1
|
Husseiny EM, Abulkhair HS, El-Sebaey SA, Sayed MM, Anwer KE. In vivo evaluation of novel synthetic pyrazolones as CDK9 inhibitors with enhanced pharmacokinetic properties. Future Med Chem 2024; 16:2487-2505. [PMID: 39530543 PMCID: PMC11622796 DOI: 10.1080/17568919.2024.2419363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The structural optimization of our recently reported CDK9 inhibitor to furnish novel aminopyrazolones and methylpyrazolones with improved pharmacokinetics.Materials & methods: The synthesis of the targeted compounds was accomplished via conventional, grinding and microwave-assisted processes. The cytotoxicity of them was assayed against three carcinomas.Results: Analogs 2, 4 and 6 showed significant cytotoxicity and selectivity toward all tested cells. They also displayed potent CDK9 inhibition. Compound 6 arrested MCF-7 cycle at G2/M phase by stimulating the apoptotic pathway. The in vivo biodistribution of radiolabeled compound 6 displayed a potent targeting capability of 131I in solid tumors.Conclusion: Entity 6 is a potent CDK9 inhibitor where 131I-compound 6 can be used as a significant radiopharmaceutical imaging tool for tumors.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Samiha A El-Sebaey
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Manal M Sayed
- Labeled Compound Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), P. O. Box 13759, Cairo, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Aouadi A, Hamada Saud D, Rebiai A, Achouri A, Benabdesselam S, Mohamed Abd El-Mordy F, Pohl P, Ahmad SF, Attia SM, Abulkhair HS, Ararem A, Messaoudi M. Introducing the antibacterial and photocatalytic degradation potentials of biosynthesized chitosan, chitosan-ZnO, and chitosan-ZnO/PVP nanoparticles. Sci Rep 2024; 14:14753. [PMID: 38926522 PMCID: PMC11208610 DOI: 10.1038/s41598-024-65579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.
Collapse
Affiliation(s)
- Abdelatif Aouadi
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Djamila Hamada Saud
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Abdelhak Achouri
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
- Water, Environment and Sustainable Development Laboratory (2E2D), Faculty of Technology, University of Blida 1, Route Soumâa, BP 270, Blida, Algeria
| | - Soulef Benabdesselam
- Laboratory of Water and Environmental Engineering in the Saharan Environment, Process Engineering Department, Faculty of Applied Sciences, Kasdi Merbah-Ouargla University, Ouargla, Algeria
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Abderrahmane Ararem
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria.
| |
Collapse
|
3
|
Abdulrahman FG, Abulkhair HS, Saeed HSE, El-Dydamony NM, Husseiny EM. Design, synthesis, and mechanistic insight of novel imidazolones as potential EGFR inhibitors and apoptosis inducers. Bioorg Chem 2024; 144:107105. [PMID: 38219482 DOI: 10.1016/j.bioorg.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
As regards to the structural analysis and optimization of diverse potential EGFR inhibitors, two series of imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates were designed and constructed as potential EGFR suppressors. The cytotoxic effect of the prepared derivatives was assessed toward hepatic, breast, and prostate cancerous cells (Hep-G2, MCF-7, and PC-3). Three derivatives 3d, 3e, and 3f presented potent antiproliferative activity and selectivity against the examined tumor cells showing IC50 values at low micromolar levels. Hence, successive biological assays were applied to determine the probable mechanism of action of the new compounds. They exhibited significant EGFR suppression with an IC50 range of 0.137-0.507 µM. The most effective EGFR inhibitor 3f arrested the MCF-7 cell cycle at the S phase by inducing the apoptotic pathway that was confirmed via increasing the expression of Caspases 8, 9, and Bax, which are associated with Bcl-2 decline. Additionally, molecular docking displayed a distinctive interaction between 3f and EGFR binding pocket. Overall, this work introduces some novel imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates as potential cytotoxic and EGFR inhibitors that deserve further research in tumor therapy.
Collapse
Affiliation(s)
- Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| | - Hoda S El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October City, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
4
|
Abdulrahman FG, Abulkhair HS, Zidan RA, Alwakeel AI, Al-Karmalawy AA, Husseiny EM. Novel benzochromenes: design, synthesis, cytotoxicity, molecular docking and mechanistic investigations. Future Med Chem 2024; 16:105-123. [PMID: 38226455 DOI: 10.4155/fmc-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024] Open
Abstract
Aim: A novel series of fused benzochromenes with expected cytotoxicity and HIF-1α inhibition was identified. Materials & methods: A bioisosterism-aided approach was applied to design new benzochromenes and assess their cytotoxicity against three cancer cell lines. The probable mechanistic effect and the in silico docking and pharmacokinetic profiles of the most effective derivatives were evaluated. Results: Compounds 3, 4, 5, 8 and 11 showed potent antiproliferative activity and excellent selectivity. Compound 8 showed significant HIF-1α inhibition with an IC50 value of 3.372 μM. It also enhanced apoptosis and arrested the HepG2 cell cycle at both the G0/G1 and S stages. Conclusion: Compound 8 was identified as a new potential anticancer candidate.
Collapse
Affiliation(s)
- Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Riham A Zidan
- Department of Biochemistry, Al-Azhar University, Cairo, Egypt
| | - Asmaa I Alwakeel
- Department of Pharmacology & Toxicology, Al Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Ahram Canadian University, Giza, 12566, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| |
Collapse
|
5
|
Gaber AA, El-Morsy AM, Sherbiny FF, Bayoumi AH, El-Gamal KM, El-Adl K, Al-Karmalawy AA, Ezz Eldin RR, Saleh MA, Abulkhair HS. Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Arch Pharm (Weinheim) 2021:e2100258. [PMID: 34467546 DOI: 10.1002/ardp.202100258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Targeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential. These fragments include hydrazone, indoline-2-one, phthalimide, thiourea, oxadiazole, pyrazole, and dihydropyrazole. The synthesized molecules were evaluated for their anticancer activity against the human breast cancer cell line, MCF-7. The obtained results revealed comparable antitumor activity with that of the reference drugs doxorubicin and toceranib. Docking studies were performed along with EGFR-TK and ADMET profiling studies. The results of the docking studies showed the ability of the designed compounds to interact with key residues of the EGFR-TK through a number of covalent and noncovalent interactions. The obtained activity of compound 25 (IC50 = 2.89 µM) suggested that it may serve as a lead for further optimization and drug development.
Collapse
Affiliation(s)
- Ahmed A Gaber
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Chemistry, Basic Science Center and Pharmaceutical Organic Chemistry College of Pharmaceutical Science & Drug Manufacturing, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Rogy R Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa A Saleh
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
6
|
Synthesis and fungicidal activity of novel 6H-benzimidazo[1,2-c][1,3]benzoxazin-6-ones. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02946-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
From triazolophthalazines to triazoloquinazolines: A bioisosterism-guided approach toward the identification of novel PCAF inhibitors with potential anticancer activity. Bioorg Med Chem 2021; 42:116266. [PMID: 34126285 DOI: 10.1016/j.bmc.2021.116266] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Inhibition of PCAF bromodomain has been validated as a promising strategy for the treatment of cancer. In this study, we report the bioisosteric modification of the first reported potent PCAF bromodomain inhibitor, L-45 to its triazoloquinazoline bioisosteres. Accordingly, three new series of triazoloquinazoline derivatives were designed, synthesized, and assessed for their anticancer activity against a panel of four human cancer cells. Three derivatives demonstrated comparable cytotoxic activity with the reference drug doxorubicin. Among them, compound 22 showed the most potent activity with IC50 values of 15.07, 9.86, 5.75, and 10.79 µM against Hep-G2, MCF-7, PC3, and HCT-116 respectively. Also, compound 24 exhibited remarkable cytotoxicity effects against the selected cancer cell lines with IC50 values of 20.49, 12.56, 17.18, and 11.50 µM. Compounds 22 and 25 were the most potent PCAF inhibitors (IC50, 2.88 and 3.19 μM, respectively) compared with bromosporine (IC50, 2.10 μM). Follow up apoptosis induction and cell cycle analysis studies revealed that the bioisostere 22 could induce apoptotic cell death and arrest the cell cycle of PC3 at the G2/M phase. The in silico molecular docking studies were additionally performed to rationalize the PCAF inhibitory effects of new triazoloquinazoline bioisosteres.
Collapse
|
8
|
El-Adl K, Sakr H, El-Hddad SSA, El-Helby AGA, Nasser M, Abulkhair HS. Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000491. [PMID: 33788290 DOI: 10.1002/ardp.202000491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
The anticancer activity of novel thiazolidine-2,4-diones was evaluated against HepG2, HCT-116, and MCF-7 cells. Among the tested cancer cell lines, HCT-116 was the most sensitive one to the cytotoxic effect of the new derivatives. In particular, compounds 18, 11, and 10 were found to be the most potent derivatives among all the tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with IC50 values ranging from 38.76 to 53.99 µM. The most active antiproliferative derivatives (7-14 and 15-19) were subjected to further biological studies to evaluate their inhibitory potentials against VEGFR-2. The tested compounds displayed a good-to-medium inhibitory activity, with IC50 values ranging from 0.26 to 0.72 µM. Among them, compounds 18, 11, and 10 potently inhibited VEGFR-2 at IC50 values in the range of 0.26-0.29 µM, which are nearly three times that of the sorafenib IC50 value (0.10 µM). Although our derivatives showed lower activities than the reference drug, they could be useful as a template for future design, optimization, adaptation, and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs. The ADMET profile showed that compounds 18, 11, and 10 do not violate any of Lipinski's rules and have a comparable intestinal absorptivity in humans. Also, the new derivatives could not inhibit cytochrome P3A4. Unlike sorafenib and doxorubicin, compounds 18, 11, and 10 are expected to have prolonged dosing intervals. Moreover, compounds 10 and 18 displayed a wide therapeutic index and higher selectivity against cancer cells as compared with their cytotoxicity against normal cells.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, El-Salam City, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sanadelaslam S A El-Hddad
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed Nasser
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
9
|
Abulkhair HS, Elmeligie S, Ghiaty A, El-Morsy A, Bayoumi AH, Ahmed HEA, El-Adl K, Zayed MF, Hassan MH, Akl EN, El-Zoghbi MS. In vivo- and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000449. [PMID: 33559320 DOI: 10.1002/ardp.202000449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
The lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives. The anticonvulsant activity of the synthesized compounds was evaluated in vivo according to the pentylenetetrazol-induced seizure protocol, and the results were compared with those of perampanel as a reference drug. Among the synthesized compounds, 24, 28, 32, and 33 showed promising activities with ED50 values of 37.50, 23.02, 29.16, and 23.86 mg/kg, respectively. Docking studies of these compounds suggested that AMPA binding could be the mechanism of action of these derivatives. Overall, the pharmacophore-based structural optimization, in vivo and in silico docking, and druglikeness studies indicated that the designed compounds could serve as promising candidates for the development of effective anticonvulsant agents with good pharmacokinetic profiles.
Collapse
Affiliation(s)
- Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Salwa Elmeligie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Khaled El-Adl
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed F Zayed
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Memy H Hassan
- Pharmacy Department, College of Health Sciences, Taibah University, Madinah, Saudi Arabia.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Eman N Akl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Koum, Egypt
| |
Collapse
|
10
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HEA, Al-Karmalamy AA, Abulkhair HS. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02838c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resistance of pathogenic microbes to currently available antimicrobial agents has been considered a global alarming concern.
Collapse
Affiliation(s)
- Mohamed H. El-Shershaby
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Kamal M. El-Gamal
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ahmed A. Al-Karmalamy
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Horus University - Egypt
- New Damietta
- Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| |
Collapse
|
11
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Ahmed HEA, Abulkhair HS. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch Pharm (Weinheim) 2020; 354:e2000277. [PMID: 33078877 DOI: 10.1002/ardp.202000277] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 μg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 μg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC50 value (3.39 μM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.
Collapse
Affiliation(s)
- Mohamed H El-Shershaby
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmacognosy and Pharmaceutical Chemistry Department, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
12
|
Turky A, Sherbiny FF, Bayoumi AH, Ahmed HEA, Abulkhair HS. Novel 1,2,4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch Pharm (Weinheim) 2020; 353:e2000170. [PMID: 32893368 DOI: 10.1002/ardp.202000170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Three novel series of 1,2,4-triazole derivatives were designed and synthesized as potential adenosine A2B receptor antagonists. The design of the new compounds depended on a virtual screening of a previously constructed library of compounds targeting the human adenosine A2B protein. Spectroscopic techniques including 1 H nuclear magnetic resonance (NMR) and 13 C NMR, and infrared and mass spectroscopy were used to confirm the structures of the synthesized compounds. The in vitro cytotoxicity evaluation was carried out against a human breast adenocarcinoma cell line (MDA-MB-231) using the MTT assay, and the obtained results were compared with doxorubicin as a reference anticancer agent. In addition, in silico studies to propose how the two most active compounds interact with the adenosine A2B receptor as a potential target were performed. Furthermore, a structure-activity relationship analysis was performed, and the pharmacokinetic profile to predict the oral bioavailability and other pharmacokinetic properties was also explained. Four of our designed derivatives showed promising cytotoxic effects against the selected cancer cell line. Compound 15 showed the highest activity with an IC50 value of 3.48 µM. Also, compound 20 revealed an equipotent activity with the reference cytotoxic drug, with an IC50 value of 5.95 µM. The observed IC50 values were consistent with the obtained in silico docking scores. The newly designed compounds revealed promising pharmacokinetic profiles as compared with the reference marketed drug.
Collapse
Affiliation(s)
- Abdallah Turky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
13
|
Turky A, Bayoumi AH, Sherbiny FF, El-Adl K, Abulkhair HS. Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies. Mol Divers 2020; 25:403-420. [PMID: 32830299 DOI: 10.1007/s11030-020-10131-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
The discovery of potent STAT3 inhibitors has gained noteworthy impetus in the last decade. In line with this trend, considering the proven biological importance of 1,2,4-triazoles, herein, we are reporting the design, synthesis, pharmacokinetic profiles, and in vitro anticancer activity of novel C3-linked 1,2,4-triazole-N-arylamide hybrids and their in silico proposed mechanism of action via inhibition of STAT3. The 1,2,4-triazole scaffold was selected as a privilege ring system that is embedded in core structures of a variety of anticancer drugs which are either in clinical use or still under clinical trials. The designed 1,2,4-triazole derivatives were synthesized by linking the triazole-thione moiety through amide hydrophilic linkers with diverse lipophilic fragments. In silico study to predict cytotoxicity of the new hybrids against different kinds of human cancer cell lines as well as the non-tumor cells was conducted. The multidrug-resistant human breast adenocarcinoma cells (MDA-MB-231) was found most susceptible to the cytotoxic effect of synthesized compounds and hence were selected to evaluate the in vitro anticancer activity. Four of the designed derivatives showed promising cytotoxicity effects against selected cancer cells, among which compound 12 showed the highest potency (IC50 = 3.61 µM), followed by 21 which displayed IC50 value of 3.93 µM. Also, compounds 14 and 23 revealed equipotent activity with the reference cytotoxic agent doxorubicin. To reinforce these observations, the obtained data of in vitro cytotoxicity have been validated in terms of ligand-protein interaction and new compounds were analyzed for ADMET properties to evaluate their potential to build up as good drug candidates. This study led us to identify two novel C3-linked 1,2,4-triazole-N-arylamide hybrids of interesting antiproliferative potentials as probable lead inhibitors of STAT3 with promising pharmacokinetic profiles.
Collapse
Affiliation(s)
- Abdallah Turky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
14
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
15
|
Discovery of 7H-pyrrolo[2,3-d]pyridine derivatives as potent FAK inhibitors: Design, synthesis, biological evaluation and molecular docking study. Bioorg Chem 2020; 102:104092. [PMID: 32707280 DOI: 10.1016/j.bioorg.2020.104092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase responsible for development of various tumor types. Aiming to explore new potent inhibitors, two series of 2,4-disubstituted-7H-pyrrolo[2,3-d]pyrimidine derivatives were designed and synthesized on the base of structure-based design strategy. Biological evaluation indicated that most of these new compounds could potently inhibit FAK kinase, leading to the promising inhibitors against the proliferation of U-87MG, A-549, and MDA-MB-231 cancer cell lines. Among them, the optimized compound 18h potently inhibited the enzyme (IC50 = 19.1 nM) and displayed stronger potency than TAE-226 in U-87MG, A-549 and MDA-MB-231 cells, with IC50 values of 0.35, 0.24, and 0.34 μM, respectively. Compound 18h is a multi-target kinase inhibitor. Furthermore, compound 18h also exhibited relatively less cytotoxicity (IC50 = 3.72 μM) toward a normal human cell line, HK2. According to the flow cytometry and wound healing assay results, compound 18h effectively induced apoptosis and G0/G1 phase arrest of MDA-MB-231 cells and suppressed the migration of U-87MG, A-549 and MDA-MB-231 cells. The docking study of compound 18h was performed to elucidate its possible binding modes and to provide a structural basis for the further structural guidance design of FAK inhibitors. Collectively, these data support the further development of compound 18h as a lead compound for FAK-targeted anticancer drug discovery.
Collapse
|
16
|
Abulkhair HS, Turky A, Ghiaty A, Ahmed HE, Bayoumi AH. Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies. Bioorg Chem 2020; 100:103899. [DOI: 10.1016/j.bioorg.2020.103899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
|
17
|
Turky A, Bayoumi AH, Ghiaty A, El-Azab AS, A-M Abdel-Aziz A, Abulkhair HS. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg Chem 2020; 101:104019. [PMID: 32615465 DOI: 10.1016/j.bioorg.2020.104019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The antitumor activity of newly synthesised triazolophthalazines (L-45 analogues) 10-32 was evaluated in human hepatocellular carcinoma (HePG-2), breast cancer (MCF-7), prostate cancer (PC3), and colorectal carcinoma (HCT-116) cells. Compounds 17, 18, 25, and 32 showed potent antitumor activity (IC50, 2.83-13.97 μM), similar to doxorubicin (IC50, 4.17-8.87 μM) and afatinib (IC50, 5.4-11.4 μM). HePG2 was inhibited by compounds 10, 17, 18, 25, 26, and 32 (IC50, 3.06-10.5 μM), similar to doxorubicin (IC50, 4.50 μM) and afatinib (IC50, 5.4 μM). HCT-116 and MCF-7 were susceptible to compounds 10, 17, 18, 25, and 32 (IC50, 2.83-10.36 and 5.69-11.36 μM, respectively), similar to doxorubicin and afatinib (IC50 = 5.23 and 4.17, and 11.4 and 7.1 μM, respectively). Compounds 17, 25, and 32 exerted potent activities against PC3 (IC50, 7.56-12.28 μM) compared with doxorubicin (IC50, 8.87 µM) and afatinib (IC50 7.7 μM). Compounds 17 and 32 were the strongest PCAF inhibitors (IC50, 5.31 and 10.30 μM, respectively) and compounds 18 and 25 exhibited modest IC50 values (17.09 and 32.96 μM, respectively) compared with bromosporine (IC50, 5.00 μM). Compound 17 was cytotoxic to HePG2 cells (IC50, 3.06 μM), inducing apoptosis in the pre-G phase and arresting the cell cycle in the G2/M phase. Molecular docking for the most active PCAF inhibitors (17 and 32) was performed.
Collapse
Affiliation(s)
- Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ashraf H Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
18
|
Ezzat HG, Bayoumi AH, Sherbiny FF, El-Morsy AM, Ghiaty A, Alswah M, Abulkhair HS. Design, synthesis, and molecular docking studies of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives as potential A2B receptor antagonists. Mol Divers 2020; 25:291-306. [PMID: 32166485 DOI: 10.1007/s11030-020-10070-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Many shreds of evidence have recently correlated A2B receptor antagonism with anticancer activity. Hence, the search for an efficient A2B antagonist may help in the development of a new chemotherapeutic agent. In this article, 23 new derivatives of [1,2,4]triazolo[4,3-a]quinoxaline were designed and synthesized and its structures were confirmed by different spectral data and elemental analyses. The results of cytotoxic evaluation of these compounds showed six promising active derivatives with IC50 values ranging from 1.9 to 6.4 μM on MDA-MB 231 cell line. Additionally, molecular docking for all synthesized compounds was performed to predict their binding affinity toward the homology model of A2B receptor as a proposed mode of their cytotoxic activity. Results of molecular docking were strongly correlated with those of the cytotoxic study. Finally, structure activity relationship analyses of the new compounds were explored.
Collapse
Affiliation(s)
- Hany G Ezzat
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.,Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, 54001, Najaf, Iraq
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884, Nasr City, Cairo, Egypt. .,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
19
|
Design of potential anti-tumor PARP-1 inhibitors by QSAR and molecular modeling studies. Mol Divers 2020; 25:263-277. [PMID: 32140890 DOI: 10.1007/s11030-020-10063-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Poly ADP-ribose polymerase-1 (PARP-1) inhibitors have been recognized as new agents for the treatment of patients with breast cancer type 1 (BRCA1) disorders. The quantitative structure-activity relationships (QSAR) technique was used in order to achieve the required medicines for anticancer activity easier and faster. In this study, the QSAR method was developed to predict the half-maximal inhibitory concentration (IC50) of 51 1H-benzo[d]immidazole-4-carboxamide derivatives by genetic algorithm-multiple linear regression (GA-MLR) and least squares-support vector machine (LS-SVM) methods. Results in the best QSAR model represented the coefficient of leave-one-out cross-validation (Q cv 2 ) = 0.971, correlation coefficient (R2) = 0.977, Fisher parameter (F) = 259.016 and root mean square error (RMSE) = 0.095, respectively, which indicated that the LS-SVM model had a good potential to predict the pIC50 (9 - log(IC50 nM)) values compared with other modeling methods. Also, molecular docking evaluated interactions between ligands and enzyme and their free energy of binding were calculated and used as descriptors. Molecular docking and the QSAR study completed each other. The results represented that the final model can be useful to design some new inhibitors. So, the knowledge of the QSAR modeling and molecular docking was used in pIC50 prediction and 51 new compounds were developed as PARP-1 inhibitors that 9 compounds had the best-proposed values for pIC50. The maximum enhancement of the inhibitory activity of compounds was 33.394%.
Collapse
|
20
|
Wang R, Chen Y, Yang B, Yu S, Zhao X, Zhang C, Hao C, Zhao D, Cheng M. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorg Chem 2019; 94:103474. [PMID: 31859010 DOI: 10.1016/j.bioorg.2019.103474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023]
Abstract
A class of 3-substituted 1H-pyrrolo[2,3-b]pyridine derivatives were designed, synthesized and evaluated for their in vitro biological activities against maternal embryonic leucine zipper kinase (MELK). Among these derivatives, the optimized compound 16h exhibited potent enzyme inhibition (IC50 = 32 nM) and excellent anti-proliferative effect with IC50 values from 0.109 μM to 0.245 μM on A549, MDA-MB-231 and MCF-7 cell lines. The results of flow cytometry indicated that 16h promoted apoptosis of A549 cells in a dose-dependent manner and effectively arrested A549 cells in the G0/G1 phase. Further investigation indicated that compound 16h potently suppressed the migration of A549 cells, had moderate stability in rat liver microsomes and showed moderate inhibitory activity against various subtypes of human cytochrome P450. However, compound 16h is a multi-target kinase inhibitor and recently several studies reported MELK expression is not required for cancer growth, suggesting that compound 16h suppressed the proliferation and migration of cancer cells should through an off-target mechanism. Collectively, compound 16h has the potential to serve as a new lead compound for further anticancer drug discovery.
Collapse
Affiliation(s)
- Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yixuan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Bowen Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Sijia Yu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiangxin Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Cai Zhang
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
21
|
Carramiñana V, Ochoa de Retana AM, de Los Santos JM, Palacios F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur J Med Chem 2019; 185:111771. [PMID: 31671309 DOI: 10.1016/j.ejmech.2019.111771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
This work describes a straightforward diastereoselective synthetic access to azirino[2,1-b]benzo[e][1,3]oxazines containing phosphorus substituents such as phosphonate or phosphine oxide, by means of nucleophilic addition of functionalized phenols to the C-N double bond of 2H-azirine derivatives. In addition, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549) and human embryonic kidney (HEK293) was also screened. Some azirino[2,1-b]benzo[e][1,3]oxazines 4 and 6 exhibited very good activity against the A549 cell line in vitro. Furthermore, selectivity towards cancer cell (A549) over (HEK293), and non-malignant cells (MCR-5) has been detected.
Collapse
Affiliation(s)
- Victor Carramiñana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria, Spain.
| |
Collapse
|
22
|
Hannoun MH, Hagras M, Kotb A, El-Attar AAMM, Abulkhair HS. Synthesis and antibacterial evaluation of a novel library of 2-(thiazol-5-yl)-1,3,4-oxadiazole derivatives against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Chem 2019; 94:103364. [PMID: 31668461 DOI: 10.1016/j.bioorg.2019.103364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/23/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
Replacement of the n-butylphenyl moiety in the lipophilic part of the previously reported arylthiazole antibiotics with naphthyl ring amended its activity against vancomycin resistant strains of Staphylococcus aureus. Incorporation of the CN linker connecting the nitrogenous head with thiazole within an oxadiazole ring provided orally available analogs with relatively long half-life. In this article, a set of new twenty-three derivatives of 2-(thiazol-5-yl)-1,3,4-oxadiazole was synthesized combining both structural modifications in one new scaffold with the objectives of enhancing both the pharmacokinetic profile and antibacterial activities vs. malicious microbes. Among the synthesized new compounds, five derivatives showed promising activity with MIC values ranging from 1.95 to 3.90 μg/mL. The guanidinyl-containing naphthylthiazole and N-methylpiperazinyl derivatives (25 &29) were found equipotent as vancomycin against MRSA (2658 RCMB). The other three derivatives (23, 24 and 26) revealed 50% of vancomycin activity.
Collapse
Affiliation(s)
- Mohamed H Hannoun
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Abdul-Aziz M M El-Attar
- Department of Pharmaceutical Analytical Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Horus University - Egypt, New Damietta, Egypt.
| |
Collapse
|
23
|
Dai N, Tang Z, Wang M, Peng L, Wan Y, Jiao Y. Synthesis and fungicidal activity of novel ureido-substituted 1,3-benzoxazines. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819836503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ten novel ureido-substituted 1,3-benzoxazines were synthesized in moderate yields by La(OTf)3-catalyzed reaction of some aldehydes with four ureido-substituted 2-aminomethylphenols which were prepared by a one-pot method. Evaluation of their fungicidal activity revealed that most compounds showed moderate to good activity and one of the ureido-substituted 2-aminomethylphenols showed activity against Rhizoctonia solani and Sclerotonia sclerotiorum comparable to the control compound, chlorothalonil.
Collapse
Affiliation(s)
- Ningning Dai
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, P.R. China
- Hunan Provincial key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P.R. China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, P.R. China
- Hunan Provincial key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P.R. China
| | - Ming Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, P.R. China
- Hunan Provincial key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P.R. China
| | - Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, P.R. China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, P.R. China
| | - Yinchun Jiao
- Hunan Provincial key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P.R. China
| |
Collapse
|
24
|
Riyadh SM, El-Motairi SA, Ahmed HEA, Khalil KD, Habib ESE. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chem Biodivers 2018; 15:e1800231. [PMID: 29956887 DOI: 10.1002/cbdv.201800231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
2-(1-{4-[(4-Methylphenyl)sulfonamido]phenyl}ethylidene)thiosemicarbazide (3) was exploited as a starting material for the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 6a - 6j and 2-hydrazono[1,3,4]thiadiazoles 10a - 10d, incorporating sulfonamide group, through its reactions with appropriate hydrazonoyl halides. The structures of the newly synthesized products were confirmed by spectral and elemental analyses. Also, the antimicrobial, anticancer, and DHFR inhibition potency for two series of thiazoles and [1,3,4]thiadiazoles were evaluated and explained by molecular docking studies and SAR analysis.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shojaa A El-Motairi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - El-Sayed E Habib
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
25
|
Zheng Y, Ouyang Q, Fu R, Liu L, Zhang H, Hu X, Liu Y, Chen Y, Gao N. The cyclohexene derivative MC-3129 exhibits antileukemic activity via RhoA/ROCK1/PTEN/PI3K/Akt pathway-mediated mitochondrial translocation of cofilin. Cell Death Dis 2018; 9:656. [PMID: 29844397 PMCID: PMC5974298 DOI: 10.1038/s41419-018-0689-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/31/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023]
Abstract
The effects of MC-3129, a synthetic cyclohexene derivative, on cell viability and apoptosis have been investigated in human leukemia cells. Exposure of leukemia cells to MC-3129 led to the inhibition of cell viability and induction of apoptosis through the dephosphorylation and mitochondrial translocation of cofilin. A mechanistic study revealed that interruption of the RhoA/ROCK1/PTEN/PI3K/Akt signaling pathway plays a crucial role in the MC-3129-mediated dephosphorylation and mitochondrial translocation of cofilin and induction of apoptosis. Our in vivo study also showed that the MC-3129-mediated inhibition of the tumor growth in a mouse leukemia xenograft model is associated with the interruption of ROCK1/PTEN/PI3K/Akt signaling and apoptosis. Molecular docking suggested that MC-3129 might activate the RhoA/ROCK1 pathway by targeting LPAR2. Collectively, these findings suggest a hierarchical model, in which the induction of apoptosis by MC-3129 primarily results from the activation of RhoA/ROCK1/PTEN and inactivation of PI3K/Akt, leading to the dephosphorylation and mitochondrial translocation of cofilin, and culminating in cytochrome c release, caspase activation, and apoptosis. Our study reveals a novel role for RhoA/ROCK1/PTEN/PI3K/Akt signaling in the regulation of mitochondrial translocation of cofilin and apoptosis and suggests MC-3129 as a potential drug for the treatment of human leukemia.
Collapse
Affiliation(s)
- Yi Zheng
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Ruoqiu Fu
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Lei Liu
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Hongwei Zhang
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | | | - Yanxia Liu
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Yingchun Chen
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China.
| | - Ning Gao
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|