1
|
Verma H, Kaur J, Thakur V, Dhingra GG, Lal R. Comprehensive review on Haloalkane dehalogenase (LinB): a β-hexachlorocyclohexane (HCH) degrading enzyme. Arch Microbiol 2024; 206:380. [PMID: 39143366 DOI: 10.1007/s00203-024-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Haloalkane dehalogenase, LinB, is a member of the α/β hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially β-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on β-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of β-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.
Collapse
Affiliation(s)
| | - Jasvinder Kaur
- Gargi College, University of Delhi, Delhi, 110007, India
| | | | | | - Rup Lal
- INSA, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
2
|
Raczyńska A, Kapica P, Papaj K, Stańczak A, Shyntum D, Spychalska P, Byczek-Wyrostek A, Góra A. Transient binding sites at the surface of haloalkane dehalogenase LinB as locations for fine-tuning enzymatic activity. PLoS One 2023; 18:e0280776. [PMID: 36827335 PMCID: PMC9956002 DOI: 10.1371/journal.pone.0280776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023] Open
Abstract
The haloalkane dehalogenase LinB is a well-known enzyme that contains buried active site and is used for many modelling studies. Using classical molecular dynamics simulations of enzymes and substrates, we searched for transient binding sites on the surface of the LinB protein by calculating maps of enzyme-ligand interactions that were then transformed into sparse matrices. All residues considered as functionally important for enzyme performance (e.g., tunnel entrances) were excluded from the analysis to concentrate rather on non-obvious surface residues. From a set of 130 surface residues, twenty-six were proposed as a promising improvement of enzyme performance. Eventually, based on rational selection and filtering out the potentially unstable mutants, a small library of ten mutants was proposed to validate the possibility of fine-tuning the LinB protein. Nearly half of the predicted mutant structures showed improved activity towards the selected substrates, which demonstrates that the proposed approach could be applied to identify non-obvious yet beneficial mutations for enzyme performance especially when obvious locations have already been explored.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Patryk Kapica
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Papaj
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Agnieszka Stańczak
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Divine Shyntum
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Patrycja Spychalska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | | | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
- * E-mail:
| |
Collapse
|
3
|
Wei X, Liu N, Song J, Ren C, Tang X, Jiang W. Effect of silica nanoparticles on cell membrane fluidity: The role of temperature and membrane composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156552. [PMID: 35688239 DOI: 10.1016/j.scitotenv.2022.156552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The increasing production and application of silica nanoparticles (SiO2 NPs) raise public concern regarding their environmental and health risks. The fluidity of the cell membrane is essential for supporting membrane proteins and regulating membrane transport. Changes in membrane fluidity inevitably influence the physiological activities of cells and even cause biological effects. In this study, the effect of SiO2 NPs on membrane fluidity was studied at 25 °C and 37 °C, and the role of membrane components in SiO2 NP-membrane interactions was investigated using giant plasma membrane vesicles (GPMVs) isolated from RBL-2H3 cells. SiO2 NPs cause a more serious membrane fluidity decrease at 37 °C than at 25 °C, which is revealed by the shift of Laurdan fluorescence emission and further quantified via forster resonance energy transfer (FRET) experiments. In addition, after the removal of 75 % cholesterol from the membrane, SiO2 NPs caused a greater extent of membrane gelation. These results indicate that SiO2 NPs prefer to interact with membranes that are more dynamic and less densely packed. Moreover, fluorescent experiments confirmed that the existence of phosphatidyl ethanolamine (PE) and phosphoinositide (PI) can mitigate NP-induced membrane gelation. Molecular dynamics simulation further demonstrated that SiO2 NPs form hydrogen bonds with the terminal of PE or PI but with the -PO4-- group in the middle of phosphatidylcholine (PC). The bonding that occurs in the terminal gives less restriction of phospholipid movement and a weaker effect on membrane fluidity. This research provides both evidence and mechanisms of SiO2 NP-induced membrane fluidity changes, which are helpful for understanding cell membrane damage and the biological effects of NPs.
Collapse
Affiliation(s)
- Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nan Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jian Song
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Chao Ren
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Yu F, Li Y, Wang H, Peng T, Wu YR, Hu Z. Microbial debromination of hexabromocyclododecanes. Appl Microbiol Biotechnol 2021; 105:4535-4550. [PMID: 34076715 DOI: 10.1007/s00253-021-11095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 11/29/2022]
Abstract
Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: • Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. • Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. • Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yuyang Li
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Hui Wang
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Tao Peng
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Yi-Rui Wu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China
| | - Zhong Hu
- Department of Biology, Science College, Shantou University, Shantou, 515063, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
6
|
Kokkonen P, Slanska M, Dockalova V, Pinto GP, Sánchez-Carnerero EM, Damborsky J, Klán P, Prokop Z, Bednar D. The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step. Comput Struct Biotechnol J 2020; 18:805-813. [PMID: 32308927 PMCID: PMC7152659 DOI: 10.1016/j.csbj.2020.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/18/2023] Open
Abstract
Transport of ligands between bulk solvent and the buried active sites is a critical event in the catalytic cycle of many enzymes. The rational design of transport pathways is far from trivial due to the lack of knowledge about the effect of mutations on ligand transport. The main and an auxiliary tunnel of haloalkane dehalogenase LinB have been previously engineered for improved dehalogenation of 1,2-dibromoethane (DBE). The first chemical step of DBE conversion was enhanced by L177W mutation in the main tunnel, but the rate-limiting product release was slowed down because the mutation blocked the main access tunnel and hindered protein dynamics. Three additional mutations W140A + F143L + I211L opened-up the auxiliary tunnel and enhanced the product release, making this four-point variant the most efficient catalyst with DBE. Here we study the impact of these mutations on the catalysis of bulky aromatic substrates, 4-(bromomethyl)-6,7-dimethoxycoumarin (COU) and 8-chloromethyl-4,4'-difluoro-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (BDP). The rate-limiting step of DBE conversion is the product release, whereas the catalysis of COU and BDP is limited by the chemical step. The catalysis of COU is mainly impaired by the mutation L177W, whereas the conversion of BDP is affected primarily by the mutations W140A + F143L + I211L. The combined computational and kinetic analyses explain the differences in activities between the enzyme-substrate pairs. The effect of tunnel mutations on catalysis depends on the rate-limiting step, the complementarity of the tunnels with the substrates and is clearly specific for each enzyme-substrate pair.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Slanska
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Dockalova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gaspar P. Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Ann’s Hospital, Brno, Czech Republic
| | | | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Ann’s Hospital, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Ann’s Hospital, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Ann’s Hospital, Brno, Czech Republic
| |
Collapse
|
7
|
Cheng X, Dong S, Chen D, Rui Q, Guo J, Jiang J. Potential of esterase DmtH in transforming plastic additive dimethyl terephthalate to less toxic mono-methyl terephthalate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109848. [PMID: 31670182 DOI: 10.1016/j.ecoenv.2019.109848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Dimethyl terephthalate (DMT) is a primary ingredient widely used in the manufacture of polyesters and industrial plastics; its environmental fate is of concern due to its global use. Microorganisms play key roles in the dissipation of DMT from the environment; however, the enzymes responsible for the initial transformation of DMT and the possible altered toxicity due to this biotransformation have not been extensively studied. To reduce DMT toxicity, we identified the esterase gene dmtH involved in the initial transformation of DMT from the AOPP herbicide-transforming strain Sphingobium sp. C3. DmtH shows 24-41% identity with α/β-hydrolases and belongs to subfamily V of bacterial esterases. The purified recombinant DmtH was capable of transforming DMT to mono-methyl terephthalate (MMT) and potentially transforming other p-phthalic acid esters, including diallyl terephthalate (DAT) and diethyl terephthalate (DET). Using C. elegans as an assay model, we observed the severe toxicity of DMT in inducing reactive oxygen species (ROS) production, decreasing locomotion behavior, reducing lifespan, altering molecular basis for oxidative stress, and inducing mitochondrial stress. In contrast, exposure to MMT did not cause obvious toxicity, induce oxidative stress, and activate mitochondrial stress in nematodes. Our study highlights the usefulness of Sphingobium sp. C3 and its esterase DmtH in transforming p-phthalic acid esters and reducing the toxicity of DMT to organisms.
Collapse
Affiliation(s)
- Xiaokun Cheng
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Dong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Medical School, Southeast University, Nanjing, 210009, China
| | - Dian Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Rui
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Guo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Abstract
The application of native enzymes may not be economical owing to the stability factor. A smaller protein molecule may be less susceptible to external stresses. Haloalkane dehalogenases (HLDs) that act on toxic haloalkanes may be incorporated as bioreceptors to detect haloalkane contaminants. Therefore, this study aims to develop mini proteins of HLD as an alternative bioreceptor which was able to withstand extreme conditions. Initially, the mini proteins were designed through computer modeling. Based on the results, five designed mini proteins were deemed to be viable stable mini proteins. They were then validated through experimental study. The smallest mini protein (model 5) was chosen for subsequent analysis as it was expressed in soluble form. No dehalogenase activity was detected, thus the specific binding interaction of between 1,3-dibromopropane with mini protein was investigated using isothermal titration calorimetry. Higher binding affinity between 1,3-dibromopropane and mini protein was obtained than the native. Thermal stability study with circular dichroism had proven that the mini protein possessed two times higher Tm value at 83.73 °C than the native at 43.97 °C. In conclusion, a stable mini protein was successfully designed and may be used as bioreceptors in the haloalkane sensor that is suitable for industrial application.
Collapse
|
9
|
Feng Y, Wang Y, Chu H, Fan Y, Cao X, Liu Y, Li G, Xue S. Stereoselective catalysis controlled by a native leucine or variant isoleucine wing‐gatekeeper in 2‐haloacid dehalogenase. FEBS Lett 2018; 593:308-318. [DOI: 10.1002/1873-3468.13309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Yanbin Feng
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Yayue Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- School of Biology and Food Science Shangqiu Normal University China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian China
| | - Yan Fan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- University of Chinese Academy of Sciences Beijing China
| | - Xupeng Cao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Yinghui Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian China
| | - Song Xue
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
10
|
Wang J, Tang X, Li Y, Zhang R, Zhu L, Chen J, Sun Y, Zhang Q, Wang W. Computational evidence for the degradation mechanism of haloalkane dehalogenase LinB and mutants of Leu248 to 1-chlorobutane. Phys Chem Chem Phys 2018; 20:20540-20547. [PMID: 30051124 DOI: 10.1039/c8cp03561j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The catalytic degradation ability of the haloalkane dehalogenase LinB toward 1-chlorobutane (1-CB) was studied using a combined quantum mechanics/molecular mechanics (QM/MM) approach. Two major processes are involved in the LinB-catalyzed removal of halogens: dechlorination and hydrolyzation. The present study confirmed the experimentally proposed reaction path at the molecular level. Moreover, based on nucleophilic substitution mechanism (SN2 reaction), dechlorination was found to be the rate-determining step of the entire reaction process. In this study, the Boltzmann-weighted average barrier for dechlorination was determined to be 17.0 kcal mol-1, which is fairly close to the experimental value (17.4 kcal mol-1). The state of His107 and the influence of Leu248 on the dechlorination process were also explored. In addition, an intriguing phenomenon was discovered: the potential energy barrier decreased by 7.5 kcal mol-1 when the Leu248 residue was mutated into Phe248. This discovery might be of great help to design new mutant enzymes or novel biocatalysts.
Collapse
Affiliation(s)
- Junjie Wang
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Molecules 2018; 23:E1100. [PMID: 29735886 PMCID: PMC6100074 DOI: 10.3390/molecules23051100] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
Collapse
Affiliation(s)
- Thiau-Fu Ang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Jonathan Maiangwa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Liu W, Qin Y, Liu S, Xing R, Yu H, Chen X, Li K, Li P. Synthesis, characterization and antifungal efficacy of chitosan derivatives with triple quaternary ammonium groups. Int J Biol Macromol 2018; 114:942-949. [PMID: 29625221 DOI: 10.1016/j.ijbiomac.2018.03.179] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
A novel type of water soluble chitosan derivatives (TQCSPX) were synthesized including 3-aminopyridine (TQCSP1) and 3-Amino-4-methylpyridine (TQCSP2). The theoretical structures of TQCSPX were calculated by Gaussian 09 and confirmed by FT-IR, 1H NMR, 13C NMR, elemental analysis and XRD. The antifungal properties of TQCSPX against Phytophthora capsici (P. capsici), Rhizoctonia solani (R. solani), Fusarium oxysporum (F. oxysporum) and Fusarium solani (F. solani) were evaluated at concentrations ranging from 0.2mg/mL to 0.8mg/mL. Antifungal results indicated that the derivatives have significantly enhanced antifungal activity after quaternized compared with the original chitosan (CS). Moreover, TQCSP1 inhibited the growth of P. capsici with inhibitory indices of 91.94% at 0.8mg/mL. The experimental results demonstrated that the increasing number of the positive charge would improve the antifungal efficiency of chitosan, which may provide a novel direction for the development of fungicides.
Collapse
Affiliation(s)
- Weixiang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukun Qin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Song Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaolin Chen
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kecheng Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
13
|
Wang YX, Zhou L, Wang J, Lin B, Wang XB, Huang XX, Song SJ. Enantiomeric lignans with anti-β-amyloid aggregation activity from the twigs and leaves of Pithecellobium clypearia Benth. Bioorg Chem 2018; 77:579-585. [DOI: 10.1016/j.bioorg.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
|