1
|
Cao Z, Wang X, Zhang T, Fu X, Zhang F, Zhu J. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson's disease. J Enzyme Inhib Med Chem 2023; 38:2159957. [PMID: 36728713 PMCID: PMC9897792 DOI: 10.1080/14756366.2022.2159957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives was designed, synthesized and evaluated. The results revealed that representative compound 3h possessed potent and selective MAO-B inhibitory activity (IC50 = 0.062 µM), and its inhibitory mode was competitive and reversible. Additionally, 3h also displayed excellent anti-oxidative effect (ORAC = 2.27 Trolox equivalent), significant metal chelating ability and appropriate BBB permeability. Moreover, 3h exhibited good neuroprotective effect and anti-neuroinflammtory ability. These results indicated that compound 3h was a promising candidate for further development against PD.
Collapse
Affiliation(s)
- Zhongcheng Cao
- School of Pharmacy, North Sichuan Medical College, Nanchong, China,CONTACT Zhongcheng Cao School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Xingyue Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Tianlong Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianwu Fu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Fan Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, China,Jiang Zhu Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
2
|
Strzyga-Łach P, Chrzanowska A, Kiernozek-Kalińska E, Żyżyńska-Granica B, Podsadni K, Podsadni P, Bielenica A. Proapoptotic effects of halogenated bis-phenylthiourea derivatives in cancer cells. Arch Pharm (Weinheim) 2023; 356:e2300105. [PMID: 37401845 DOI: 10.1002/ardp.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.
Collapse
Affiliation(s)
- Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Katarzyna Podsadni
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Wang X, Ji G, Han X, Hao H, Liu W, Xue Q, Guo Q, Wang S, Lei K, Liu Y. Thiazolidinedione derivatives as novel GPR120 agonists for the treatment of type 2 diabetes. RSC Adv 2022; 12:5732-5742. [PMID: 35424534 PMCID: PMC8981563 DOI: 10.1039/d1ra08925k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
GPR120, also called FFAR4, is preferentially expressed in the intestines, and can be stimulated by long-chain free fatty acids to increase the secretion of glucagon-like peptide-1 (GLP-1) from intestinal endocrine cells. It is known that GLP-1, as an incretin, can promote the insulin secretion from pancreatic cells in a glucose-dependent manner. Therefore, GPR120 is a potential drug target to treat type 2 diabetes. In this study, thiazolidinedione derivatives were found to be novel potent GPR120 agonists. Compound 5g, with excellent agonistic activity, selectivity, and metabolic stability, improved oral glucose tolerance in normal C57BL/6 mice in a dose-dependent manner. Moreover, compound 5g exhibited anti-diabetic activity by promoting insulin secretion in diet-induced obese mice. In summary, compound 5g might be a promising drug candidate for the treatment of type 2 diabetes. GPR120 has emerged as an attractive target for the treatment of type 2 diabetes and obesity. Thiazolidinedione derivatives were found to be novel potent GPR120 agonists.![]()
Collapse
Affiliation(s)
- Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Guoxia Ji
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Huiran Hao
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Wenjing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Qidi Xue
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Qinghua Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Shiben Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Kang Lei
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Kale A, Kakde R, Pawar S, Thombare R. Recent Development in Substituted Benzothiazole as an Anticonvulsant Agent. Mini Rev Med Chem 2021; 21:1017-1024. [PMID: 33355052 DOI: 10.2174/1389557521666201222145236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Heterocyclic compounds and their derivatives gained more attention due to their valuable biological and pharmacological properties. Benzothiazole is a heterocyclic structure containing a bicyclic ring system with a large panel of applications. The benzothiazole is present in many new products undergoing research hoping that it possesses various biological activities. Epilepsy is a diverse group of diseases marked by neuronal excitability and hypersynchronous neuronal activity of motor, sensory or autonomic events with or without loss of consciousness. Presently, many antiepileptic drugs like lamotrigine, stiripentol tiagabine, pregabalin, felbamate, and topiramate are available and effective towards 60-80% of patients only, along with undesirable side effects, such as hepatotoxicity, gastrointestinal disturbance, drowsiness, gingival hyperplasia, and hirsutism. Thus, many attempts are still on-going to develop antiepileptic drugs with a safer profile. This review is mainly focused on the compilation of reported scientific literature data in the recent one-decade on the anticonvulsant activity of benzothiazole compounds.
Collapse
Affiliation(s)
- Amol Kale
- Department of Pharmaceutical Chemistry, Seth Govind Raghunath Sable College of Pharmacy, Saswad, Pune, Maharashtra, India
| | - Rajendra Kakde
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur Maharashtra 440001, India
| | - Smita Pawar
- Department of Pharmaceutical Chemistry, Seth Govind Raghunath Sable College of Pharmacy, Saswad, Pune, Maharashtra, India
| | - Rutuja Thombare
- Department of Pharmaceutical Chemistry, Seth Govind Raghunath Sable College of Pharmacy, Saswad, Pune, Maharashtra, India
| |
Collapse
|
5
|
Fayyaz S, Shaikh M, Gasperini D, Nolan SP, Smith AD, Choudhary MI. In vitro and in cellulo anti-diabetic activity of AuI- and AuIII-isothiourea complexes. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Gomes LR, Low JN, Pinheiro AC, de Souza MV, Wardell JL. Crystal structure, Hirshfeld surface analysis and PIXEL calculations of the three isomeric (E)-2-((pyridinylmethylidene)hydrazinyl)benzo[d]thiazoles: Occurrence of stacking interactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Shadap L, Banothu V, Pinder E, Phillips RM, Kaminsky W, Kollipara MR. In vitrobiological evaluation of half-sandwich platinum-group metal complexes containing benzothiazole moiety. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1777547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lathewdeipor Shadap
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India
| | - Venkanna Banothu
- Centre for Biotechnology (CBT), Institute of Science & Technology (IST), Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana State, India
| | - Emma Pinder
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Roger M. Phillips
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Mohan Rao Kollipara
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
8
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Sharma S, Barkat MA, Alam MS, Ansari MA, Barreto GE, Ashraf GM. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci 2020; 146:105261. [PMID: 32061655 DOI: 10.1016/j.ejps.2020.105261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 01/17/2023]
Abstract
The evidence to guide clinicians regarding rationale polytherapy with current antiepileptic drugs (AEDs) is lacking, and current practice recommendations are largely empirical. The excessive drug loading with combinatorial therapies of existing AEDs are associated with escalated neurotoxicity, and that emergence of pharmacoresistant seizures couldn't be averted. In pursuit of judicious selection of novel AEDs in combinatorial therapies with mechanism based evidences, standardized dose of raloxifene, fluoxetine, bromocriptine and their low dose combinations, were experimentally tested for their impact on maximal electroshock (MES) induced tonic hind limb extension (THLE) in mice. Hippocampal neuropeptide Y (NPY) levels, oxidative stress and histopathological studies were undertaken. The results suggest the potentiating effect of 4 mg/kg raloxifene on 14 mg/kg fluoxetine against MES induced THLE, as otherwise monotherapy with 4 mg/kg raloxifene was unable to produce an effect. The results also depicted better efficacy than carbamazepine (20 mg/kg), standard AED. Most profoundly, MES-induced significant (P < 0.001) reduction in hippocampal NPY levels, that were escalated insignificantly with the duo-drug combination, suggesting some other mechanism in mitigation of electroshock induced seizures. These results were later corroborated with assays to assess oxidative stress and neuronal damage. In conclusion, the results demonstrated the propitious therapeutic benefit of duo-drug low dose combination of drugs; raloxifene and fluoxetine, with diverse mode of actions fetching greater effectiveness in the management of generalized tonic clonic seizures (GTCS).
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia.
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Shah Nigar
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Payaz DÜ, Küçükbay FZ, Küçükbay H, Angeli A, Supuran CT. Synthesis carbonic anhydrase enzyme inhibition and antioxidant activity of novel benzothiazole derivatives incorporating glycine, methionine, alanine, and phenylalanine moieties. J Enzyme Inhib Med Chem 2019; 34:343-349. [PMID: 30734592 PMCID: PMC6327993 DOI: 10.1080/14756366.2018.1553040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023] Open
Abstract
Thirteen novel benzothiazole derivatives incorporating glycine, methionine, alanine, and phenylalanine were synthesised by facile acylation reactions through benzotriazole or DCC mediated reactions and their structures were identified by 1H-NMR, 13C-NMR, and FT-IR spectroscopic techniques and elemental analysis. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA V, and hCA XIII. Some of the synthesised compounds showed good in vitro carbonic anhydrase inhibitory properties, with inhibition constants in the micromolar level. The new amino acid benzothiazole conjugates found to be more effective against hCA V and hCA II inhibition. In vitro antioxidant activities of the novel compounds were determined by DPPH method. Most of the synthesised compounds showed moderate to low antioxidant activities compared to the control antioxidant compounds (BHA and α-tocopherol).
Collapse
Affiliation(s)
- Deniz Üzeroğlu Payaz
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey;
| | - F. Zehra Küçükbay
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey;
| | - Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey;
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Universita` Degli Studi Di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Universita` Degli Studi Di Firenze, Florence, Italy
| |
Collapse
|
10
|
Jamal Gilani S, Zaheen Hassan M, Sarim Imam S, Kala C, Prakash Dixit S. Novel benzothiazole hydrazine carboxamide hybrid scaffolds as potential in vitro GABA AT enzyme inhibitors: Synthesis, molecular docking and antiepileptic evaluation. Bioorg Med Chem Lett 2019; 29:1825-1830. [PMID: 31084949 DOI: 10.1016/j.bmcl.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022]
Abstract
In the present study, a series of newer benzothiazole derivatives containing thiazolidin-4-one (5a-g) and azetidin-2-one (6a-g), were synthesized by the cyclization of benzothiazolyl arylidene hydrazine carboxamide derivatives with thioglycolic acid and chloroacetyl chloride, respectively. Results of in vivo anticonvulsant screening revealed that compounds having 2,4-dicholoro (5c and 6c) and 4-nitro substituent (5g) at the phenyl ring have promising anticonvulsant activities without any neurotoxicity. Selected compounds were also evaluated for their in vitro GABA AT inhibition. The results indicated that compound 5c (IC50 15.26 μM) exhibited excellent activity as compared to the standard drug vigabatrin (IC50 39.72 μM) suggesting the potential of these benzothiazole analogues as new anticonvulsant agents.
Collapse
Affiliation(s)
| | | | - Syed Sarim Imam
- Glocal School of Pharmacy, Glocal University, Saharanpur, UP, India
| | - Chandra Kala
- Glocal School of Pharmacy, Glocal University, Saharanpur, UP, India
| | | |
Collapse
|
11
|
Pinheiro A, de Souza M, Lourenço M, da Costa CF, Baddeley TC, Low JN, Wardell S, Wardell JL. Synthesis, potent anti-TB activity against M. tuberculosis ATTC 27294, crystal structures and complex formation of selected 2-arylidenehydrazinylbenzothiazole derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Kothayer H, Ibrahim SM, Soltan MK, Rezq S, Mahmoud SS. Synthesis, in vivo and in silico evaluation of novel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential anticonvulsant agents. Drug Dev Res 2018; 80:343-352. [PMID: 30565722 DOI: 10.1002/ddr.21506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
In light of the pharmacophoric structural requirements for achieving anticonvulsant activity, a series of N-(1-methyl-4-oxo-2-un/substituted-1,2-dihydroquinazolin-3[4H]-yl)benzamide (4a-g) and N-(1-methyl-4-oxo-2-un/substituted-1,2-dihydroquinazolin-3[4H]-yl)-2-phenylacetamide (4h-n) derivatives were synthesized in two steps starting from the reaction of N-methyl isatoic anhydride with the appropriate hydrazide and followed by condensation with the appropriate aldehyde. The anticonvulsant activities of the synthesized compounds were evaluated according to the anticonvulsant drug development (ADD) programme protocol. Among the synthesized compounds, 4n showed promising activity in both the maximal electroshock (MES) and pentylenetetrazole (PTZ) tests with median effective dose (ED50 ) values of 40.7 and 6 mg/kg, respectively. The six most promising derivatives, 4b, 4a, 4c, 4f, 4j, and 4i, showed very low ED50 values in the PTZ test (3.1, 4.96, 8.68, 9.89, 12, and 13.53 mg/kg, respectively). All the tested compounds showed no to low neurotoxicity in the rotarod test with a wide therapeutic index. Docking studies of compound 4n suggested that GABAA binding could be the mechanism of action of these derivatives. The in silico drug likeliness parameters indicated that none of the designed compounds violate Lipinski's rule of five and that they are able to cross the blood-brain barrier. Hit, Lead & Candidate Discovery.
Collapse
Affiliation(s)
- Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Moustafa K Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Oman Pharmacy Institute, Ministry of Health, Muscat, Sultanate of Oman
| | - Samar Rezq
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shireen S Mahmoud
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Tariq S, Kamboj P, Amir M. Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch Pharm (Weinheim) 2018; 352:e1800170. [PMID: 30488989 DOI: 10.1002/ardp.201800170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022]
Abstract
Benzothiazole, a fused heterocyclic moiety, has attracted synthetic and medicinal chemists for good reasons. It is a valuable scaffold that possesses diverse biological activities, such as anticancer, anti-inflammatory, antimicrobial, antiviral, antimalarial, and anticonvulsant effects. This review mainly focusses on the recent research work on the different biological activities of benzothiazole-based compounds.
Collapse
Affiliation(s)
- Sana Tariq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Firdaus JU, Habib A, Siddiqui N, Alam O, Naim MJ, Partap S, Sahu M. Design, synthesis, and molecular docking study of benzothiazolotriazine derivatives for anticonvulsant potential. Arch Pharm (Weinheim) 2018; 351:e1800154. [DOI: 10.1002/ardp.201800154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jannat Ul Firdaus
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Anwar Habib
- Department of Medicine, HIMSR; Jamia Hamdard; New Delhi India
| | - Nadeem Siddiqui
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Mohd. Javed Naim
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Meeta Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| |
Collapse
|
15
|
Ostapiuk YV, Frolov DA, Vasylyschyn RY, Matiychuk VS. Synthesis and antitumor activities of new N-(5-benzylthiazol-2-yl)-2-(heteryl-5-ylsulfanyl)-acetamides. ACTA ACUST UNITED AC 2018. [DOI: 10.7124/bc.000971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2141-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Limban C, Missir AV, Caproiu MT, Grumezescu AM, Chifiriuc MC, Bleotu C, Marutescu L, Papacocea MT, Nuta DC. Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe₃O₄@C 18 Nanostructures for the Development of Antifungal Strategies. NANOMATERIALS 2018; 8:nano8010047. [PMID: 29342119 PMCID: PMC5791134 DOI: 10.3390/nano8010047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022]
Abstract
The continuously increasing global impact of fungal infections is requiring the rapid development of novel antifungal agents. Due to their multiple pharmacological activities, thiourea derivatives represent privileged candidates for shaping new drugs. We report here the preparation, physico-chemical characterization and bioevaluation of hybrid nanosystems based on new 2-((4-chlorophenoxy)methyl)-N-(substituted phenylcarbamo-thioyl)benzamides and Fe3O4@C18 core@shell nanoparticles. The new benzamides were prepared by an efficient method, then their structure was confirmed by spectral studies and elemental analysis and they were further loaded on Fe3O4@C18 nanostructures. Both the obtained benzamides and the resulting hybrid nanosystems were tested for their efficiency against planktonic and adherent fungal cells, as well as for their in vitro biocompatibility, using mesenchymal cells. The antibiofilm activity of the obtained benzamides was dependent on the position and nature of substituents, demonstrating that structure modulation could be a very useful approach to enhance their antimicrobial properties. The hybrid nanosystems have shown an increased efficiency in preventing the development of Candida albicans (C. albicans) biofilms and moreover, they exhibited a good biocompatibility, suggesting that Fe3O4@C18core@shell nanoparticles could represent promising nanocarriers for antifungal substances, paving the way to the development of novel effective strategies with prophylactic and therapeutic value for fighting biofilm associated C. albicans infections.
Collapse
Affiliation(s)
- Carmen Limban
- Department of Pharmaceutical Chemistry, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia No. 6, 020956 Bucharest, Romania.
| | - Alexandru Vasile Missir
- Department of Pharmaceutical Chemistry, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia No. 6, 020956 Bucharest, Romania.
| | - Miron Teodor Caproiu
- The Organic Chemistry Center of Romanian Academy "Costin D. Nenitescu" Bucharest, Splaiul Independentei, 202B, 77208 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Aleea Portocalelor No. 1-3, 060101 Bucharest, Romania.
- Research Institute of the University of Bucharest, University of Bucharest, Spl. Independentei 91-95, R-76201 Bucharest, Romania.
| | - Coralia Bleotu
- Stefan Nicolau Institute of Virology, 030304 Bucharest, Romania.
| | - Luminita Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Aleea Portocalelor No. 1-3, 060101 Bucharest, Romania.
- Research Institute of the University of Bucharest, University of Bucharest, Spl. Independentei 91-95, R-76201 Bucharest, Romania.
| | - Marius Toma Papacocea
- Department of Neurosurgery, "Sf. Pantelimon," Emergency Hospital, "Carol Davila" University of Medicine and Pharmacy, 021659 Bucharest, Romania.
| | - Diana Camelia Nuta
- Department of Pharmaceutical Chemistry, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia No. 6, 020956 Bucharest, Romania.
| |
Collapse
|
18
|
Design, synthesis and evaluation of newer 5,6-dihydropyrimidine-2(1 H )-thiones as GABA-AT inhibitors for anticonvulsant potential. Bioorg Chem 2017; 74:166-178. [DOI: 10.1016/j.bioorg.2017.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|