strains. This has prompted intense interest in the mechanism and intermediates of the InhA reaction. Here, using enzyme mutagenesis, NMR, stopped-flow spectroscopy, and LC-MS, we found that the NADH cofactor and the CoA thioester substrate form a covalent adduct during the InhA catalytic cycle. We used the isolated adduct as a molecular probe to directly access the second half-reaction of the catalytic cycle of InhA (i.e. the proton transfer), independently of the first half-reaction (i.e. the initial hydride transfer) and to assign functions to two conserved active-site residues, Tyr-158 and Thr-196. We found that Tyr-158 is required for the stereospecificity of protonation and that Thr-196 is partially involved in hydride transfer and protonation. The natural tendency of InhA to form a covalent C2-ene adduct calls for a careful reconsideration of the enzyme's reaction mechanism. It also provides the basis for the development of effective tools to study, manipulate, and inhibit the catalytic cycle of InhA and related enzymes of the short-chain dehydrogenase/reductase (SDR) superfamily. In summary, our work has uncovered the formation of a covalent adduct during the InhA catalytic cycle and identified critical residues required for catalysis, providing further insights into the InhA reaction mechanism important for the development of antituberculosis drugs.
Collapse
Affiliation(s)
- Bastian Vögeli
- From the Departments of Biochemistry and Synthetic Metabolism and
| | | | | | - Tristan Wagner
- Microbial Protein Structure, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany and
| | - Patrick Kiefer
- the Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Seigo Shima
- Microbial Protein Structure, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany and
| | - Tobias J Erb
- From the Departments of Biochemistry and Synthetic Metabolism and
| |
Collapse
|
7
|
Sandor R, Slanina J, Midlik A, Sebrlova K, Novotna L, Carnecka M, Slaninova I, Taborsky P, Taborska E, Pes O. Sanguinarine is reduced by NADH through a covalent adduct. PHYTOCHEMISTRY 2018; 145:77-84. [PMID: 29107809 DOI: 10.1016/j.phytochem.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Sanguinarine is a benzo[c]phenanthridine alkaloid with interesting cytotoxic properties, such as induction of oxidative DNA damage and very rapid apoptosis, which is not mediated by p53-dependent signaling. It has been previously documented that sanguinarine is reduced with NADH even in absence of any enzymes while being converted to its dihydro form. We found that the dark blue fluorescent species, observed during sanguinarine reduction with NADH and misinterpreted by Matkar et al. (Arch. Biochem. Biophys. 2008, 477, 43-52) as an anionic form of the alkaloid, is a covalent adduct formed by the interaction of NADH and sanguinarine. The covalent adduct is then converted slowly to the products, dihydrosanguinarine and NAD+, in the second step of reduction. The product of the reduction, dihydrosanguinarine, was continually re-oxidized by the atmospheric oxygen back to sanguinarine, resulting in further reacting with NADH and eventually depleting all NADH molecules. The ability of sanguinarine to diminish the pool of NADH and NADPH is further considered when explaining the sanguinarine-induced apoptosis in living cells.
Collapse
Affiliation(s)
- Roman Sandor
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jiri Slanina
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Adam Midlik
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Brno, Kamenice 5, 62500 Brno, Czech Republic; Central European Institute of Technology CEITEC MU, Kamenice 5, 62500 Brno, Czech Republic
| | - Kristyna Sebrlova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Lucie Novotna
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Martina Carnecka
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Iva Slaninova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Eva Taborska
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Ondrej Pes
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
8
|
Trinchera P, Sun W, Smith JE, Palomas D, Crespo-Otero R, Jones CR. Intermolecular Aryne Ene Reaction of Hantzsch Esters: Stable Covalent Ene Adducts from a 1,4-Dihydropyridine Reaction. Org Lett 2017; 19:4644-4647. [PMID: 28817286 DOI: 10.1021/acs.orglett.7b02272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Piera Trinchera
- School of Biological and
Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Weitao Sun
- School of Biological and
Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jane E. Smith
- School of Biological and
Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - David Palomas
- School of Biological and
Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Rachel Crespo-Otero
- School of Biological and
Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Christopher R. Jones
- School of Biological and
Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
9
|
Moore JM, Hall JM, Dilling WL, Jensen AW, Squattrito PJ, Giolando P, Kirschbaum K. N-Benzylnicotinamide and N-benzyl-1,4-dihydronicotinamide: useful models for NAD + and NADH. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2017; 73:531-535. [PMID: 28677604 DOI: 10.1107/s2053229617008877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 11/10/2022]
Abstract
3-Aminocarbonyl-1-benzylpyridinium bromide (N-benzylnicotinamide, BNA), C13H13N2O+·Br-, (I), and 1-benzyl-1,4-dihydropyridine-3-carboxamide (N-benzyl-1,4-dihydronicotinamide, rBNA), C13H14N2O, (II), are valuable model compounds used to study the enzymatic cofactors NAD(P)+ and NAD(P)H. BNA was crystallized successfully and its structure determined for the first time, while a low-temperature high-resolution structure of rBNA was obtained. Together, these structures provide the most detailed view of the reactive portions of NAD(P)+ and NAD(P)H. The amide group in BNA is rotated 8.4 (4)° out of the plane of the pyridine ring, while the two rings display a dihedral angle of 70.48 (17)°. In the rBNA structure, the dihydropyridine ring is essentially planar, indicating significant delocalization of the formal double bonds, and the amide group is coplanar with the ring [dihedral angle = 4.35 (9)°]. This rBNA conformation may lower the transition-state energy of an ene reaction between a substrate double bond and the dihydropyridine ring. The transition state would involve one atom of the double bond binding to the carbon ortho to both the ring N atom and the amide substituent of the dihydropyridine ring, while the other end of the double bond accepts an H atom from the methylene group para to the N atom.
Collapse
Affiliation(s)
- John M Moore
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Jasmine M Hall
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Wendell L Dilling
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Anton W Jensen
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Philip J Squattrito
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Patrick Giolando
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, USA
| | - Kristin Kirschbaum
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
10
|
|
11
|
The use of ene adducts to study and engineer enoyl-thioester reductases. Nat Chem Biol 2015; 11:398-400. [DOI: 10.1038/nchembio.1794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/09/2015] [Indexed: 11/08/2022]
|
12
|
Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes. Nat Chem Biol 2013; 10:50-5. [PMID: 24240506 DOI: 10.1038/nchembio.1385] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/01/2013] [Indexed: 11/08/2022]
Abstract
The pyridine nucleotides NADH and NADPH (NAD(P)H) are ubiquitous redox coenzymes that are present in all living cells. Although about 16% of all characterized enzymes use pyridine nucleotides as hydride donors or acceptors during catalysis, a detailed understanding of how the hydride is transferred between NAD(P)H and the corresponding substrate is lacking for many enzymes. Here we present evidence for a new mechanism that operates during enzymatic hydride transfers using crotonyl-CoA carboxylase/reductase (Ccr) as a case study. We observed a covalent ene intermediate between NADPH and the substrate, crotonyl-CoA, using NMR, high-resolution MS and stopped-flow spectroscopy. Preparation of the ene intermediate further allowed direct access to the catalytic cycle of other NADPH-dependent enzymes-including those from type II fatty acid biosynthesis-in an unprecedented way, suggesting that formation of NAD(P)H ene intermediates is a more general principle in catalysis.
Collapse
|
13
|
|