1
|
R R, Thakur P, Kumar N, Saini N, Banerjee S, Singh RP, Patel M, Kumaran S. Multi-oligomeric and catalytically compromised serine acetyltransferase and cysteine regulatory complex of Mycobacterium tuberculosis. Biochimie 2024; 221:110-124. [PMID: 38311199 DOI: 10.1016/j.biochi.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
l-cysteine, a primary building block of mycothiol, plays an essential role in the defense mechanism of Mycobacterium tuberculosis (Mtb). However, it is unclear how Mtb regulates cysteine biosynthesis as no study has reported the cysteine regulatory complex (CRC) in Mtb. Serine acetyltransferase (SAT) and cysteine synthase (CS) interact to form CRC. Although MtCS has been characterized well, minimal information is available on MtSAT, which synthesizes, O-acetylserine (OAS), the precursor of cysteine. This study fills the gap and provides experimental evidence for the presence of MtCRC and a non-canonical multi-oligomeric MtSAT. We employed multiple analytical methods to characterize the oligomeric and kinetic properties of MtSAT and MtCRC. Results show that MtSAT, lacking >75 N-terminal amino acids exists in three different assembly states; trimer, hexamer, and dodecamer, compared to the single hexameric state of SAT of other bacteria. While hexamers display the highest catalytic turnover, the trimer is the least active. The predominance of trimers at low physiologically relevant concentrations suggests that MtSAT displays the lowest catalytic potential known. Further, the catalytic potential of MtSAT is also significantly reduced in CRC state, in contrast to enhanced activity of SAT in CRC of other organisms. Our study provides insights into multi-oligomeric MtSAT with reduced catalytic potential and demonstrates that both MtSAT and MtCS of Mycobacterium interact to form CRC, although with altered catalytic properties. We discuss our results in light of the altered biochemistry of the last step of canonical sulfate-dependent cysteine biosynthesis of Mycobacterium.
Collapse
Affiliation(s)
- Rahisuddin R
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Payal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Narender Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Neha Saini
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Shrijta Banerjee
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Ravi Pratap Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Madhuri Patel
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - S Kumaran
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
2
|
Gutiérrez-Fernández J, Hersleth HP, Hammerstad M. The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria. Acta Crystallogr D Struct Biol 2024; 80:181-193. [PMID: 38372589 PMCID: PMC10910545 DOI: 10.1107/s205979832400113x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.
Collapse
Affiliation(s)
- Javier Gutiérrez-Fernández
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Hans-Petter Hersleth
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
3
|
Piller T, De Vooght L, Gansemans Y, Van Nieuwerburgh F, Cos P. Mycothione reductase as a potential target in the fight against Mycobacterium abscessus infections. mSphere 2024; 9:e0066923. [PMID: 38085034 PMCID: PMC10826361 DOI: 10.1128/msphere.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/31/2024] Open
Abstract
While infections caused by Mycobacterium abscessus complex (MABC) are rising worldwide, the current treatment of these infections is far from ideal due to its numerous shortcomings thereby increasing the urge for novel drug targets. In this study, mycothione reductase (Mtr) was evaluated for its potential as a drug target for MABC infections since it is a key enzyme needed in the recycling of mycothiol, the main low-molecular-weight thiol protecting the bacteria against reactive oxygen species and other reactive intermediates. First, a Mab∆mtr mutant strain was generated, lacking mtr expression. Next, the in vitro sensitivity of Mab∆mtr to oxidative stress and antimycobacterial drugs was determined. Finally, we evaluated the intramacrophage survival and the virulence of Mab∆mtr in Galleria mellonella larvae. Mab∆mtr demonstrated a 39.5-fold reduction in IC90 when exposed to bedaquiline in vitro. Furthermore, the Mab∆mtr mutant showed a decreased ability to proliferate inside macrophages and larvae, suggesting that Mtr plays an important role during MABC infection. Altogether, these findings support the assumption of Mtr being a potential target for antimycobacterial drugs.IMPORTANCEMycobacterium abscessus complex (MABC) is a group of bacteria causing a serious public health problem worldwide due to its ability to cause progressive disease, its highly resistant profile against various antibiotics, and its lengthy treatment. Therefore, new drugs are needed to alleviate antibiotic resistance and reduce the length of the current treatment. A potential new target for new antibiotics is mycothione reductase (Mtr), an important enzyme belonging to a pathway that protects the bacteria against harmful conditions. Our research created a bacterium deficient of mtr by using advanced genetic techniques and demonstrated that mtr-deficient bacteria have a decreased ability to multiply during infection. Furthermore, we show evidence that currently used antibiotics combined with mtr deficiency can lead to a better treatment of MABC infection. Altogether, our results validate Mtr as a potential new target and suggest that Mtr plays a role during MABC infection.
Collapse
Affiliation(s)
- T. Piller
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - L. De Vooght
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Y. Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F. Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P. Cos
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Rahul Reddy MB, Krishnasamy SK, Kathiravan MK. Identification of novel scaffold using ligand and structure based approach targeting shikimate kinase. Bioorg Chem 2020; 102:104083. [PMID: 32745735 DOI: 10.1016/j.bioorg.2020.104083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem. It causes ill-health among millions of people each year and rank as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Shikimate kinase is one of the major enzymes targeted for TB. Most approaches to overcome TB were based on synthesis and screening of a known compounds to obtain a few representatives with desired potency. In this study, we have applied a virtual screening approach which combines ligand- and structure-based approaches to screen a large library of compounds as a starting point for the identification of new scaffolds for the development of shikimate kinase inhibitors. The combined approach has identified 2 new scaffolds as potential inhibitors of shikimate kinase. To prove the approach, few of the molecules and their derivatives, a total of 17 compounds, were synthesized. The compounds were tested for biological activity and shows moderate activity against shikimate kinase. The shikimate kinase enzyme inhibition study reveals that the compounds showed inhibition (IC50) at concentrations of 50 µg/mL (Compounds 21, 22, 24, 25, 26, 27, 30, 32, 34) and 25 µg/mL (14, 19, 23, 31, 33).
Collapse
Affiliation(s)
- M B Rahul Reddy
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu 603203, India
| | | | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu 603203, India; 209, Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu 603203, India
| |
Collapse
|
5
|
B S, M K K. Insights into structures of imidazo oxazines as potent polyketide synthase XIII inhibitors using molecular modeling techniques. J Recept Signal Transduct Res 2020; 40:313-323. [PMID: 32228125 DOI: 10.1080/10799893.2020.1742740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tuberculosis, a major global health concern, and its drug development toward the disease are too devastating to meet the clinical demands. The present work emphasizes a detailed QSAR study using QSARINS which developed descriptors favoring an excellent model equation. The best model equation generated has four variables namely AlogP, ATSc4, mindssC, and MDEC23 with statistical values R2 = 0.7406, LOF = 0.1858, CCCtr = 0.8510, Q2LOO = 0.6569, Q2LMO = 0.6286, CCCcv = 0.8037, R2ext = 0.8600, and CCCext = 0.9252. The developed QSAR model justifies that the key structural fragments highly correlate with activity. Docking the designed compounds with PKS XIII, a novel target catalyzes the formation of mycolic acids and its results distinctly improve expected antitubercular activity showing all probable interactions. Compounds were further screened for ADME analysis and toxicity.
Collapse
Affiliation(s)
- Shanthakumar B
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Kathiravan M K
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Tamil Nadu, India.,Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
6
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Guo Y, Gong W, Wang L, Guo J, Jin G, Gu G, Guo Z. Characterization and biochemical investigation of the potential inositol monophosphate phosphatase involved in bacterial mycothiol biosynthesis. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1559326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yuchuan Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Wei Gong
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Lizhen Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, USA
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Zhongwu Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
- Department of Chemistry, University of Florida, Gainesville, USA
| |
Collapse
|
8
|
Tung QN, Linzner N, Loi VV, Antelmann H. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria. Free Radic Biol Med 2018; 128:84-96. [PMID: 29454879 DOI: 10.1016/j.freeradbiomed.2018.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection conditions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-negative and Gram-positive bacteria. In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically encoded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the intracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications should be directed to compare the redox potentials among different clinical isolates of these pathogens in relation to their antibiotics resistance and to screen for new ROS-producing drugs as promising strategy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
9
|
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M. Chemistry and Redox Biology of Mycothiol. Antioxid Redox Signal 2018; 28:487-504. [PMID: 28372502 DOI: 10.1089/ars.2017.7074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. CRITICAL ISSUES Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. FUTURE DIRECTIONS Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.
Collapse
Affiliation(s)
- Aníbal M Reyes
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Brandán Pedre
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - María Inés De Armas
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Maria-Armineh Tossounian
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Rafael Radi
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Joris Messens
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Madia Trujillo
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Sci Rep 2017; 7:1195. [PMID: 28446771 PMCID: PMC5430705 DOI: 10.1038/s41598-017-01179-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols.
Collapse
|
11
|
Daletos G, Ancheeva E, Chaidir C, Kalscheuer R, Proksch P. Antimycobacterial Metabolites from Marine Invertebrates. Arch Pharm (Weinheim) 2016; 349:763-773. [DOI: 10.1002/ardp.201600128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| | - Chaidir Chaidir
- Center for Pharmaceutical and Medical Technology; Agency for the Assessment and Application Technology; Jakarta Indonesia
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| |
Collapse
|
12
|
Manabe S, Ito Y. Mycothiol synthesis by an anomerization reaction through endocyclic cleavage. Beilstein J Org Chem 2016; 12:328-33. [PMID: 26977192 PMCID: PMC4778527 DOI: 10.3762/bjoc.12.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
Mycothiol is found in Gram-positive bacteria, where it helps in maintaining a reducing intracellular environment and it plays an important role in protecting the cell from toxic chemicals. The inhibition of the mycothiol biosynthesis is considered as a treatment for tuberculosis. Mycothiol contains an α-aminoglycoside, which is difficult to prepare stereoselectively by a conventional glycosylation reaction. In this study, mycothiol was synthesized by an anomerization reaction from an easily prepared β-aminoglycoside through endocyclic cleavage.
Collapse
Affiliation(s)
- Shino Manabe
- Synthetic Cellular Chemistry Lab, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Lab, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Chitre TS, Asgaonkar KD, Miniyar PB, Dharme AB, Arkile MA, Yeware A, Sarkar D, Khedkar VM, Jha PC. Synthesis and docking studies of pyrazine-thiazolidinone hybrid scaffold targeting dormant tuberculosis. Bioorg Med Chem Lett 2016; 26:2224-8. [PMID: 27017114 DOI: 10.1016/j.bmcl.2016.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
The persistence of Mycobacterium tuberculosis (MTB) in dormant stage assists the pathogen to develop resistance against current antimycobactrial drugs. To address this issue, we report herein the synthesis of N-(4-oxo-2 substituted thiazolidin-3 yl) pyrazine-2-carbohydrazide derivatives designed by following the molecular hybridization approach using pyrazine and thiazolidenone scaffolds. The compounds were evaluated against MTB H37Ra and Mycobacterium bovis BCG in dormancy model. Most of the compounds had IC50 values in 0.3-1 μg/ml range. The active compounds were further tested for anti-proliferative activity against THP-1, Panc-1, A549, and MCF-7 cell lines using MTT assay and exhibited no significant cytotoxicity. We also report molecular docking studies using active analogs and MTB - Decaprenylphosphoryl-β-d-ribose-2'-epimerase (DprE1) to rationalize the biological activity and to provide an insight into the probable mechanism of action and binding mode of hybridized structures. The results obtained validate the use of molecular hybridization approach and also suggest that reported compounds can provide a novel pharmacophore to synthesize lead compounds against dormat MTB.
Collapse
Affiliation(s)
- T S Chitre
- AISSMS College of Pharmacy, Kennedy Road, Pune, Maharashtra, India.
| | - K D Asgaonkar
- AISSMS College of Pharmacy, Kennedy Road, Pune, Maharashtra, India
| | - P B Miniyar
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| | - A B Dharme
- AISSMS College of Pharmacy, Kennedy Road, Pune, Maharashtra, India
| | - M A Arkile
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, Maharashtra, India
| | - A Yeware
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, Maharashtra, India
| | - D Sarkar
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, Maharashtra, India
| | - V M Khedkar
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, Maharashtra, India; School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa
| | - P C Jha
- School of Chemical Sciences, Central University of Gujarat, Sector-30, Gandhinagar 38200, Gujarat, India
| |
Collapse
|
14
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|